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THE THEORY AND PRACTICE OF REEDY CATEGORIES

EMILY RIEHL AND DOMINIC VERITY

Abstract. The goal of this paper is to demystify the role played by the Reedy cat-
egory axioms in homotopy theory. With no assumed prerequisites beyond a healthy
appetite for category theoretic arguments, we present streamlined proofs of a number
of useful technical results, which are well known to folklore but di�cult to �nd in the
literature. While the results presented here are not new, our approach to their proofs is
somewhat novel. Speci�cally, we reduce the much of the hard work involved to simpler
computations involving weighted colimits and Leibniz (pushout-product) constructions.
The general theory is developed in parallel with examples, which we use to prove that
familiar formulae for homotopy limits and colimits indeed have the desired properties.

1. Introduction

The homotopical behavior of limits or colimits of diagrams of a �xed shape is somewhat
subtle. The situation is improved considerably when the shape in question, given in
general by a small category C, is a Reedy category . Ordinary colimits indexed by Reedy
categories include pushouts, coequalisers, coproducts, and sequential colimits. Weighted
colimits further include geometric realizations of simplicial objects. As the opposite of a
Reedy category is always a Reedy category, the dual limit notions will also �t into this
framework.

A Reedy category might admit multiple Reedy category structures, as we shall see in
examples below. A key ingredient in a Reedy structure is a degree function assigning to
each object a natural number. Certain, but not necessarily all, morphisms from an object
to an object of lower (respectively higher) degree are said to strictly lower (respectively
raise) degrees. Each morphism must factorise uniquely as one of the former type followed
by one of the later.

A consequence of these axioms, providing the key motive for their introduction, is that
diagrams indexed by a Reedy category can be de�ned inductively via a procedure that we
will outline below. Trivial examples of this are familiar: a diagram indexed by the poset ω
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may of course be stipulated by �rst choosing the image of the initial object, then choosing
a morphism with this object as its domain, then choosing a morphism with the codomain
of this chosen arrow as its domain, and so on. In a widely circulated preprint, Chris
Reedy described an inductive procedure that can be used to de�ne a simplicial object: the
extension from an n-truncated simplicial object to an (n+1)-truncated simplicial object is
determined by a factorisation of a canonical map from the n-skeleton to the n-coskeleton.
This procedure is functorial: extensions of maps also correspond to factorisations, this
time in the arrow category.

It will be of interest to understand the homotopical behavior of the skeleta and
coskeleta. For instance, the geometric realization of a simplicial space X is the col-
imit of the geometric realizations of a sequence of maps skn−1X → sknX. A geometric
understanding of these maps will supply conditions under which this colimit is homotopy
invariant. To that end, Reedy observed that there is a pushout diagram of the following
form

LnX ×∆n ∪Xn × ∂∆n

��

// Xn ×∆n

��

skn−1X // sknX

(1.1)

in which LnX is the space of degenerate n-simplices of X, de�ned in this case to be the
union of the images of the degeneracy maps with codomain Xn.

1 These pushouts simply
formalise our intuition that we may construct the n-skeleton of a simplicial space X by
adjoining a space of non-degenerate n-simplices to its (n − 1)-skeleton by glueing along
suitable maps of simplex boundaries.

The point of view championed in this paper is that Reedy's insights can be reduced to
an analysis of the hom-bifunctor ∆: �op × �→ Set. Speci�cally, we de�ne its n-skeleton
skn ∆ to be the sub-bifunctor of ∆ of those simplicial operators [m]→ [k] which factorise
through [n] and de�ne the boundaries of the covariant and contravariant representables
∆n := ∆(−, [n]) and ∆n := ∆([n],−) to be their sub-functors ∂∆n := skn−1 ∆(−, [n]) and
∂∆n := skn−1 ∆([n],−). Then we show, by a simple and direct combinatorial argument,
that there exists a pushout diagram

∂∆n ×∆n ∪∆n × ∂∆n

��

// ∆n ×∆n

��

skn−1 ∆ // skn ∆

(1.2)

in Set�
op×�, wherein the symbol × denotes the manifest exterior product functor Set�

op

×
Set� → Set�

op×�. Of course this result can be regarded as being a special case of Reedy's,
but for us it is a key and very concrete observation which can be extended immediately

1To make this diagram of simplicial spaces �type check� we should explain what we mean by the
product Xn ×∆n of a space Xn with a simplicial set ∆n. This is an unfortunate, but traditional, abuse
of notation under which if X is a space and Y is a simplicial set then X × Y denotes the simplicial space
whose space of n-simplices is the Yn-fold copower of the space X.
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to his general case of all simplicial objects in arbitrary (small cocomplete) categories.
Speci�cally, we do this by observing that the objects in Reedy's pushout (1.1) can be
obtained as weighted colimits whose weights are the bifunctors in (1.2). Everything else
follows by observing that weighted colimit constructions are cocontinuous in their weights.
This approach generalise with no extra e�ort to categories of functors on an arbitrary
Reedy category, and we present our work here at that level of generality.

In this context, a weight is a functor describing the �shape� of a generalised cone
over diagrams indexed by a �xed small category. Objects representing the set of cones
described by a particular weight are called weighted limits or colimits. Weighted limits and
colimits are indispensable to enriched category theory but can provide a useful conceptual
simpli�cation even in the unenriched context, which is all that we will need here. Their
use will simplify the proofs involved in the development of Reedy category theory precisely
because calculations involving the weights are the reason why these results are true. We
summarise our expository project with the slogan that �it's all in the weights�.

The de�nition of a Reedy category originates in unpublished notes of Dan Kan, which
circulated as an early draft of the book [3]. This material survives in the published liter-
ature thanks to [5, chapter 15]. A briefer account based on the same source material can
be found in [6, chapter 4]. We o�er this as a �second generation� account of the classical
theory. Other work that might contest this title is [1] which introduces generalised Reedy
categories, a de�nition which, in contrast with ordinary Reedy categories, is invariant
under equivalence.

Roadmap. We conclude this introduction with a review of the notions of weighted limit
and colimit which are central to all of our work here. Reedy categories are introduced
in section 2, in which we prove a lemma characterising the factorisations of arrows in a
Reedy category. In section 3, we introduce latching and matching objects, de�ned using
skeleta and coskeleta functors appropriate to the Reedy setting. In section 4, we give a
thorough study of Leibniz constructions, which are used to de�ne relative latching and
matching maps. This section concludes with the de�nition of the Reedy model structure,
which we establish in section 7.

In section 5, we prove that the Leibniz tensor of a pair of relative cell complexes is
again a relative cell complex, whose cells are the Leibniz tensors of the given cells. This
calculation enables us, in section 6 which is really the heart of this paper, to introduce the
canonical cellular presentation for the two-sided representable functor of a Reedy category.
As an immediate corollary, any natural transformation between functors indexed by a
Reedy category admits a canonical presentation as a relative cell complex whose cells are
built from its relative latching maps, and also a canonical presentation as a �Postnikov
tower� whose layers are built from its relative matching maps (proposition 6.3 and its
dual). This makes the proof of the Reedy model structure in section 7 essentially a
triviality.

As an epilogue, in section 8�10 we turn our attention to homotopy limits and colimits
of diagrams of Reedy shape. We begin in section 8 with a gentle introduction to this
topic, illustrating examples of homotopy limit and homotopy colimits formulae provided
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by the Reedy model structures. In section 9, we unify all the examples just considered,
proving that the limit (resp. colimit) is a right (resp. left) Quillen functor if and only if
the weights used to de�ne latching (resp. matching) objects are connected. In section
10, we describe the homotopical properties of the weighted limit and colimit bifunctors
in a simplicial model category. A corollary is the homotopy invariance of the geometric
realization of Reedy co�brant simplicial objects and of the totalization of Reedy �brant
cosimplicial objects.

Notational conventions.

1.3. Notation. [size] Generally speaking, in this paper matters of size will not be crucial
for us. However, for de�niteness we shall adopt the usual conceit of assuming that we
have �xed an inaccessible cardinal which then determines a corresponding Grothendieck
universe. We shall refer to the members of that universe simply as sets and refer to
everything else as classes.

When discussing the existence of limits and colimits we shall implicitly assume that
these are indexed by small categories (categories with sets of objects and arrows). Cor-
respondingly completeness and cocompleteness properties will implicitly reference the
existence of limits and colimits indexed by small categories. To aid the intuition, we shall
distinguish certain small or large structures notationally. For example, we shall usually
use bold capitals A,B, . . . to denote small categories and calligraphic letters A,B, . . . to
denote large, locally small categories.

While not strictly necessary in all places, we shall also adopt the blanket assumption
that all of the large, locally small categories we shall consider admit all small limits and
colimits.

1.4. Notation. [general index notation] In what follows, we will employ index notation
in the context of an iterated functor category. In this context, we use multiple subscripts
and superscripts to denote the structural components from which objects and arrows are
constructed. Furthermore, we follow the convention of using subscripts for contravariant
actions and superscripts for covariant actions. These conventions accord with the standard
notation used for n-fold simplicial sets and other common examples.

So for example if X is an object of an iterated functor category ((ME)D
op

)C then Xc

denotes the object of (ME)D
op

obtained by evaluating X at c ∈ C, Xc
d denotes the object

ofME obtained by evaluating Xc at d ∈ D and �nally Xc,e
d is the object ofM obtained

by evaluating Xc
d at e ∈ E. Furthermore, if f : c → c̄ is a map in C then Xf : Xc → X c̄

denotes the map of (ME)D
op

obtained by applying X to f and so forth.
In this context functoriality may be expressed as a family of left (covariant) and right

(contravariant) actions, one for each subscript and superscript, which each satisfy the
appropriate action axioms individually and which also satisfy the obvious pairwise action
interchange laws.

It should be said that this index notation is best suited to expressing situations in
which we think of the domains of our functors as being categories of operators and the
functors themselves as being families of objects in the codomain category upon which
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those operators act. In other situations we will, of course, resort to more traditional
notation for our functors.

1.5. Notation. [representables] If C is a category we will overload our notation and also
use C to denote the usual two-variable hom-functor in the functor category SetC

op×C. So
using this convention, in tandem with the index conventions outlined above, we will write
Cc and Cc for the covariant and contravariant representables (respectively) associated
with an object c ∈ C. So it follows that if we have a second object c̄ ∈ C then the
expression Cc

c̄ denotes the value of the contravariant representable Cc at c̄ (respectively
covariant representable Cc̄ at c) which is simply equal to the hom-set C(c̄, c). We will
also deploy cypher notation and write C• : C

op → SetC and C• : C → SetC
op

to denote
the corresponding Yoneda embeddings.

Weighted limits and colimits. Of paramount importance to enriched category are
the notions of weighted limit and weighted colimit. As this manuscript will illustrate,
these ideas can be clarifying even in the classical Set-enriched case. For the reader's
convenience, we include the following brief survey of (unenriched) weighted limits and
colimits containing all of the facts that we will use here. A more comprehensive treatment
can be found in [8] or [12].

Ordinary limits and colimits are objects representing the Set-valued functor of cones
with a given summit over or under a �xed diagram. However, in the enriched context,
these Set-based universal properties are insu�ciently expressive. The intuition is that
in the presence of extra structure on the hom-sets of a category, cones over or under a
diagram might come in exotic �shapes�.

1.6. Example. [tensors and cotensors] For example, in the case of a diagram of shape 1
in a category M, the shape of a cone might be a set S ∈ Set. Writing X ∈ M for the
object in the image of the diagram, the S-weighted limit of X is an object S t X ∈ M
satisfying the universal property

M(M,S t X) ∼= Set(S,M(M,X))

while the S-weighted colimit of X is an object S∗X ∈M satisfying the universal property

M(S ∗X,M) ∼= Set(S,M(X,M)).

For historical reasons, S t X is called the cotensor and S ∗ X is called the tensor of
X ∈ M by the set S. IfM has small products and coproducts, then S t X and S ∗X
are, respectively, the S-fold product and coproduct of the object X with itself.

Assuming the objects with these de�ning universal properties exist, cotensors and
tensors de�ne bifunctors

t : Setop ×M→M ∗ : Set×M→M.

A typical application forms tensors (or cotensors) of an object in M with a Set-valued
functor of shape C, producing an object inMC (orMCop

).
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1.7. Definition. [ends and coends] In line with our standing conventions, suppose that
C is a small category and that M is a large and locally small category which possesses
all small limits and colimits. Assume also that H : Cop×C→M is a bifunctor, then its
end is the given by the equaliser∫

c∈C
Hc
c := eq

(∏
c∈C

Hc
c ⇒

∏
f : c→c∈C

Hc
c

)

of the obvious parallel pair of maps induced by the families:

{
∏
c∈C

Hc
c

πc // Hc
c

Hc
f
// Hc

c }f : c→c∈C and {
∏
c∈C

Hc
c

πc // Hc
c

Hf
c // Hc

c }f : c→c∈C

Dually its coend is the colimit given by a corresponding coequaliser:∫ c∈C
Hc
c := coeq

( ∐
c→c∈C

Hc
c ⇒

∐
c∈C

Hc
c

)

1.8. Definition. [categories of elements] Suppose that H : Cop×D→ Set is a bifunctor.
Then its two sided category of elements elH has

• objects triples (c, d, x) where c is an object of C, d is an object of D, and x is an
element of Hd

c , and

• arrows (f, g) : (c, d, x) → (c̄, d̄, x̄) which comprise pairs of arrows f : c → c̄ in C and
g : d → d̄ with the property that Hg

d (x) = H c̄
f (x̄), whose composite and identities are

as in C and D.

This category comes equipped with an obvious forgetful functor elH → C × D. This
construction specialises to give category of elements constructions for covariant and con-
travariant functors F : D→ Set and G : Cop → Set.

1.9. Observation. [coends in sets] Suppose that H : Cop×C→ Set is a bifunctor. Then

its coend
∫ c∈C

Hc
c admits a concrete description in terms of the category of elements

construction. Speci�cally, we may form the following pullback of categories

d∗(elH) //

��

elH

��

C
d

// C×C

(1.10)

in which d : C→ C×C denotes the diagonal functor. Then we may show, directly from
the de�ning coequaliser in de�nition 1.7, that

∫ c∈C
Hc
c is canonically isomorphic to the set

π0(d∗(elH)) of connected components of the category appearing in that pullback. More
explicitly, the category d∗(elH) has:
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• objects which are pairs (c, x) in which c is an object of C and x is an element of Hc
c ,

and

• arrows f : (c, x) → (c̄, x̄) which are arrows f : c → c̄ of C satisfying the equation
Hf
c (x) = H c̄

f (x̄), whose composites and identities are as in C.

Its set of connected components is isomorphic to the set of equivalence classes [c, x] of
objects of d∗(elH) wherein two objects are equivalent if and only if they are connected
by a �nite zig-zag of arrows in there.

1.11. Definition. [weighted limits and colimits] Suppose C is a small category and that
M is a large and locally small category which is (small) complete and cocomplete. In this
context, the weighted limit

{ , }C : (SetC)op ×MC →M where {W,X}C :=

∫
c∈C

W c t Xc (1.12)

and weighted colimit

~C : SetC
op ×MC →M where V ~C X :=

∫ c∈C
Vc ∗Xc

de�ne bifunctors. We refer to the object {W,X}C as the limit of the diagram X : C→M
weighted by W : C→ Set and to V ~CX as the colimit of X weighted by V : Cop → Set.
These objects are characterised by the universal properties

M(M, {W,X}C) ∼= SetC(W,M(M,X)) M(V ~C X,M) ∼= SetC
op

(V,M(X,M)).

A natural transformation of weights f : W → W in SetC induces a derived morphism
{f,X}C : {W,X}C → {W,X}C between weighted limits and a natural transformation
g : V → V in SetC

op

induces a derived morphism g ~C X : V ~C X → V ~C X between
weighted colimits.

1.13. Example. [terminal weights] When W is, respectively, the constant C-diagram or
Cop-diagram at the terminal object 1 ∈ Set, we see from the de�ning formulae (1.12) that

{1, X}C ∼= limX and 1~C X ∼= colimX.

Here the weight 1 stipulates that the cones should have their ordinary �shapes� with one
leg pointing to or from each object in the diagram X.

1.14. Example. [representable weights] The bifunctors (1.12) admit canonical isomor-
phisms

{Ca, X}C ∼=
∫
b∈C

C(a, b) t Xb ∼= Xa Ca ~C X ∼=
∫ b∈C

C(b, a) ∗Xb ∼= Xa (1.15)

which are natural in a ∈ C and X ∈ MC. This result is simply a recasting of the
classical Yoneda lemma, which name it bears herein. Hence, limits or colimits weighted
by representables are computed simply by evaluating the diagram at the appropriate
object.
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1.16. Observation. On account of their explicit construction or their de�ning universal
property, the weighted limit and weighted colimit bifunctors are each cocontinuous in the
weights. In particular weights can be �made-to-order�. A weight constructed as a colimit
of representables will stipulate the expected universal property.

1.17. Example. Let K and X be simplicial sets, i.e., objects of the functor category
Set�

op

where � is the category of �nite non-empty ordinals and order-preserving maps.
From the end formula (1.12), the limit of X weighted by K is merely the set of natural
transformations K → X, i.e., the set of maps from K to X in the category of simplicial
sets. For instance, the weighted limit {∂∆n, X}�op is the set of n-spheres in X.

1.18. Example. Applying the coend formula (1.15) pointwise, one sees that the colimit
of the Yoneda embedding ∆• : � ↪→ Set�

op

weighted by a simplicial set X is isomorphic
to X.

1.19. Observation. [weighted limits as ordinary limits] Suppose D is a diagram MC

and W is a weight in SetC then the weighted limit {W,D}C is equally the ordinary limit

of the composite elW → C
D−→ M. Dually if V is a weight in SetS

op

then the weighted

colimit V ~C D is the ordinary colimit of the composite diagram elV → C
D−→M.

1.20. Example. The category of elements of Cc ∈ SetC
op

is isomorphic to the slice
category C/c. This category has a terminal object: the identity at c. Hence, the colimit

of elCc → C
D−→M is Dc, recovering the fact observed above that Dc ∼= Cc ~C D. Dual

remarks apply to covariant representables.

1.21. Observation. [weighted colimits in sets] Suppose that W : Cop → Set is a weight
and that D : C → Set is a diagram of sets. We may apply observation 1.9 to provide an
explicit computation of the de�ning coend of the weighted colimit W ~CD. In this case,
the coend we are computing is

∫ c∈C
Wc×Dc and it is easily checked that the corresponding

category given in (1.10) may also be constructed by forming the following pullback

elW ×C elD //

��

elD

��

elW // C

of categories. In other words, this has:

• objects which are triples (c, x, y) in which c is an object of C, x is an element of Wc,
and y is an element of Dc, and

• arrows f : (c, x, y) → (c̄, x̄, ȳ) which consist of an arrow f : c → c̄ of C satisfying the
equations Wf (x̄) = x and Df (y) = ȳ, whose composites and identities are as in C.

SoW~CD is isomorphic to the set of equivalence classes [c, x, y] of objects in this category,
wherein two objects are equivalent if and only if they are connected by a zig-zag of maps
in there.



264 EMILY RIEHL AND DOMINIC VERITY

2. Reedy categories

Let N denote the natural numbers, including zero.

2.1. Definition. [Reedy categories] Let C be a small category, equipped with a degree

function deg : obj(C)→ N on objects, and suppose that
−→
C and

←−
C are subcategories of C

which contain all of its objects. Then we say that (C,
−→
C ,
←−
C) is a Reedy category if and

only if these structures satisfy:

• if α : c̄ → c is a non-identity arrow in
−→
C (respectively

←−
C) then deg(c̄) < deg(c)

(respectively deg(c̄) > deg(c)), and

• every arrow α of C has a unique factorisation α = −→α ◦←−α where −→α ∈
−→
C and←−α ∈

←−
C .

We say that an arrow strictly raises (respectively strictly lowers) degrees precisely

when it is a non-identity arrow of
−→
C (respectively of

←−
C).

2.2. Example. [discrete categories] Discrete categories are Reedy categories. Our pref-
erence is to regard every object as having degree zero.

2.3. Example. [�nite posets] Let C be a �nite poset. Declare any minimal element to
have degree zero. De�ne the degree of c ∈ C to be the length of the longest path of
non-identity arrows from an element of degree zero to c. Note that if there is a morphism
c→ c̄ between distinct elements, then necessarily deg c < deg c̄. It follows that C has the

structure of a Reedy category with C =
−→
C and

←−
C consisting of identity arrows only.

This example can be extended without change to include in�nite posets such as (ω,≤)
provided that each object has �nite degree.

2.4. Example. [the pushout diagram] The previous example gives the category b← a→
c a Reedy structure in which deg(a) = 0 and deg(b) = deg(c) = 1. There is another Reedy
category structure in which deg(b) = 0, deg(a) = 1, and deg(c) = 2.

2.5. Example. [the parallel pair] The category a⇒ b is a Reedy category with deg(a) =
0, deg(b) = 1, and both non-identity arrows said to strictly raise degrees.

2.6. Example. [� and �+] The category � of �nite non-empty ordinals and the cat-
egory �+ of �nite ordinals and order-preserving maps both support canonical Reedy

category structures, for which we take
−→
� and

−→
�+ to be the subcategories of face op-

erators (monomorphisms) and
←−
� and

←−
�+ to be the subcategories of degeneracy operators

(epimorphisms).

2.7. Observation. Many fundamental operations on Reedy categories yield Reedy cat-
egories, most importantly:

• If (C,
−→
C ,
←−
C) is a Reedy category then so is its dual (Cop, (

←−
C)op, (

−→
C)op).
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• If (C,
−→
C ,
←−
C) and (D,

−→
D,
←−
D) are Reedy categories then so is the product (C×D,

−→
C×

−→
D,
←−
C ×

←−
D) with deg(c, d) = deg(c) + deg(d).

In particular, these observations tell us that �op and �
op
+ also carry canonical Reedy

structures as do arbitrary products of these with themselves and with � and �+.

Given an arrow f : c̄→ c in a Reedy category C, we shall call the unique factorisation

(
←−
f ,
−→
f ) stipulated by de�nition 2.1 the canonical Reedy factorisation of f . Our aim,

realised in lemma 2.9, is to show that the canonical Reedy factorisation may also be
characterised as the unique factorisation of f through an object of minimal degree.

2.8. Definition. [categories of factorisations] To that end, for each arrow f : c̄→ c ∈ C,
we de�ne the category fact(f) of factorisations of f to be the category whose objects are
pairs (g : c̄ → d, h : d → c) of arrows of C with f = h ◦ g and whose arrows k : (g, h) →
(g′, h′) are arrows k : d→ d′ which make the following triangles commute:

c̄

d d′

c

g

��

g′

��

h �� h′��

k //

For each object (g, h) ∈ fact(f), we shall take its degree deg(g, h) to simply be the degree
of the intermediate object cod(g) = dom(h).

Now we have the following result, which provides much more information about the
structure of the categories of factorisations of our Reedy category C.

2.9. Lemma. Every factorisation (g, h) of f is connected to the canonical Reedy factori-

sation (
←−
f ,
−→
f ) by a zig-zag path of maps in the category fact(f) which passes only through

factorisations of degree greater than or equal to that of (
←−
f ,
−→
f ) and less than or equal

to the degree of (g, h) itself. Furthermore, the Reedy factorisation (
←−
f ,
−→
f ) is the unique

factorisation of minimal degree in fact(f).

Proof. Observe that we may (repeatedly) apply the factorisation property of the Reedy
category C to obtain the following commutative diagram:

c̄ d c

ā a

b

g
// h //

←−g

??

−→g
��

←−
h

??

−→
h

��

←−
k

??

−→
k

��k=
←−
h ◦−→g

//

←−
f

11

−→
f

��

f

77
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Now
←−
k ◦←−g is in the subcategory

←−
C and

−→
h ◦
−→
k is in the subcategory

−→
C , because these

are composites of arrows already known to be in those subcategories, so it follows, by

the uniqueness property of the Reedy factorisation of f in C, that
←−
f =

←−
k ◦ ←−g and−→

f =
−→
h ◦
−→
k . Also observe that deg(ā) ≤ deg(d) because −→g ∈

−→
C , deg(a) ≤ deg(d)

because
←−
h ∈

←−
C , deg(b) ≤ deg(ā) because

←−
k ∈

←−
C and deg(b) ≤ deg(a) because

−→
k ∈

−→
C .

Furthermore, these inequalities are strict unless the maps are identities. In particular,

deg(b) < deg(d) unless (g, h) = (
←−
f ,
−→
f ), proving the last statement.

Examining the diagram, it follows that f has factorisations (g, h), (←−g ,
−→
h ◦ k), (k ◦

←−g ,
−→
h ), for which deg(

←−
f ,
−→
f ) ≤ deg(←−g ,

−→
h ◦ k) ≤ deg(g, h) and deg(

←−
f ,
−→
f ) ≤ deg(k ◦

←−g ,
−→
h ) ≤ deg(g, h), and that these are connected by arrows −→g : (←−g ,

−→
h ◦ k) → (g, h),

←−
h : (g, h) → (k ◦ ←−g ,

−→
h ), k : (←−g ,

−→
h ◦ k) → (k ◦ ←−g ,

−→
h ),
←−
k : (←−g ,

−→
h ◦ k) → (

←−
f ,
−→
f ), and

−→
k : (
←−
f ,
−→
f )→ (k ◦←−g ,

−→
h ) in fact(f) as required.

3. Latching and matching objects

Our description of the inductive procedure by which a diagram indexed over a Reedy
category may be de�ned, which is instrumental for the characterisation of the homotopical
properties of limits and colimits, relies upon the notions of latching and matching objects.
These de�nitions in turn rely upon the notions of skeleta and coskeleta, which we now
review.

Skeleta and coskeleta.

3.1. Recall. [skeleta and coskeleta] Let D be a full subcategory of a small category C
and letM be a complete and cocomplete category. Then we know that pre-composition
with the inclusion functor D ↪→ C gives rise to a functor MC → MD which in this
context we refer to as restriction or occasionally as truncation and which has left and
right adjoints, called skeleton and coskeleton respectively:

MC res //MD

sk

tt

cosk

jj
⊥
⊥

These adjoints are simply (pointwise) left and right Kan extension along D ↪→ C respec-
tively, and may thus be given, for X ∈MD, by the coend and end formulae:

sk(X)c ∼=
∫ d∈D

C(d, c) ∗Xd cosk(X)c ∼=
∫
d∈D

C(c, d) t Xd. (3.2)

Here the symbols ∗ : Set ×M → M and t : Setop ×M → M denote the tensor and
cotensor bifunctors introduced in example 1.6.
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Because D ↪→ C is fully faithful, the functors sk and cosk are too, which means that
the unit of sk a res and the counit of res a cosk are invertible. Hence, there exists a
natural transformation τ : sk→ cosk which is equal to both of the composites

sk
ηc◦sk−−−→ cosk ◦ res ◦ sk

cosk ◦(ηs)−1

−−−−−−−→ cosk

and

sk
sk ◦(εc)−1

−−−−−→ sk ◦ res ◦ cosk
εs◦cosk−−−−→ cosk .

Here ηs and εs are the unit and counit (respectively) of the adjunction sk a res, and ηc

and εc are the unit and counit (respectively) of the adjunction res a cosk.

3.3. Observation.We may recast the formulae of (3.2) as weighted limits and colimits:

sk(X)c ∼= res(Cc)~D X cosk(X)c ∼= {res(Cc), X}D. (3.4)

Notice here that the representable Cc is contravariant, so in the expression res(Cc)
of (3.4) the symbol �res� denotes the restriction functor associated with the dual inclusion
Dop ↪→ Cop.

Now suppose that d is an object of the full subcategory D. Because the inclusion
D ↪→ C is full it is clear that res(Cd) = Dd, and so we may apply Yoneda's lemma 1.14
to show that:

sk(X)d ∼= res(Cd)~D X = Dd ~D X ∼= Xd

cosk(X)d ∼= {res(Cd), X}D = {Dd, X}D ∼= Xd.

Indeed, this computation demonstrates that the unit ηsX : X → res(sk(X)) of the adjunc-
tion sk a res and the counit εcX : res(cosk(X))→ X of the adjunction res a cosk are both
isomorphisms or, equivalently, that the functors sk and cosk are both fully faithful.

From hereon we will adopt the traditional convention of blurring the distinction be-
tween the functor sk (respectively cosk), which mapsMD toMC, and the corresponding
endo-functor sk ◦ res (respectively cosk ◦ res) on MC. So we will write sk (respectively
cosk) for either of these and allow the context to disambiguate each instance.

3.5. Lemma. Let X ∈MC and let c ∈ C. The object sk(X)c is the colimit of X weighted
by sk(Cc) and the object cosk(X)c is the limit of X weighted by sk(Cc), i.e., there exist
isomorphisms:

sk(X)c ∼= sk(Cc)~C X cosk(X)c ∼= {sk(Cc), X}C (3.6)

which are natural in X ∈MC and c ∈ C.

Lemma 3.5 is a special case of a general result: the weighted limit or colimit of the
restriction of a diagram is isomorphic to the limit or colimit of the original diagram
weighted by the left Kan extension of the weight.
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Proof. The isomorphisms (3.6) are constructed in the following calculation (and its
dual):

sk(X)c ∼=
∫ d∈D

C(d, c) ∗Xd (3.2)

∼=
∫ d∈D

C(d, c) ∗
(∫ c̄∈C

C(c̄, d) ∗X c̄

)
by Yoneda's lemma

∼=
∫ c̄∈C(∫ d∈D

C(d, c)×C(c̄, d)

)
∗X c̄ cocontinuity of ∗ and Fubini

∼= sk(Cc)~C X de�nitions of sk and ~C

3.7. Observation. [skeleta of representables and factorisations] Given the importance
of the skeleta of the representables Cc and Cc̄ in these expressions, it will be useful to
analyse these in a little more detail. To that end, observe that formula (3.2) tells us that
the skeleton sk(Cc̄) is given by the following coend formula;

sk(Cc̄)
c ∼=

∫ d∈D
C(d, c)×C(c̄, d) (3.8)

Furthermore, the counit map sk(Cc̄)→ Cc̄ is induced, via the universal property of that
coend, by the family of composition maps

C(d, c)×C(c̄, d) ◦ // C(c̄, c)

which are natural in c, c̄ ∈ C and dinatural in d ∈ D. It will be useful to know when this
counit map is a monomorphism.

Applying observation 1.9 to the coend in (3.8) we see that it is isomorphic to the set
of connected components of a category factC(c̄, c) which has

• objects triples (d, g, h) comprising an object d of D and a pair of arrows g : c̄→ d and
h : d→ c in C, and

• arrows k : (d, g, h)→ (d′, g′, h′) which consist of an arrow k : d→ d′ of D making the
following triangles commute

c̄

d d′

c

g

��

g′

��

h �� h′��

k //

whose composition and identities are as in D.
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Under this presentation of that coend the counit map sk(Cc̄)
c → Cc

c̄ carries an equivalence
class (connected component) [d, g, h] to the composite map hg : c̄→ c.

Observe that the category factC(c̄, c) discussed in the last paragraph splits up into a
disjoint union

∐
f∈C(c̄,c) factD(f), where factD(f) is its full sub-category determined by

those objects (d, g, h) for which hg = f . We call factD(f) the category of factorisations
of f through D. Then it is clear that the set π0(factD(f)) of connected components of
that category of factorisations is the subset of sk(Cc̄)

c ∼= π0(factC(c̄, c)) which is mapped
to the element f ∈ Cc

c̄ under the action of the counit sk(Cc̄)
c → Cc

c̄. The dual result
for sk(Cc) tells us that the �bre of the counit sk(Cc)c̄ → Cc

c̄ over f ∈ Cc
c̄ may also be

described as the set of connected components of factD(f).
It follows therefore that counit sk(Cc̄)→ Cc̄ (respectively sk(Cc)→ Cc) is a monomor-

phism if and only if for each arrow f : c̄ → c in C the category factD(f) is either empty
or connected. Furthermore, an arrow f : c̄ → c ∈ C is in the image of sk(Cc̄) → Cc̄

(respectively sk(Cc)→ Cc) if and only if factD(f) is non-empty.

Latching and matching objects.We now explore the consequences of these observa-
tions in the Reedy setting. Henceforth, we shall assume that C is a Reedy category with
a given Reedy structure. Let C≤n (for n ∈ N) denote the full subcategory of C whose
objects are those c ∈ C with deg(c) ≤ n.

3.9. Observation. [skeleta and coskeleta in a Reedy setting] Suppose thatM is a cat-
egory which possesses all limits and colimits. Then just as in recollection 3.1, we obtain
a pair of adjunctions:

MC resn //MC≤n

skn

tt

coskn

jj
⊥
⊥

called n-skeleton, n-truncation, and n-coskeleton respectively. As the inclusion C≤n ↪→ C
is fully faithful, there exists a natural transformation τn : skn → coskn, de�ned as in
recollection 3.1 from the units and counts ηsn, η

c
n, ε

s
n, and εcn of the adjunctions skn a

resn a coskn.

The maps τn : skn → coskn are of particular interest to us here since we may show
that each extension of a diagram X ∈MC≤n−1 to an object ofMC≤n corresponds to and

is uniquely determined by a family of factorisations skn(X)c
ic→ Xc pc→ coskn(X)c of the

maps (τn−1)X,c : skn−1(X)c → coskn−1(X)c for each c ∈ obj(C) with deg(c) = n.

3.10. Lemma. [inductive de�nition of diagrams] A diagram X ∈MC≤n−1 together with a

family of factorisations skn(X)c
ic→ Xc pc→ coskn(X)c of the maps (τn−1)X,c : skn−1(X)c →

coskn−1(X)c for each c ∈ obj(C) with deg(c) = n, uniquely determines a diagram X ∈
MC≤n whose restriction to degree n− 1 coincides with the original diagram.
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Proof. It remains to de�ne the action of X on (non-identity) morphisms whose domain

or codomain has degree n. Given such a map f : c̄→ c, its Reedy factorisation (
←−
f ,
−→
f ) is

through an object of degree less than n. There exist unique dotted-arrow maps making
the following diagram commute

skn−1(X)c̄ ic̄ //

skn−1(X)
←−
f

��

X c̄ pc̄
//

X
←−
f

��

coskn−1(X)c̄

coskn−1(X)
←−
f

��

skn−1(X)d =
id //

skn−1(X)
−→
f

��

Xd
=

pd
//

X
−→
f

��

coskn−1(X)d

coskn−1(X)
−→
f

��

skn−1(X)d ic // Xc pc
// coskn−1(X)c

de�ned to be the composites of the maps in the upper-right and lower-left squares re-
spectively. The functoriality of this de�nition, in a pair of composable maps (f, g) follows
from connectedness of the category factn−1(gf).

3.11. Observation. [inductive de�nition of natural transformations] More speci�cally,
we may apply this result to show that if X and Y are objects of MC then each exten-
sion of a natural transformation φ : resn−1(X) → resn−1(Y ) to a natural transformation
φ : resn(X) → resn(Y ) corresponds to a unique family of maps {φc : Xc → Y c | c ∈
obj(C), deg(c) = n} which make the following diagrams commute:

skn−1(resn−1(X))c
(εsn−1)X,c

//

skn−1(φ)c

��

Xc
(ηcn−1)X,c

//

φc

��

coskn−1(resn−1(X))c

coskn−1(φ)c

��

skn−1(resn−1(Y ))c
(εsn−1)Y,c

// Y c

(ηcn−1)Y,c
// coskn−1(resn−1(Y ))c

This follows by applying lemma 3.10 to the C-shaped diagram c 7→ φc taking values in
the arrow categoryM2.

This observation lies at the very heart of the application of the theory of Reedy
categories, wherein it is used to construct factorisations, lifts, and so forth via a process
of iterated extension from one degree to the next.

3.12. Example. Consider a diagram X indexed over the poset ω. The colimit de�ning
skn−1X

n has a terminal object, from which we see that skn−1X
n = Xn−1. By contrast,

coskn−1X
n is the terminal object because the hom-sets inside the end (3.2) are empty.

Hence, observation 3.11 specialises to the obvious fact that to extend a natural transfor-
mation between diagrams X and Y indexed by ω≤n−1 to diagrams indexed by ω≤n one
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must choose objects Xn and Y n as well as the dotted arrow maps

X0

φ0

��

// X1 //

φ1

��

X2

φ2

��

// · · · // Xn−1 //

φn−1

��

Xn

φn

��

Y 0 // Y 1 // Y 2 // · · · // Y n−1 // Y n

3.13. Definition. [latching and matching objects] Given the centrality of the objects
skn−1(resn−1(X))c and coskn−1(resn−1(X))c with n = deg(c) in such extension arguments,
these have been dubbed the latching and matching objects, respectively, of X at c ∈ obj(C).
Furthermore, the associated functors skn−1(resn−1(−))c and coskn−1(resn−1(−))c often go
by the abbreviated names Lc andM c (respectively). The associated counit lX,c : LcX → Xc

and unit mX,c : Xc →M cX maps are called the latching and matching maps, respectively,
of X at the object c ∈ C.

3.14. Example. Let X be a simplicial set. Examining the de�ning formulae with great
persistence, we see that the nth latching object LnX is the set of degenerate n-simplices
and the latching map LnX → Xn is the natural inclusion. Similarly, we intuit that
the matching object MnX is somehow the set of boundary data built from (n − 1) and
(n − 2)-simplices for a hypothetical n-simplex and that the matching map Xn → MnX
sends an existing n-simplex to the collection of lower-dimensional simplices that de�ne its
boundary.

These computations are simpli�ed once we recast latching and matching objects as
weighted colimits and weighted limits, respectively. We will revisit the situation of exam-
ple 3.14 in 3.22, by which point we will be able to reach the same conclusions in a much
more satisfactory manner.

3.15. Observation. [weights for latching and matching objects]
The latching object of the Yoneda embeddingC• : C→ SetC

op

(resp.C• : C
op → SetC)

at c ∈ C is called the boundary of the representable Cc (resp. Cc) and it is denoted ∂Cc

(resp. ∂Cc).
Explicitly, �xing an object c ∈ C with degree n, ∂Cc = LcC• = skn−1(Cc) ∈ SetC and

∂Cc = LcC• = skn−1(Cc). The counit of the adjunction between left Kan extension and
restriction gives rise to the latching maps, which take the form of canonical inclusions
∂Cc ↪→ Cc and ∂Cc ↪→ Cc that we will describe shortly.

Using this notation and the isomorphisms of (3.6), we obtain the following expressions
for the latching and matching objects of an object X ofMC:

LcX ∼= ∂Cc ~C X M cX ∼= {∂Cc, X}C (3.16)

The latching and matching maps LcX → Xc and Xc → M cX are the maps between
the weighted limits and weighted colimits (3.16) induced from the canonical inclusions
∂Cc ↪→ Cc and ∂Cc ↪→ Cc.

Now observation 3.7 provides us with the following concrete description of the skeleta,
and hence the boundary, of the representables Cc and Cc̄.
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3.17. Lemma. [skeleta of the representables of a Reedy category] For each n ∈ N, the
induced map skn(Cc) → Cc (resp. skn(Cc̄) → Cc̄) is a monomorphism under which we
may identify skn(Cc) (resp. skn(Cc̄)) with the sub-presheaf of Cc (resp. Cc̄) consisting of
those maps f : c̄ → c in C that factorise through some object of degree at most n. More
speci�cally, this latter condition holds if and only if the canonical Reedy factorisation

(
←−
f ,
−→
f ) factorises f through an object of degree at most n.

Proof. This follows immediately from lemma 2.9 and observation 3.7.

3.18. Observation. [characterising the boundary of a representable] By lemma 3.17, we
know that a map f : c̄→ c is in skn(Cc) if and only if the degree of its Reedy factorisation
is less than or equal to n. Consequently, the map f is in skn(Cc) and is not in skn−1(Cc)
if and only if the degree of its Reedy factorisation is actually equal to n. In particular,
applying these observations to the case n = deg(c), it follows that f is in Cc and is not
in ∂Cc if and only if its Reedy factorisation is (f, idc) which in turn happens if and only

if it is a member of
←−
C .

Dually, ∂Cc ⊂ Cc is the sub-presheaf of arrows with domain c that do not lie in
−→
C .

In summary, we have seen that the latching object LcX may be computed as the
colimit of X ∈ MC weighted by the sub-presheaf of the representable Cc consisting of

all arrows with codomain c except for those in
←−
C . Dually, the matching object M cX is

the limit of X weighted by the sub-presheaf of Cc consisting of all arrows with domain c

except for those in
−→
C .

3.19. Example. Let X ∈Mω, where the poset ω is given the Reedy category structure
described in example 2.3. We have an isomorphism ∂ωn ∼= ωn−1 while ∂ωn is empty.
Hence, by the Yoneda lemma 1.14, the nth latching object is LnX = Xn−1 and the nth

latching map is the arrow Xn−1 → Xn given in the diagram X, while the nth matching
object is terminal and the nth matching map is the unique map mn : Xn → ∗. Happily,
this accords with the observations made in example 3.12.

3.20. Example. Let X be a diagram of shape b ← a → c in M. The latching and
matching objects depend on the Reedy structure assigned to the indexing category. Using
the Reedy structure of example 2.3, we compute that LbX = LcX = Xa and that LaX
is the initial object ∅. The maps lb and lc are the maps in the diagram; la is the unique
map from the initial object to Xa. The matching objects MaX, M bX, and M cX are all
terminal, again because the hom-sets indexing the products inside the end are empty.

By contrast, when b ← a → c is given the Reedy structure of example 2.4, we have
LaX = LbX = ∅, as the boundaries of the contravariant representables at a and b are
empty, and LcX = Xa, as the boundary of the representable at c is isomorphic to the
representable at a; again the latching maps are the obvious ones. Similarly, M cX =
M bX = ∗ but now MaX = Xb and the matching map ma : Xa → MaX is the map in
the diagram.
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3.21. Example. Let X be a diagram of shape a ⇒ b inM. Using the Reedy structure
described in example 2.5, we see that the boundary of the contravariant representable at
a is empty while the boundary of the contravariant representable at b is isomorphic to the
coproduct of two copies of the representable at a. By cocontinuity of the weighted colimit
bifunctor, we deduce that LaX = ∅ and LbX = Xa

∐
Xa with the legs of the latching

map lb de�ned to be the images of the parallel pair under X.
The matching objects with respect to this Reedy structure are both terminal, as the

boundaries of the relevant representables are empty. More interestingly, when we give
a ⇒ b the opposite Reedy structure with deg(a) = 1 and deg(b) = 0, the matching
objects are constructed dually to the latching objects above: M bX = ∗ and mX,a : Xa →
MaX = Xb ×Xb.

3.22. Example. Consider the Reedy category �. By lemma 3.17 and observation 3.18,
∂∆n is the subpresheaf of ∆n consisting of those maps which factorise through [n − 1],
i.e., the subpresheaf generated by the monomorphisms [k] ↪→ [n] with k < n. Happily,
this agrees precisely with the simplicial set that is commonly signi�ed by this notation.
Dually, write ∂∆n for the subfunctor of ∆n : �→ Set whose value at [k] is the set of maps
[n]→ [k] in � that are not monomorphisms.

Now let X be a simplicial set. From the weighted limit formula for matching objects
(3.16) and example 1.17, we see that an element of the n-matching object MnX is a map
∂∆n → X, i.e., a set of �boundary data� in X. The matching map mn : Xn → MnX
sends an n-simplex to its boundary. To identify the nth latching object from the weighted
colimit formula (3.16), we make use of the following observation.

3.23. Observation. [latching objects as ordinary colimits] Observation 1.19 can be used
to express latching and matching objects as ordinary colimits and limits. The category

el ∂Cc is the full subcategory of elCc ∼= C/c whose objects are not in
←−
C . As in the

proof of lemma 2.9, the existence and uniqueness of Reedy factorisations implies that this

category has a �nal subcategory which we denote by ∂(
−→
C/c): it is the full subcategory

of the slice category
−→
C/c containing all objects except for the terminal object idc.

Given X ∈ MC, LcX ∼= colim(∂(
−→
C/c)→ C

X−→M). Dually, M cX ∼= lim(∂(c/
←−
C)→

C
X−→ M), where ∂(c/

←−
C) is the category whose objects are arrows with domain c that

strictly lower degrees and whose morphisms are commuting maps in
←−
C .

3.24. Example. Let X be a simplicial set. We have

LnX ∼= ∂∆n ~�op X ∼= colim(∂(
←−
� /[n])op → �

op X−→ Set),

from which we see that LnX is a quotient of the coproduct of k < n of the set of k-simplices
of X paired with an epimorphism [n] � [k]. The quotienting encoded by the coend
formula for the weighted colimit identi�es those k-simplices in the image of a degeneracy
map [k] � [m] with the m-simplex preimage paired with the composite epimorphism.
By the Eilenberg-Zilber lemma, any degenerate n-simplex is uniquely expressible as the
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image of a non-degenerate simplex acted on by a degeneracy map [4]. From this, we
deduce that the nth latching object is the subset of degenerate n-simplices and the nth

latching map is the canonical inclusion.

4. Leibniz constructions and the Reedy model structure

If C is a Reedy category and M is any model category, then the functor category MC

admits a Reedy model structure in which the weak equivalences are the pointwise weak
equivalences. In sections 8 and 9, we will see that Reedy model structures are particularly
suitable for de�ning homotopy limits and colimits: The constant diagram functorM→
MC always preserves weak equivalences. Depending on the diagram shape and the chosen
Reedy category structure, it is frequently the case that the constant diagram functor is
left or right Quillen with respect to the Reedy model structure for any model category
M. When this is the case, the limit or colimit functor will preserve pointwise weak
equivalences between Reedy �brant or Reedy co�brant diagrams, respectively.

The (dual) de�nitions of the co�brations and �brations in the Reedy model structures
make use of the notions of relative latching and relative matching maps, which are in turn
de�ned using the Leibniz construction, a subject to which we now turn.

Leibniz constructions.

4.1. Notation. [exterior products] If C and D are any two small categories and M is
a category which possesses all �nite products then it will be of some utility to de�ne
an exterior product bi-functor × : MC ×MD −→MC×D which simply carries a pair of
functors X ∈MC and Y ∈MD to the functor inMC×D given by (X×Y )c̄,d̄ := X c̄×Y d̄.

For example, any representable (C×D)c,d in SetC×D is equal to the exterior product
Cc ×Dd of the corresponding representables in SetC and SetD.

4.2. Observation. [Leibniz's formula] Furthermore if C and D are Reedy categories
then we know from observation 3.18 that an element (f, g) of (C×D)c,d is in ∂(C×D)c,d

if and only if it is not a member of
−−−−→
C×D =

−→
C ×
−→
D. This happens if and only if either f

is not in
−→
C , and is thus an element of ∂Cc, or g is not in

−→
D, and is thus an element of ∂D.

In other words, we see that ∂(C×D)c,d is equal to the union (∂Cc ×Dd) ∪ (Cc × ∂Dd).
This is simply Leibniz's formula for the boundary of a product of two polygons, or indeed
his formula for the derivative of a product of functions!

We may place this observation in the following much more general context:

4.3. Notation. [arrow categories] We use the notation 2 to denote the generic arrow,
i.e., the category which has two objects 0 and 1 and a single non-identity arrow 0 → 1.
IfM is a category, then the functor categoryM2 is known as its arrow category.

The objects of M2 are in bijective correspondence with the maps of M; we shall
generally identify these notions. A map of M2 from f to g consists of a pair (u, v) of
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maps ofM which �t into a commutative square:

A

f
��

u // C

g
��

B v
// D

Notice here that we adopt the diagrammatic convention of using dotted arrows to denote
those maps that we are regarding as being objects ofM2.

4.4. Definition. [the Leibniz construction] Given a bifunctor ⊗ : K × L → M whose
codomain possesses all pushouts, then the Leibniz construction provides us with a bifunctor
⊗̂ : K2 × L2 →M2 between arrow categories which carries a pair of objects f ∈ K2 and
g ∈ L2 to an object f ⊗̂ g ∈ M2 which corresponds to the map induced by the universal
property of the pushout in the following diagram:

K ⊗ L
K⊗g

��

f⊗L
// K ′ ⊗ L

��

K′⊗g

��

K ⊗ L′ //

f⊗L′
11

(K ′ ⊗ L) ∪K⊗L (K ⊗ L′)

f⊗̂g ))

K ′ ⊗ L′

(4.5)

The action of this functor on the arrows of K2 and L2 is the canonical one induced by
the functoriality of ⊗ and the universal property of the pushout in the diagram above.

Particularly in the case where the bifunctor ⊗ de�nes a monoidal product, the Leibniz
bifunctor is frequently called the pushout product.

4.6. Example. We may apply the Leibniz construction to the exterior product and re-
cast the result of observation 4.2 regarding boundaries of representables to say that the
boundary inclusion ∂(C ×D)c,d ↪→ (C ×D)c,d is canonically isomorphic to the exterior
Leibniz product (∂Cc ↪→ Cc) ×̂ (∂Dd ↪→ Dd).

4.7. Observation. [Leibniz and structural isomorphisms] It is common to work in cat-
egories equipped with a range of di�erent bifunctors related by various canonical natural
isomorphisms. It is a general fact that when we pass to the corresponding Leibniz bi-
functors, we may also construct corresponding natural isomorphisms relating these in a
similar fashion, provided that the original bifunctors preserve pushouts in both variables.

To illustrate this process, suppose we are given a pair of pushout-preserving bifunctors
∗ : K × L → L and ⊗ : L ×M→ L together with a natural isomorphism

(K ∗ L)⊗M ∼= K ∗ (L⊗M).
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Then it follows from the naturality of these isomorphisms, the de�nition 4.4, and the
commutativity of ∗ and ⊗ with pushouts that these structural isomorphism extend to the
Leibniz tensors to give isomorphisms

(f ∗̂ g) ⊗̂ h ∼= f ∗̂ (g ⊗̂ h)

which are natural in f ∈ K2, g ∈ L2, and h ∈ M2. For example, it follows that if ⊗
de�nes a monoidal structure on a categoryM with pushouts, then ⊗̂ de�nes a monoidal
structure onM2, with the identity on the unit object serving as the monoidal unit.

4.8. Lemma. [Leibniz and colimit preservation] Suppose that K (resp. L) and M are
cocomplete and that the bifunctor ⊗ : K × L → M is cocontinuous in its �rst (resp.
second) variable, i.e., suppose that for each object L ∈ L the functor − ⊗ L : K → M
preserves all colimits. Then the Leibniz bifunctor ⊗̂ : K2×L2 →M2 is also cocontinuous
in its �rst (resp. second) variable.

Proof. Colimits in the arrow categories K2 andM2 are computed pointwise in K and
M, respectively. Hence, the proof is completed by the observation that the de�ning
pushout (4.5) commutes with the colimit whose preservation we wish to establish.

Frequently, a bifunctor ⊗ : K × L → M is cocontinuous in its �rst variable because
it is right closed, meaning that for each L ∈ L the functor − ⊗ L admits a right adjoint
homr(L,−) : M→K. By a well-known result of MacLane [9, IV.7.3] these right closures
assemble into a unique bifunctor homr : Lop ×M→ K so that there exist isomorphisms

M(K ⊗ L,M) ∼= K(K, homr(L,M)) (4.9)

natural in K ∈ K, L ∈ L, and M ∈M.
Given a bifunctor such as homr that is contravariant in one of its variables, it is

conventional to apply the Leibniz construction 4.4 to the opposite functor homr : L ×
Mop → Kop. Assuming K has pullbacks, the result of this construction applied to maps
g : L→ L′ and h : M →M ′ yields a diagram in K:

homr(L
′,M)

homr(g,M)

))

homr(L′,h)
,,

ĥomr(g,h)

++

homr(L
′,M ′)×homr(L,M ′) homr(L,M)

��

// homr(L,M)

homr(L,h)
��

homr(L
′,M ′)

homr(g,M ′)
// homr(L,M

′)

4.10. Lemma. [Leibniz and closures] The isomorphisms (4.9) induce isomorphisms

M2(f ⊗̂ g, h) ∼= K2(f, ĥomr(g, h))
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natural in f ∈ K2, g ∈ L2, and h ∈ M2. In particular, for each g ∈ L2 there is an
adjunction

M2

ĥomr(g,−)

22⊥ K2
−⊗̂g

rr

Proof. A straightforward veri�cation left to the reader.

4.11. Observation. [Leibniz and lifting properties] As an immediate corollary of lemma
4.10, observe that there exists a lift in the left-hand diagram if and only if there is also a
lift in the right-hand one.

(K ′ ⊗ L) ∪K⊗L (K ⊗ L′)

f⊗̂g
��

(x,y)
//M

h
��

K

f

��

ȳ
// homr(L

′,M)

ĥomr(g,h)
��

K ′ ⊗ L′

66

z
//M ′ K ′

44

(z̄,x̄)
// homr(L

′,M ′)×homr(L,M ′) homr(L,M)

Here the horizontal maps and the dotted arrow lifts are transposes with respect to the
adjunctions −⊗ L a homr(L,−) and −⊗ L′ a homr(L

′,−).

4.12. Observation. [Leibniz two-variable adjunctions] In the case where the bifunctor ⊗
is both left and right closed, the bifunctor ⊗, the left closure homl : Kop×M→ L, and the
right closure homr assemble into a two-variable adjunction, i.e., there exist isomorphisms

M(K ⊗ L,M) ∼= L(L, homl(K,M)) ∼= K(K, homr(L,M))

natural in all three variables. It follows from lemma 4.10 and the uniqueness statement
in [9, IV.7.3] that the Leibniz bifunctors ⊗̂, ĥoml, and ĥomr also form a two-variable
adjunction between the arrow categories.

4.13. Example. In the case where the bifunctor is a closed monoidal product or, more
generally, the tensor bifunctor for a tensored, cotensored, and enriched category, the
corresponding Leibniz two-variable adjunction appears in the de�nition of a monoidal
(resp. enriched) model category; see [6, �4.2]. The most familiar example is the product
and internal hom on the category of simplicial sets with respect to which the Quillen
model structure is a simplicial model category.

The Reedy model structure. Consider a Reedy category C and a model category
M.

4.14. Definition. [relative latching and matching maps] It is of interest to apply the
Leibniz construction in a context where the bifunctor in question is the weighted colimit
~C : SetC

op ×MC → M. In this case, if f : X → Y is a map in MC then the Leibniz
colimit2 (∂Cc ↪→ Cc) ~̂C (f : X → Y ) is called the relative latching map of f at c.

2The Leibniz weighted colimit, which we denote by ~̂C, might be more clearly written as ~̂C, but we
�nd this latter notation ugly.
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To identify the domain and codomain of this map more explicitly, observe that Cc~C

X ∼= Xc and Cc ~C Y ∼= Y c, by Yoneda's lemma, and that we have ∂Cc ~C X ∼= LcX
and ∂Cc ~C Y ∼= LcY by (3.16), so it follows that:

(Cc ~c X) ∪∂Cc~cX (∂Cc ~c Y ) ∼= Xc ∪LcX LcY

Consequently we �nd that the relative latching map (∂Cc ↪→ Cc) ~̂C f is isomorphic to a
map of the form:

Xc ∪LcX LcY
L̂cf
// Y c.

Dually we may de�ne the relative matching maps using the bifunctor obtained by ap-
plying the Leibniz construction to the weighted limit bifunctor. Speci�cally, the relative
matching map of f at c is the Leibniz limit {∂Cc ↪→ Cc, f}∧C which is isomorphic to a
map of the form:

Xc M̂cf
// Y c ×McY M

cX.

4.15. Example. The latching and matching maps of de�nition 3.13 are special cases of
the relative latching and matching maps of de�nition 4.14. The relative latching map of
∅ → X inMC at an object c ∈ C is isomorphic to the latching map LcX → Xc, and the
relative matching map of X → ∗ at c is isomorphic to the matching map Xc →M cX.

4.16. Observation. [relative latching and matching maps and lifting problems] Consider
a lifting problem

U

i
��

u // E

p
��

V v
//

t

>>

B

(4.17)

between maps i and p inMC, and suppose that the relative latching maps of i lift against
the relative matching maps of p. We might try to construct the components of the lift t
inductively by degree: If c has degree zero, then L̂ci = ic and M̂ cp = pc. By hypothesis,
the maps ic and pc lift against each other.

Suppose now that we have constructed a lift td for all objects with deg(d) < deg(c) = n.
By observation 3.11, to de�ne tc : V c → Ec it su�ces to de�ne any map so that the
diagrams

LcV

Lc(t)
��

lV,c // V c

tc

��

mV,c //M cV

Mc(t)
��

U c

ic

��

uc // Ec

pc

��

LcE
lE,c

// Ec

mE,c
//M cE V c

vc
//

tc

==

Bc

commute. We may satisfy both conditions simultaneously by choosing tc to be a lift in
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the diagram

U c ∪LcU LcV

L̂ci
��

(uc,lE,cLc(t))
// Ec

M̂cp
��

V c

tc

55

(vc,Mc(t)mV,c)
// Bc ×McB M

cE

By the hypothesis on the relative latching maps of i and the relative matching maps of p,
such a lift exists.

Observation 4.16 motivates the appearance of the relative latching and matching maps
in the de�nition of the Reedy model structure, which we now introduce. This model
structure was �rst described in the special case of the dual Reedy categories � and �

op

in [11].

4.18. Theorem. [the Reedy model structure] Suppose thatM is a model category. Then
there exists a model structure onMC which has:

• Weak equivalences which are those maps w : X → Y in MC which are pointwise
weak equivalences in the sense that each of its components wc : Xc → Y c is a weak
equivalence inM,

• Fibrations, called Reedy �brations, which are those maps p : E → B inMC for which
the relative matching map M̂ c(p) is a �bration inM for all objects c ∈ C, and

• Co�brations, called Reedy co�brations, which are those maps i : U → V in MC for
which the relative latching map L̂c(i) is a co�bration inM for all objects c ∈ C.

The key component in the proof of theorem 4.18 is the fact that any natural trans-
formation f : X → Y in MC can be expressed as a countable composite of pushouts
of cells built from its relative latching maps (see proposition 6.3). The proof of this re-
sult is a formal calculation with weights: we show in observation 6.2 that the inclusion
∅ ↪→ C is a countable composite of pushouts of coproducts of exterior Leibniz products
(∂Cc ↪→ Cc) ×̂ (∂Cc ↪→ Cc).

These technical results are established in the following two sections, which also provides
the foundation for the proofs of several key applications of the Reedy model structure
appearing below in sections 8�10.

5. Leibniz constructions and cell complexes

In this section, we investigate the behavior of the Leibniz construction with respect to
composites, trans�nite composites, and cell complexes in its domain categories. So that
we need not continually restate our hypotheses, let us suppose for the duration of this
section that we are given a bifunctor ⊗ : K×L →M between cocomplete categories that
is cocontinuous in each variable. It follows from lemma 4.8 that the Leibniz tensor ⊗̂
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preserves colimits in both variables. Our goal is to describe formulae for several colimits
of interest.

Several of the preliminary results appearing below are true under weaker hypotheses.
When this is the case, it is fairly obvious, so we are content to leave these formulations
to the reader.

5.1. Observation. [Leibniz and composites] Suppose that f : K → K ′ and f ′ : K ′ → K ′′

are maps of K and that g : L → L′ is a map in L. Let us investigate the relationship
between the Leibniz tensor (f ′ ◦f) ⊗̂g and the individual Leibniz tensors f ⊗̂g and f ′ ⊗̂g.

To uncover this relationship, we build the following commutative diagram

K ⊗ L f⊗L
//

K⊗g
��

(A)

K ′ ⊗ L f ′⊗L
//

��
(B)

K ′′ ⊗ L

��

K ⊗ L′ //

f⊗L′ **

(K ′ ⊗ L) ∪K⊗L (K ⊗ L′) //

f⊗̂g
��

(C)

(K ′′ ⊗ L) ∪K⊗L (K ⊗ L′)
k
��

(f ′◦f)⊗̂g

ss

K ′ ⊗ L′ //

f ′⊗L′ ,,

(K ′′ ⊗ L) ∪K′⊗L (K ′ ⊗ L′)
f ′⊗̂g
��

K ′′ ⊗ L′

in which the pushout labelled (A) is that used to de�ne f ⊗̂ g, the squares labelled (A)
and (B) collectively form the pushout used to de�ne (f ′ ◦ f) ⊗̂ g and the squares labelled
(B) and (C) collectively form the pushout used to de�ne f ′ ⊗̂g. Reading from left to right,
the vertical composites from top to bottom in this diagram are simply K⊗ g, K ′⊗ g, and
K ′′⊗ g respectively. This diagram then demonstrates that the Leibniz tensor (f ′ ◦ f) ⊗̂ g
can be expressed as a composite of the Leibniz tensor f ′ ⊗̂ g with the map labelled k,
which is itself a pushout of the Leibniz tensor f ⊗̂ g along the induced map:

(f ′ ⊗ L) ∪K⊗L (K ⊗ L′) : (K ′ ⊗ L) ∪K⊗L (K ⊗ L′) (K ′′ ⊗ L) ∪K⊗L (K ⊗ L′)//

5.2. Example. [relative latching maps of composites] In particular, suppose f : X → X ′

and g : X ′ → X ′′ are natural transformations in MC, with C a Reedy category and M
cocomplete. The relative latching map L̂c(g ◦ f) may be expressed as a composite of the

relative latching map L̂c(g) with a pushout of the relative latching map L̂c(f).

Under appropriate conditions, we can generalise observation 5.1 to certain important
composites of trans�nite sequences of maps:

5.3. Definition. [trans�nite composites] Suppose that K is cocomplete category. If α is
a ordinal then an α-sequence in K is simply a functor X : α→ K. This is a α-composite
if and only if for all limit ordinals β < α the induced map colimi<βX

i → Xβ is an
isomorphism. In such a trans�nite composite, we will use the notation f i,j : X i → Xj to
denote the connecting map obtained by applying the functor X to the map corresponding
to a pair i < j ≤ α.
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The term trans�nite sequence (resp. trans�nite composite) in K is simply used to
denote an object which is an α-sequence (resp. α-composite) in K for some ordinal α.
A class I of maps of K is closed under trans�nite composites if and only if whenever a
trans�nite composite X has all of its one-step connecting maps f i,i+1 : X i → X i+1 (for i
with i + 1 < α) in I then every one of its connecting maps f i,j : X i → Xj (for i and j
with i < j < α) is also in I.

5.4. Definition. [cell complexes] Now suppose that I is a set (or class) of maps in the
cocomplete category K. Let cell(I) denote the smallest class of maps of K which contains
I and is closed under trans�nite composites and pushouts of I along arbitrary maps. It
follows that cell(I) is closed under trans�nite composites and pushouts and also under
coproducts. Furthermore, this construction is order-preserving and idempotent, in the
sense that if I ⊆ J then cell(I) ⊆ cell(J ) and that cell(cell(I)) = cell(I) respectively.

The maps in cell(I) are called relative I-cell complexes or simply I-cell complexes.
An object K of K is an I-cell complex if the unique map ∅ → K is an I-cell complex.

It is a routine matter to show that a map f : X → X ′ of K is an I-cell complex if
and only if there exists some trans�nite composite X : (α + 1)→ K with f = f 0,α and in
which each one-step connecting map f i,i+1 : X i → X i+1 is obtained as a pushout

Ui
f ′i //

ui

��

Vi

vi

��

X i

f i,i+1
// X i+1

(5.5)

of some map f ′i : Ui → Vi which can be expressed as a coproduct f ′i
∼=
∐

k f
′
i,k of maps

f ′i,k : Ui,k → Vi,k in I. In this situation we say that this information presents f as an
I-cell complex and we refer to the maps f ′i,k as the cells of that presentation.

In the proof of the next lemma we will have use for:

5.6. Notation. Now if f : U → V is a map in K then let φ(f) denote the arrow (f, idV )
of K2 with domain f and codomain idV given by the trivially commutative square:

U

f
��

f
// V

idV
��

V
idV
// V

Suppose also that g : X → Y is another map, and observe that the Leibniz tensor idV ⊗̂g
is isomorphic to idV⊗Y and that the map φ(f) ⊗̂ g : f ⊗̂ g → idV ⊗̂g is isomorphic to the
map φ(f ⊗̂ g) : f ⊗̂ g → idV⊗Y .
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5.7. Lemma. [Leibniz bifunctors and cell complexes] Fix two maps f : X → X ′ in K and
g : Y → Y ′ in L and suppose that we are given a presentation of f as a cell complex
with cells f ′i,k. Then we may present the Leibniz tensor f ⊗̂ g as a cell complex with cells

f ′i,k ⊗̂ g.

Proof. To �x notation, suppose that f is presented by a trans�nite composite X : (α +
1) → K in which each one-step connecting map f i,i+1 is displayed as a pushout of the
coproduct f ′i :=

∐
k f
′
i,k. Observe that we may construct corresponding gadgets in the

arrow category K2. Speci�cally we may construct an (α+1)-composite X/Xα : (α+1)→
K2 whose object at i is f i,α and which carries the map i ≤ j of (α + 1) to the arrow

X i f i,j
//

f i,α

��

Xj

fj,α

��

Xα Xα

in K2. Notice here that the connecting map between i and α of this trans�nite sequence
is simply the map φ(f i,α) introduced in notation 5.6.

To check that this is indeed a trans�nite composite, we must show that for each
limit ordinal β ≤ α the cocone of maps (f i,β, idXα) : f i,α → fβ,α induces an isomorphism
colimi<β f

i,α ∼= fβ,α. However this result holds immediately simply because the corre-
sponding property holds for the trans�nite composite X in K and colimits of sequences
in K2 are constructed pointwise in K. Furthermore, each pushout of (5.5) gives rise to a
corresponding cube

Ui
f ′i //

ui

��

f ′i

$$

Vi

vi
��

idVi

Vi

f i+1,α◦vi

��

Vi

f i+1,α◦vi

��

X i

f i,i+1
//

f i,α $$

X i+1

f i+1,α

%%

Xα Xα

(5.8)

which is again a pushout in K2, simply because such things are computed pointwise in
K.

Observe now that the upper face of the cube (5.8) is simply the map φ(f ′i) of K2 as
de�ned in notation 5.6. Furthermore, expanding f ′i as a coproduct of cells we see that
φ(f ′i)

∼= φ(
∐

k f
′
i,k)
∼=
∐

k φ(f ′i,k). So, summarising all of the information of the last few

paragraphs, we have shown that the map φ(f) of K2 can be presented as a cell complex
with cells φ(f ′i,k).
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Now we know that the Leibniz functor−⊗̂g : K2 →M2 is cocontinuous, by lemma 4.8.
So when we apply it to the structures derived in the last few paragraphs it preserves the
colimits there and carries that information to a presentation of φ(f) ⊗̂ g ∼= φ(f ⊗̂ g) (cf.
notation 5.6) as a cell complex with cells φ(f ′i,k) ⊗̂ g ∼= φ(f ′i,k ⊗̂ g).

Finally, the domain projection functor dom: M2 →M also preserves colimits, since
these are constructed pointwise inM. Consequently it too preserves the colimits involved
in the presentation of φ(f ⊗̂ g) derived in the last paragraph, and so it carries that
information to a presentation of f ⊗̂ g = dom(φ(f ⊗̂ g)) as a cell complex with cells
f ′i,k ⊗̂ g = dom(φ(f ′i,k ⊗̂ g)) as required.

5.9. Observation. Tracing through the argument of lemma 5.7, we see that the trans�-
nite composite we constructed there, whose composite is f ⊗̂ g, carries the index i ≤ α to
the domain of f i,α ⊗̂ g. In other words, this is the object given by the following pushout:

X i ⊗ Y Xi⊗g
//

f i,α⊗Y
��

X i ⊗ Y ′

��

Xα ⊗ Y // (Xα ⊗ Y ) ∪Xi⊗Y (X i ⊗ Y ′)

The connecting map from index i to index i+ 1 in this trans�nite sequence is given by a
pushout: ∐

k(Vi,k ⊗ Y ) ∪Ui,k⊗Y (Ui,k ⊗ Y ′)
∐
k f
′
i,k⊗̂g

//

��

∐
k Vi,k ⊗ Y ′

��

(Xα ⊗ Y ) ∪Xi⊗Y (X i ⊗ Y ′) // (Xα ⊗ Y ) ∪Xi+1⊗Y (X i+1 ⊗ Y ′)

5.10. Example. [relative latching maps of composites II] Suppose that a natural transfor-
mation f : X → X ′ inMC admits a presentation as a cell complex with cells f ′i,k : Ui,k →
Vi,k. Then we may apply the last result to show that the relative latching map L̂c(f) ∼=
(∂Cc ↪→ Cc) ~̂C f admits a presentation as a cell complex with cells the relative latching

maps L̂c(f ′i,k)
∼= (∂Cc ↪→ Cc) ~̂C f

′
i,k.

In summary, the Leibniz tensor − ⊗̂ g preserves cell structures. It is now straightfor-
ward to extend this result to cell complexes in both variables.

5.11. Corollary. Suppose that f : X → X ′ and g : Y → Y ′ admit presentations as cell
complexes with cells f ′i,k : Ui,k → Vi,k and g′j,l : Aj,l → Bj,l respectively. Then the Leibniz

tensor f ⊗̂ g admits a presentation as a cell complex with cells f ′i,k ⊗̂ g′j,l.

Proof. Simply apply the result in the last lemma to �rst show that f ⊗̂ g admits a
presentation as a cell complex with cells f ′i,k ⊗̂ g. Now apply that same result again to

each of these latter Leibniz tensors to show that each f ′i,k ⊗̂ g admits a presentation as a

cell complex with cells f ′i,k ⊗̂ g′j,l. Finally, observe that pushouts of trans�nite composites
of pushouts are again trans�nite composites of pushouts and that trans�nite composites
of trans�nite composites are trans�nite composites. So our result follows.
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If I is a set of maps in K and J is a set of maps in L then let I ⊗̂ J denote the set
{f ⊗̂g | f ∈ I, g ∈ J }. Now corollary 5.11 leads immediately to the following proposition,
the applications of which are myriad in homotopy theory:

5.12. Proposition. Let ⊗ : K×L →M be a cocontinuous bifunctor between cocomplete
categories, and let I and J be any sets of maps in K and L respectively. It follows that
cell(I) ⊗̂ cell(J ) ⊆ cell(I ⊗̂ J ).

Proof. Simply apply corollary 5.11 directly to the characterisations of cell(I), cell(J ),
and cell(I ⊗̂ J ) given in de�nition 5.4.

6. Cellular presentations and Reedy categories

The work of the current section provides an ideal exemplar of a philosophy which lies at
the very core of our approach throughout this paper, and which we might summarise in
the phrase �It's all in the weights!� Under this philosophy we take a two step approach:

1. �rst establish a corresponding result for certain set-valued presheaves by straight-
forward direct computation, then

2. extend that result to general diagrams indexed by a Reedy category using weighted
(co)limits and Leibniz constructions.

When combined with the Yoneda lemma, in the form given in example 1.14, this approach
often allows us to reduce results involving objects in general functor categoriesMC, where
C is a Reedy category, to explicit computations involving (sub-objects of) representables.

Our immediate aim is to apply this philosophy to showing that any natural transfor-
mation f : X → Y inMC can be expressed as a countable composite of pushouts of cells
built from its relative latching maps. Our �rst step towards this result is to provide a
combinatorially explicit result of this type for the skeleta of representables:

6.1. Observation. [skeleta of two-sided representables] It will be convenient to re-express
our results about skeleta of representables, as discussed in lemma 3.17 and observa-
tion 3.18, in a more symmetric two-sided form. So start with the two variable hom-functor
C in SetC

op×C and de�ne skn(C) to be its subobject of those maps f : c̄ → c which fac-
torise through some object of degree less than or equal to n. As one might hope, the
explicit description furnished by lemma 3.17 tells us that the skeleta of covariant and
contravariant representables may both be captured in terms of these two-sided skeleta,
speci�cally skn(Cc) ∼= skn(C)c and skn(Cc̄) ∼= skn(C)c̄.

When W is an object in SetC×D
op

and X is an object in MD we shall extend our
weighted colimit notation in an obvious fashion and write W ~D X to denote the object
ofMC given by (W ~D X)c := W c ~D X.

Armed with these conventions, we may write the Yoneda lemma, as expressed in
example 1.14, and the formula for the n-skeleton of an object X of MC, as given in
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lemma 3.5, in the following particularly simple forms:

X ∼= C~C X skn(X) ∼= skn(C)~C X.

6.2. Observation. [building up for skeleta of representables] For each object c ∈ C there
is a map ◦ : Cc×Cc → C which simply carries a pair of maps f : c→ c′ in Cc and g : c̄→ c
in Cc to their composite f ◦ g : c̄→ c′ in C. When it is the case that deg(c) ≤ n then this
composition map factorises through the n-skeleton skn(C) ↪→ C and we may collect such
maps together to give an induced map ∐

c∈C,deg(c)=n

Cc ×Cc

 ◦ // skn(C).

Now consider a pair (f, g) in some Cc ×Cc with deg(c) = n. If f ∈ ∂Cc = skn−1(Cc)
or if g ∈ ∂Cc = skn−1(Cc) then the map that lies in the boundary factorises through
an object of degree less than n. Hence, the composite f ◦ g also factorises through that
same object and is thus an element of skn−1(C). Conversely when f /∈ ∂Cc and g /∈ ∂Cc

then observation 3.18 tells us that f ∈
−→
C and g ∈

←−
C so it follows that (f, g) is the

Reedy factorisation of f ◦ g. However, according to lemma 2.9 this Reedy factorisation
has minimal degree amongst all factorisations of f ◦g and its degree is equal to deg(c) = n,
so this composite cannot be in skn−1(C). So in summary we have shown that (f, g) is in
(∂Cc ×Cc) ∪ (Cc × ∂Cc) if and only if f ◦ g is in skn−1(C). This tells us precisely that
our composition map restricts to give a commutative square∐

c∈C,deg(c)=n

(∂Cc ×Cc) ∪ (Cc × ∂Cc) �
�

//

◦

��

∐
c∈C,deg(c)=n

Cc ×Cc

◦
��

skn−1(C) �
�

// skn(C)

which is a pullback in SetC
op×C.

Finally observation 3.18 also tells us that a map h is in skn(C) and is not in skn−1(C)

if and only if its unique Reedy factorisation (
←−
h ,
−→
h ) factorises it through an object c

of degree n. It follows therefore that this c is the unique object of degree n for which
h appears in the image of ◦ : Cc × Cc → skn(C). These results are now enough to
demonstrate that the square above is also a pushout.

In summary, the skeleta of the two-sided representable C de�ne an ω-composite

∅ ↪→ sk0(C) ↪→ sk1(C) ↪→ · · · ↪→ skn(C) ↪→ · · · colim = C.

What we have done here is to demonstrate that the inclusion ∅ ↪→ C in SetC
op×C admits a

presentation as a cell complex whose cells at the nth step are the exterior Leibniz products
(∂Cc ↪→ Cc) ×̂ (∂Cc ↪→ Cc) for c ∈ C with deg(c) = n.
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With this inductive presentation of the skeleta of representables under our belts, we
can now use lemma 5.7 to construct a corresponding presentation of the skeleta of an
arbitrary object in MC. In this regard, we might say that the following proposition
expresses the key geometric character of the relative latching maps:

6.3. Proposition. [general building up] Any natural transformation f : X → Y inMC

admits a presentation as a cell complex whose countable composite is of the form

X // X ∪
sk0X

sk0 Y // X ∪
sk1X

sk1 Y // · · · // X ∪
sknX

skn Y // · · · (6.4)

and for which the cells at the nth step are the natural transformations

(∂Cc ↪→ Cc) ∗̂ L̂c(f) (6.5)

associated with the latching maps of f at objects c ∈ C with deg(c) = n.

Proof. By the Yoneda lemma, f is isomorphic to the Leibniz tensor with the inclusion
of the empty set into the hom bifunctor, i.e.,

f ∼= (∅ ↪→ C) ~̂C f.

Now we know from observation 6.2 that the inclusion ∅ ↪→ C admits a presentation as a cell
complex whose cells at nth step are the exterior Leibniz products (∂Cc ↪→ Cc) ×̂ (∂Cc ↪→
Cc) for c ∈ C with deg(c) = n. So, applying lemma 5.7, we �nd that f ∼= (∅ ↪→ C) ~̂C f
admits a presentation as a cell complex whose cells at the nth step are the Leibniz colimits

((∂Cc ↪→ Cc) ×̂ (∂Cc ↪→ Cc)) ~̂C f (6.6)

for c ∈ C with deg(c) = n.
Now an easy computation veri�es that if U is an object of SetC, V is an object of

SetD
op

and X is an object ofMD then the object (U × V )~D X is naturally isomorphic
to U ∗(V ~DX). As observed in 4.7, these isomorphisms pass to the corresponding Leibniz
operations, giving isomorphisms

((∂Cc ↪→ Cc) ×̂ (∂Cc ↪→ Cc)) ~̂C f ∼= (∂Cc ↪→ Cc) ∗̂ ((∂Cc ↪→ Cc) ~̂C f)

∼= (∂Cc ↪→ Cc) ∗̂ L̂c(f)

which reduce the cells of the presentation we've constructed, as displayed in (6.6), to the
form given in equation (6.5) of the statement.

Now applying the Yoneda lemma and our formulae for skeleta as expressed in observa-
tion 6.1, we �nd that the Leibniz colimit (skn(C) ↪→ C) ~̂C f is isomorphic to the unique
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(dashed) map induced by the pushout in the following diagram:

sknX
skn(f)

//

��

skn Y

��

��

X //

f
,,

X ∪
sknX

skn Y

%%
Y

It follows that when we apply the argument in the proof of lemma 5.7 to the countable
sequence of skeleta skn(C) of observation 6.2 we obtain the countable sequence displayed
in equation (6.4) of the statement as required.

6.7. Corollary. Let B denote the set of boundary inclusions {∂Cc ↪→ Cc | c ∈ C} in
SetC and suppose that I is a class of maps inM. Then a map f ofMC is in cell(B ∗̂ I)
if and only if its relative latching maps are all in cell(I).

Proof. This is now a straightforward matter of applying formal manipulations with the
Leibniz operation:

�if� We know, from proposition 6.3, that f admits a presentation as a cell complex
whose cells are maps of the form (∂Cc ↪→ Cc) ∗̂ L̂cf . So if f is a map which satis�es
the assumption of the statement that each of its latching maps is in cell(I) then the
presentation of the last sentence su�ces to demonstrate that f is an element of cell(B ∗̂
cell(I)). Now B ⊆ cell(B) from which we may infer that B ∗̂ cell(I) ⊆ cell(B) ∗̂
cell(I), furthermore proposition 5.12 demonstrates that cell(B) ∗̂cell(I) ⊆ cell(B ∗̂I) so
combining these inclusions it follows that B∗̂cell(I) ⊆ cell(B∗̂I). Taking cell complexes
on both sides of this latter inclusion we get cell(B∗̂cell(I)) ⊆ cell(cell(B∗̂I)) = cell(B∗̂I)
so since we have already shown that f is in cell(B ∗̂ cell(I)) it follows therefore that it
is in cell(B ∗̂ I) as required.

�only if� If f is in cell(B ∗̂ I) then it admits a presentation as a cell complex whose cells
are of the form (∂Cc̄ ↪→ Cc̄) ∗̂ f ′i with f ′i ∈ I. So, by example 5.10, we know that the

relative latching map L̂cf ∼= (∂Cc ↪→ Cc) ~̂C f admits a presentation as a cell complex
whose cells are of the form (∂Cc ↪→ Cc) ~̂C ((∂Cc̄ ↪→ Cc̄) ∗̂ f ′i) with f ′i ∈ I.
Now if U is an object in SetC

op

, V is an object of SetC and X is an object ofM then it is
easily checked that the object U~C(V ∗X) is naturally isomorphic to (U~CV )∗X inM.
As observed in 4.7, these isomorphisms pass to the corresponding Leibniz operations,
which in particular provide us with an isomorphism:

(∂Cc ↪→ Cc) ~̂C ((∂Cc̄ ↪→ Cc̄) ∗̂ f ′i) ∼= ((∂Cc ↪→ Cc) ~̂C ((∂Cc̄ ↪→ Cc̄)) ∗̂ f ′i

Furthermore a simple computation, using Yoneda's lemma in the form of example 5.10,
reveals that the Leibniz colimit (∂Cc ↪→ Cc) ~̂C (∂Cc̄ ↪→ Cc̄) is isomorphic to the set
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inclusion (∂Cc̄)
c ∪ (∂Cc)c̄ ↪→ Cc

c̄. So we have succeeded in showing that the relative
latching map Lc(f) admits a presentation as a cell complex whose cells are of the form
((∂Cc̄)

c ∪ (∂Cc)c̄ ↪→ Cc
c̄) ∗̂ f ′i with f ′i ∈ I.

Now observe that if i : U ↪→ V is an inclusion of sets and g : A → B is any map
inM then the Leibniz tensor (i : U ↪→ V ) ∗̂ (g : A → B) is isomorphic to a coproduct
((V \U)∗g)

Π

(U ∗B). In particular, it follows that each ((∂Cc̄)
c∪(∂Cc)c̄ ↪→ Cc

c̄)∗̂f ′i may
be expressed as a coproduct of a certain number of copies of f ′i and a certain number of
copies of the identity on the codomain of f ′i . However cell(I) is closed under coproducts
and identities, so since f ′i is in there so is the coproduct of the last sentence. Finally,

we have now shown that L̂cf admits a presentation as a cell complex all of whose cells
are in cell(I), from which we may infer that L̂cf is a member of cell(cell(I)) = cell(I)
as required.

6.8. Corollary. A map f : X → Y in SetC is a B-cell complex if and only if its relative
latching maps are all monomorphisms.

Proof. Immediate from the last proposition by simply taking I to be the set {∅ ↪→ 1}
for which cell(I) is the class of injective maps in Set.

6.9. Example. The Eilenberg-Zilber lemma implies that any monomorphismm : X → Y
in the category of simplicial sets has monomorphic relative latching maps [4]. So on
applying corollary 6.8 we recover the usual skeletal decomposition of m and the fact that
we can build up m by successively adjoining standard simplices along their boundaries.

More generally, the conditions of corollary 6.8 are satis�ed whenever Cop is an elegant
Reedy category in the sense of [2].

7. Proof of the Reedy model structure

Suppose now that M is a model category and C is a Reedy category. As an example
of the utility of our presentation of the theory of Reedy categories, we now present a
relatively e�cient proof of theorem 4.18, establishing the Reedy model structure onMC.

7.1. Lemma.A map f ∈MC is both a Reedy co�bration and a pointwise weak equivalence
if and only if the relative latching map L̂cf is a trivial co�bration in M for all objects
c ∈ C.

In other words, a map is a Reedy trivial co�bration just when each of its relative
latching maps is a trivial co�bration.

Proof. Suppose f is a Reedy co�bration. We show that f is a pointwise weak equivalence
if and only if each relative latching map is a weak equivalence. Note that if c has degree
zero, the relative latching map L̂cf is simply the map f c, so these conditions coincide.
We proceed inductively by considering an object c ∈ C and assuming that the relative
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latching map L̂df and the component fd are both weak equivalences whenever d ∈ C is
an object with deg(d) < deg(c).

By Yoneda's lemma we know that the Leibniz colimit (∅ ↪→ Cc) ~̂C f ∼= Cc ~C f is
simply isomorphic to the component f c of our map f . Furthermore we may decompose
the inclusion ∅ ↪→ Cc as a composite of ∅ ↪→ ∂Cc and ∂Cc ↪→ Cc thus, applying obser-
vation 5.1, we see that f c is isomorphic to a composite of the relative latching map L̂cf
and a pushout of the Leibniz tensor (∅ ↪→ ∂Cc) ~̂C f ∼= ∂Cc ~C f .

Now observation 6.2, truncated at skdeg(c)−1 C, tells us that the inclusion ∅ ↪→ ∂Cc

may be expressed as a trans�nite composite of pushouts of boundary maps ∂Cd ↪→ Cd

in which d occurs as the domain of some non-identity map d → c in
−→
C , which means in

particular that deg(d) < deg(c). Now applying lemma 5.7 this in turn implies that the
Leibniz tensor (∅ ↪→ ∂Cc) ~̂C f may be expressed as a trans�nite composite of pushouts

of relative latching maps L̂df = (∂Cd ↪→ Cd) ~̂C f for which deg(d) < deg(c). However,
by the inductive hypothesis we have already shown that for each object d ∈ C with

deg(d) < deg(c) the relative latching map L̂df is a trivial co�bration so it follows that
(∅ ↪→ ∂Cc) ~̂C f is a trans�nite composite of pushouts of trivial co�brations and is thus
itself a trivial co�bration.

So, in summary, we discover that f c is a composite of the relative latching map L̂cf
and a pushout of the trivial co�bration (∅ ↪→ ∂Cc) ~̂C f . Of course, any pushout of a
trivial co�bration is a trivial co�bration, and thus a weak equivalence, so by the 2-of-3
property for weak equivalences it follows that the relative latching map L̂cf is a weak
equivalence if and only if f c is a weak equivalence.

7.2. Observation. [Reedy co�brations are pointwise co�brations] Note that the proof

of this result, which expresses f c as a composite of the relative latching map L̂cf with
a trans�nite composite of pushouts of relative latching maps, also demonstrates that a
Reedy co�bration is a pointwise co�bration. Dually, a Reedy �bration is a pointwise
�bration. In particular, a Reedy co�brant diagram is pointwise co�brant and a Reedy
�brant diagram is pointwise �brant. The converse implications do not hold.

7.3. Lemma. [lifting] Suppose i is a Reedy co�bration and p is a Reedy �bration inMC.
If either i or p is a pointwise weak equivalence, then any lifting problem (4.17) has a
solution.

Proof. This result follows from the construction of observation 4.16, but we prefer a
di�erent argument. By proposition 6.3, i can be expressed as a cell complex whose cells
have the form (∂Cc ↪→ Cc) ∗̂ L̂ci. Hence, it su�ces to show that for any c ∈ C, the

map (∂Cc ↪→ Cc) ∗̂ L̂ci lifts against p. By observation 4.11 a lifting problem of the form

displayed on the left transposes to a lifting problem between L̂ci and {∂Cc ↪→ C, p}∧C ∼=
M̂ cp. By lemma 7.1 and its dual, the model structure onM provides a solution to this
lifting problem.
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7.4. Lemma. [factorisation] Any map f : X → Y in MC can be factorised as a Reedy
trivial co�bration followed by a Reedy �bration and as a Reedy co�bration followed by a
Reedy trivial �bration.

Proof. As one might expect, we de�ne these factorisations inductively using observation
3.11. The factorisations onMC may be de�ned functorially if the corresponding factori-
sations in the model structure onM are functorial. To begin, we factorise the maps f c

for all objects c with degree zero using the factorisation onM.
Suppose now that we have de�ned the components of an appropriate factorisation

Xd → Zd → Y d of fd for each object d with deg(d) < deg(c). By lemma 3.10 and
observation 3.11, to de�ne the attendant factorisation of f c, it su�ces to de�ne an object
Zc ofM together with the dotted arrow maps

LcX //

��

Xc

��

//M cX

��

LcZ //

��

Zc //

��

M cZ

��

LcY // Y c //M cY

The object Zc and the dotted arrows are de�ned by using the model structure onM to
factorise the map

Xc ∪LcX LcZ // Zc // Y c ×McY M
cZ (7.5)

de�ned using the solid arrows. Note that by construction, the left-hand map of (7.5) is
the relative latching map of Xc → Zc, while the right-hand map is the relative matching
map of Zc → Y c. Hence, lemma 7.1 implies that this construction de�nes the desired
Reedy factorisation.

With these lemmas, it is straightforward to establish the Reedy model structure.

Proof Proof of theorem 4.18. In the presence of a class of weak equivalences sat-
isfying the 2-of-3 property, a class of co�brations and a class of �brations de�ne a model
structure if and only if there are a pair of weak factorisation systems given by the trivial
co�brations and �brations and the co�brations and trivial �brations [7]. Two classes of
maps form a weak factorisation system if they satisfy the lifting and factorisation prop-
erties of lemmas 7.3 and 7.4 and if each class is closed under retracts. This �nal property
follows from the functoriality of the constructions of relative latching and matching maps
and lemma 7.1.

7.6. Recall. [co�brantly generated model categories] A model categoryM is co�brantly
generated if there exist sets I and J of co�brations and trivial co�brations for which the
retract closures of cell(I) and cell(J ) are the classes of co�brations and trivial co�brations
ofM, respectively.

Given the hard work already undertaken in sections 5 and 6, the following important
proposition is now somewhat of a triviality to prove:
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7.7. Proposition. Suppose that M is a co�brantly generated model category, with sets
I and J of generating co�brations and trivial co�brations respectively. Then the corre-
sponding Reedy model categoryMC is also co�brantly generated, with sets B ∗̂I and B ∗̂J
of generating co�brations and trivial co�brations respectively.

Proof. First observe that, since B is a set (it has only as many elements as the small
category C has objects), it follows therefore that B ∗̂ I and B ∗̂ J are sets as required.

An immediately corollary of 6.7 is that the maps in cell(B ∗̂I) (respectively in cell(B ∗̂
J )) are Reedy (trivial) co�brations. Conversely, a map f : X → Y ofMC is a co�bration
(respectively a trivial co�bration) in the Reedy model structure if and only if each of
its relative latching maps is a retract of a map in cell(I) (respectively in cell(J )). Any
functor preserves retracts; in particular, it is well known that retracts commute with the
formation of cell complexes. It follows, as in the proof of corollary 6.7 that proposition
6.3 implies that f is the retract of a map in cell(B ∗̂ I) (respectively in cell(B ∗̂ J )), as
claimed.

7.8. Example. Example 6.9 extends to simplicial objects in Set-valued functor cate-
gories. In particular, the Eilenberg-Zilber lemma implies that a map of bisimplicial sets
is a monomorphism if and only if its relative latching maps are monomorphisms in sSet.
Hence, the Reedy model structure coincides with the injective model structure, whose
weak equivalences and co�brations are de�ned pointwise. Proposition 7.7 implies further
that this model structure is co�brantly generated.

8. Homotopy limits and colimits

By hypothesis, a model category M necessarily has all limits and colimits. However, it
need not be the case that the limits or colimits of pointwise weakly equivalent diagrams
are themselves weakly equivalent. Informally, it is common to say that for certain special
diagrams, the limit or colimit somehow has the �correct� homotopy type, in which case it
is called an homotopy limit or homotopy colimit. As this terminology suggests, pointwise
weakly equivalent diagrams of this type will have weakly equivalent homotopy limits or
colimits.

In good settings there are formulae to compute the homotopy limit or homotopy
colimit of any diagram, regardless of whether the ordinary limit or colimit happen to
be homotopically correct. The homotopy limit is de�ned to be a right derived functor
of the limit functor, and the homotopy colimit is de�ned to be a left derived functor of
the colimit functor. Here we mean �point-set level� derived functors, whose output is an
object of M rather than an object of the homotopy category. (As a caveat, this use of
�functor� should only be interpreted literally in the case where the model category M
is supposed to have functorial factorisations; for convenience of language, let us tacitly
suppose this is the case henceforth.)

8.1. Definition. [homotopy limits and colimits] The special cases of homotopy limits
and colimits considered here are de�ned via the following de�nition-schema. Observe
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that the constant diagram functorM→MC carries weak equivalences to pointwise weak
equivalences. If C is a category admitting a Reedy structure in such a way that the constant
diagram functor carries co�brations inM to Reedy co�brations inMC, then the constant
diagram functor is left Quillen with respect to the Reedy model structure. It follows that
its right adjoint lim: MC → M is right Quillen. Hence, by Ken Brown's lemma, the
limits of pointwise weakly equivalent Reedy �brant diagrams are weakly equivalent. These
Reedy �brant diagrams are those diagrams whose limits are understood to be �homotopically
correct�. The homotopy limit functor is de�ned by replacing a given diagram by a pointwise
weakly equivalent Reedy �brant diagram and then computing the limit. This replacement
is computed via a �brant replacement in the Reedy model structure, which is functorially
constructed by lemma 7.4.

Dually, when the constant diagram functor carries �brations inM to Reedy �brations
in MC, its left adjoint colim: MC →M is left Quillen with respect to the Reedy model
structure. Hence, colimits of weakly equivalent Reedy co�brant diagrams are weakly equiva-
lent and understood to be �homotopically correct�. The homotopy colimit functor is de�ned
to be the colimit of a functorial Reedy co�brant replacement of the original diagram.

Let us now implement this outline to deduce formulae for homotopy limits and homo-
topy colimits of diagrams indexed by particular Reedy categories.

8.2. Example. [homotopy coequalisers] Give the category a ⇒ b the Reedy structure
described in example 2.5. As described in example 3.21, for any diagram X with this
shape, the matching objects MaX and M bX are terminal, from which we deduce that
the relative matching maps associated to a natural transformation X → Y are just the
components of that natural transformation. The constant diagram functor is manifestly
right Quillen, from which we conclude that the coequaliser of the diagram Xa ⇒ Xb is the
homotopy coequaliser if it is Reedy co�brant: i.e., if Xa is co�brant and Xa

∐
Xa → Xb

is a co�bration.
Given an arbitrary diagram Xa ⇒ Xb, its Reedy co�brant replacement is de�ned by

�rst taking a co�brant replacement X
a ∼−→ Xa and then factoring the natural map

X
a∐

X
a

∼

��

// // X
b

∼

��

Xa
∐
Xa // Xb

as a co�bration followed by a weak equivalence. The coequaliser of X
a
⇒ X

b
is the

homotopy coequaliser of Xa ⇒ Xb.

8.3. Example. [homotopy equalisers] By contrast, the constant diagram functor is un-
likely to be left Quillen when a⇒ b is given the Reedy category structure of example 2.5.
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The bth relative latching map associated to the image of a co�bration U � V is

U
∐
U
��

��

∇ // U

��

��

��

V
∐
V

∇
,,

// ·

L̂b
��

V

where �∇� denotes the fold map. This is unlikely to be a co�bration; for instance, if

U � V is a monomorphism, L̂b need not be a monomorphism.
By contrast if a ⇒ b is given the opposite Reedy category structure, as described in

example 3.21, then the constant diagram functor is left Quillen, and hence we see that
the homotopy equaliser of a diagram Xa ⇒ Xb is de�ned to be the equaliser of its Reedy

�brant replacement X
a
⇒ X

b
, constructed from a �brant replacement Xb ∼−→ X

b
via the

factorisation
Xa //

∼

��

Xb ×Xb

∼

��

X
a

// // X
b ×Xb

.

The general form of the dualisation just observed is worth recording:

8.4. Proposition. Let C be a Reedy category. If the constant diagram functor M →
MC is right Quillen with respect to the Reedy model structure associated to any model
category M, then the constant diagram functor M → MCop

is left Quillen with respect
to the Reedy model structure de�ned with respect to the dual Reedy category Cop.

Proof. The proof is an exercise in the application of the principle of duality, left to the
reader with the following hints: the passage from a model category M to its opposite
exchanges the co�brations and the �brations, while the passage from (Mop)C to its op-
positeM(Cop) exchanges relative matching maps with relative latching maps de�ned with
respect to the dual Reedy category structure.

8.5. Example. [mapping telescopes] Suppose X is a sequence of maps

X0 → X1 → X2 → · · · (8.6)

in a model categoryM. Assigning the poset ω the Reedy category structure of example
2.3, we deduce from example 3.19 that the relative latching maps associated to a natural
transformation X → Y are the components of the natural transformation with shifted
index. In particular, the constant diagram functor is right Quillen with respect to the
Reedy model structure, from which we deduce that the homotopy colimit ofX is computed
by the sequential colimit of its Reedy co�brant replacement. By example 3.19, (8.6) is
Reedy co�brant just when it is a sequence of co�brations between co�brant objects. By
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lemma 7.4, the Reedy co�brant replacement is de�ned inductively by taking a co�brant
replacement of X0, and then replacing each map in turn by a co�bration whose domain
is the previously de�ned co�brant object:

X
0

∼

��

// // X
1

∼

��

// // X
2

∼

��

// // · · ·

X0 // X1 // X2 // · · ·

(8.7)

In the category of topological spaces, this homotopy colimit is called the mapping tele-
scope.

Dually, proposition 8.4 implies that the limit of a diagram

· · · → X2 → X1 → X0

is its homotopy limit if X consists of �brations between �brant objects. The homotopy
limit is de�ned to be the limit of a Reedy �brant replacement, constructed dually to (8.7).

8.8. Example. [homotopy pushouts] Consider the Reedy structures assigned to the cat-
egory b← a→ c in examples 2.3 and 2.4. A pushout diagram X is Reedy co�brant in the
�rst case just when Xa, Xb, and Xc are co�brant objects and both maps are co�brations;
in the second case, the diagram must again be pointwise co�brant, but only Xa → Xc

must be a co�bration.
We claim that the constant diagram functor is right Quillen with respect to this

latter Reedy category structure; the result in the other case is easier. Given a natural
transformation

Xb

fb

��

Xaoo //

fa

��

Xc

fc

��

Y b Y aoo // Y c

(8.9)

The relative matching maps are the components fa and f c together with the map from
Xa to the pullback of f b along Y a → Y b. In the image of the constant diagram functor,
the horizontal maps are identities, and fa, f b, and f c coincide. In particular, the left-hand
square of (8.9) is a pullback square, so the relative matching map at b is an isomorphism.
It follows that the constant diagram functor preserves �brations, as claimed.

The upshot is that the pushout of any diagram whose objects are co�brant and in
which at least one of the maps is a co�bration is a homotopy pushout. The homotopy
pushout of a generic diagram X can be formed by replacing Xa by a co�brant object
X
a
and then factorising the composite maps Xb ← X

a → Xc as co�brations followed by
weak equivalences.

Dually, proposition 8.4 implies that the pullback of a diagram consisting of at least
one �bration between three �brant objects is a homotopy pullback, and the homotopy
pullback of a generic diagram can be computed by replacing the objects by �brant objects
and at least one of the maps by a �bration.
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8.10. Example. The constant diagram functor is not right Quillen with respect to the
Reedy model structure on category of simplicial objects. This is perhaps unsurprising:
only rarely would one expect the ordinary colimit of a simplicial object X, isomorphic
to the coequaliser of the two face maps X1 ⇒ X0, to have the correct homotopy type.
By contrast, it is left Quillen because the positive-degree latching maps of a constant
simplicial object are isomorphisms. However, the associated homotopy limits are not very
interesting: the limit of a simplicial object is computed by evaluating at [0], the initial
object in �op. Dual remarks of course apply to cosimplicial objects.

9. Connected weights

In this section, we apply the theory developed in the previous sections of this paper to
unify, extend, and clarify the computations just given of homotopy limits and colimits
of diagrams indexed by Reedy categories. Our methods are, unsurprisingly, all in the
weights. More precisely, we shall see that there is a simple condition on the weights
for the latching or matching objects associated to a Reedy category C that is necessary
and su�cient for the limit or colimit functors lim, colim: MC →M to be, respectively,
right and left Quillen for any model category M. This calculation with the weights
illustrates why our ad-hoc arguments about the behavior of the constant diagram functor
with respect to co�brations and �brations worked for certain Reedy categories but not
for others.

9.1. Proposition. Suppose that M is a model category and that f is a map in SetC
op

whose relative latching maps are all monomorphisms. If i is a Reedy (trivial) co�bration
inMC then the Leibniz colimit f ~̂C i is a (trivial) co�bration inM.

Recall that the relative latching maps of ∅ → X are the latching maps of X. In
particular, it follows immediately that if X is an object in SetC

op

whose latching maps
are all monomorphisms then the functor X ~C − : MC → M is a left Quillen functor
with respect to the model structure onM and the corresponding Reedy model structure
onMC.

Proof. By corollary 6.8, we know that f admits a presentation of a cell complex whose
cells are boundary inclusions ∂Cc ↪→ Cc. So we may apply lemma 5.7 to show that
f ~̂C i admits a presentation as a cell complex whose cells are (∂Cc ↪→ Cc) ~̂C i = L̂ci.
However, if i is a Reedy (trivial) co�bration in MC then, each of its relative latching

maps L̂ci is a (trivial) co�bration in M. So in that case we have succeeded in showing
that f ~̂C i admits a presentation as a cell complex whose cells are (trivial) co�brations
and consequently it too is a (trivial) co�bration inM as required.

9.2. Observation. Consider 1 ∈ SetC
op

, the constant diagram at the terminal object.
If the latching maps of 1 are monomorphisms, then proposition 9.1 implies that 1 ~C

− : MC →M is a left Quillen functor. But in example 1.13, we saw that 1~C− is exactly
the colimit functor! The dual to proposition 9.1, obtained by replacing the model category
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M with its opposite (and then also C with its opposite, for aesthetic reasons), says that
if the latching maps of 1 ∈ SetC are monomorphisms, then {1,−}C ∼= lim: MC →M is
a right Quillen functor.

To apply observation 9.2, we must describe conditions on the Reedy category C so
that the constant C-diagram 1 has monomorphic latching maps. By observation 3.23,
the latching object at c ∈ C of the constant diagram at 1 is the colimit of the constant
diagram at 1 indexed by the category of elements for the weight ∂Cc. The colimit of a
constant diagram is the coproduct of the single object indexed over the set of connected
components. In particular, the latching map lc, whose codomain is 1, is a monomorphism
if and only if for each c ∈ C, the category el ∂Cc is either empty or connected so that this
coproduct is either ∅ or 1.

9.3. Definition. [connected weights] Say a weight W ∈ SetC is connected if it is empty
or if either of the following equivalent conditions are satis�ed:

1. The category elW is connected.

2. The functor W cannot be expressed as a coproduct W ∼= W ′∐W ′′ with both W ′

and W ′′ non-empty.

Combining observation 9.2 with the terminology just introduced, we have the following
corollary of proposition 9.1.

9.4. Corollary. If C is a Reedy category so that each ∂Cc is connected, then for any
model category M, lim: MC → M is a right Quillen functor. Dually, if instead each
∂Cc is connected, then colim: MC →M is a left Quillen functor.

We like our statement of corollary 9.4 because it makes it clear that �it is all in the
weights�. For the reader's convenience, we note that this condition is expressed in another
way in the standard literature.

9.5. Definition. [co�brant constants] A Reedy category C has co�brant constants if
the constant C-diagram at any co�brant object in any model category is Reedy co�brant.
Dually, C has �brant constants if the constant C-diagram at any �brant object in any
model category is Reedy �brant.

9.6. Lemma. The weights ∂Cc are all connected if and only if C has co�brant constants.

Proof. To obtain the �only if� direction, recall that the co�brations of the canonical
model structure on the category of simplicial sets are the monomorphisms. So in par-
ticular, we know that all simplicial sets, including the 0-simplex ∆0, are co�brant in
there. So if C has co�brant constants then the constant C-diagram on ∆0 is Reedy co�-
brant, that is to say all of its latching maps are monomorphisms. Applying the functor
(−)0 : sSet→ Set, which carries each simplicial set to its set of 0-simplices and preserves
all colimits, it follows that the constant C-diagram on the terminal set 1 = (∆0)0 has
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latching maps which are all monomorphisms. As argued after observation 9.2 that in turn
implies that each weight ∂Cc is connected, as required.

Conversely, as a consequence of observation 3.23, for any co�brant object M in any
model categoryM, because the weights for the latching objects are connected, the latching
objects of the constant diagram at M are either ∅ or M , and the latching maps are either
∅ → M or the identity at M . Hence, it follows that such diagrams are Reedy co�brant,
which means that C has co�brant constants.

9.7. Example. The Reedy categories indexing countable sequences, pushout diagrams,
coequaliser diagrams, and cosimplicial objects all have �brant constants; many of the
weights for matching objects are empty. Corollary 9.4 implies that the �composition�,
pushout, coequaliser, and �evaluate at [0]� functors are left Quillen with respect to the
Reedy model structures. Dually, the opposite Reedy categories have co�brant constants,
implying that the inverse limit, pullback, equaliser, and �evaluate at [0]� functors, re-
spectively, are right Quillen with respect to the Reedy model structures. This formal
calculation in the weights uni�es and extends the conclusions of examples 8.2, 8.3, 8.5,
8.8, and 8.10.

10. Simplicial model categories and geometric realization

Suppose now that M, in addition to being complete and cocomplete, is also tensored,
cotensored, and enriched over the category of simplicial sets. The tensor and cotensor are
de�ned to be adjoints to the hom-space bifunctor hom: Mop ×M → sSet so that the
adjunction is encoded by natural isomorphisms

hom(K ∗M,N) ∼= hom(M,K t N) ∼= hom(K, hom(M,N)) ∀K ∈ sSet, M,N ∈M
of hom-spaces, not simply of hom-sets. It follows that the three bifunctors are simplicially
enriched. While we have overloaded the notation �∗� and �t,� there is no ambiguity: the
tensor or cotensor with a set is always isomorphic to the tensor or cotensor, respectively,
with the corresponding discrete simplicial set.

10.1. Definition. SupposeM is a model category that is tensored, cotensored, and en-
riched over simplicial sets. Then M is a simplicial model category if it additionally
satis�es the �SM7� axiom:

(SM7i) The Leibniz tensor sends a monomorphism of simplicial sets and a co�bra-
tion inM to a co�bration inM.

(SM7ii) The Leibniz tensor sends a monomorphism of simplicial sets and a trivial
co�bration inM to a trivial co�bration inM.

(SM7iii) The Leibniz tensor sends an anodyne map of simplicial sets and a co�bration
inM to a trivial co�bration inM.

By observation 4.11, the SM7 axiom has dual forms expressed using the Leibniz bi-
functors associated to t or hom.
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10.2. Example.Quillen's original model structure on simplicial sets is a simplicial model
category [10].

The axioms (SM7i-iii) assert that ∗ is a left Quillen bifunctor or dually that t and
hom are right Quillen bifunctors with respect to the given model structure onM and the
Quillen model structure on sSet. More generally, a bifunctor between model categories is
a left Quillen bifunctor if its Leibniz bifunctor carries a pair of co�brations to a co�bration
that is acyclic if either of the domain co�brations is.

10.3. Theorem. Let C be a Reedy category and let M be a simplicial model category.
Then the weighted colimit and weighted limit bifunctors

sSetC
op ×MC ~C−−→M (sSetC)op ×MC { , }C−−−→M

de�ned as in (1.12) are respectively left and right Quillen bifunctors.

Proof. The weighted colimit is adjoint to the bifunctor

(sSetC
op

)op ×M −t−−−→MC

built from the simplicial cotensor t : sSetop ×M →M; given A ∈ sSetC
op

and X ∈ M
de�ne (A t X)c = Ac t X. Observe that the simplicial cotensor sends weighted colimits
in its �rst variable to weighted limits.

Suppose i : A → B is in sSetC
op

and suppose f : X → Y is in M. The relative
matching map of i t̂ f : B t X → (B t Y )×AtY (A t X) is

M̂ c (i t̂ f) ∼= {∂Cc ↪→ Cc, i t̂ f}∧C ∼= (∂Cc ↪→ Cc ~̂C i) t̂ f ∼= (L̂ci) t̂ f. (10.4)

Because M is a simplicial model category, t : sSetop × M → M is a right Quillen
bifunctor. If i is a Reedy co�bration, then each L̂ci is a co�bration in M. If f is a
�bration, it follows that (10.4) is a �bration, and hence that i t̂ f is a Reedy �bration.
The same argument combined with lemma 7.1 implies that if either i or f is acyclic, then
i t̂ f is too.

Considering the degenerate case of the Leibniz construction 4.4 when the domain of
one of the morphisms is the initial object, one sees that a left Quillen bifunctor becomes an
ordinary left Quillen functor when the value of one of the variables is �xed at a co�brant
object. Hence, an immediate corollary of theorem 10.3 is that the weighted colimit functor
and the weighted limit functor are, respectively, left and right Quillen, provided that the
weight is Reedy co�brant.

10.5. Example. [the Yoneda embedding is a Reedy co�brant weight] As in the introduc-
tion, let ∆: � → sSet denote the Yoneda embedding. We must show that each latching
map Ln∆→ ∆n is a co�bration. By de�nition, Ln∆ = ∂∆n~� ∆ ∼= ∂∆n, by the Yoneda
lemma. The proof is completed by the familiar observation that the inclusions ∂∆n → ∆n

are among the monomorphisms, the co�brations in the Quillen model structure.
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10.6. Corollary. [homotopy invariance of geometric realization] Geometric realization
preserves pointwise weak equivalences between Reedy co�brant simplicial objects taking
values in a simplicial model category. Dually, totalization preserves pointwise weak equiv-
alences between Reedy �brant cosimplicial objects taking values in a simplicial model cat-
egory.

Proof. The geometric realization of a simplicial object in a tensored simplicial category
is de�ned to be the colimit weighted by the Yoneda embedding. Dually, the totalization of
a cosimplicial object in a cotensored simplicial category is de�ned to be the limit weighted
by the Yoneda embedding. Any left or right Quillen functor preserves weak equivalences
between co�brant or �brant objects, respectively, by Ken Brown's lemma.

10.7. Observation. [skeletal �ltration of geometric realization] For any simplicial ob-
ject X valued in a cocomplete category M, by proposition 6.3 there is a cell complex
presentation

∆n ∗ LnX ∪ ∂∆n ∗Xn

��

// ∆n ∗Xn

��

∅ // · · · // skn−1X // sknX // · · · // X

(10.8)

in M�
op

de�ned by taking the (unenriched) weighted colimit weighted by the hom bi-
functor ∆ ∈ Set�

op×�. Here ∗ denotes the copower, de�ned pointwise, of a simplicial set
with an object ofM, as in example 1.6. This is the presentation described in (1.1).

WhenM is a simplicial model category, we can form the (enriched) weighted colimit
of the diagrams displayed in (10.8) weighted by the Yoneda embedding ∆ ∈ sSet�. By
cocontinuity of the weighted colimit bifunctor and the coYoneda lemma, if Y is a simplicial
set and M ∈M we have an isomorphism

∆~�op (Y ∗M) ∼= Y ∗M,

in which the ∗ appearing on the right-hand side is the simplicial tensor ofM. Thus, taking
the geometric realization of the simplicial objects of (10.8), we obtain the following cell
complex presentation inM:

∆n ∗ LnX ∪ ∂∆n ∗Xn

��

// ∆n ∗Xn

��

∅ // · · · // | skn−1X| // | sknX| // · · · // |X|

Using this presentation and the �SM7� axiom, it is possible to give an alternate proof of
the homotopy invariance of the geometric realization based on the homotopy invariance
of pushouts and sequential colimits of co�brations in the model categoryM.

Dual �Postnikov tower� presentations exist for the totalization of a cosimplicial object
valued in a simplicial model category.
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