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MODEL CATEGORIES WITH SIMPLE HOMOTOPY CATEGORIES

JEAN-MARIE DROZ AND INNA ZAKHAREVICH

Abstract. In the present article we describe constructions of model structures on
general bicomplete categories. We are motivated by the following question: given a
category C with a suitable subcategory wC, when is there a model structure on C with
wC as the subcategory of weak equivalences? We begin exploring this question in the
case where wC = F−1(isoD) for some functor F : C → D. We also prove properness of
our constructions under minor assumptions and examine an application to the category
of infinite graphs.

1. Introduction

Model categories are very useful structures for analyzing the homotopy-theoretic prop-
erties of various problems. However, constructing these structures is generally difficult;
often, only the weak equivalences arise naturally, and much effort must be expended to
find compatible sets of cofibrations and fibrations. (For examples of this, see [Hir03],
[Hov99], chapter VII of [GJ99], [Ber07], or the discussion of various model structures
of spectra in [MMSS01].) This paper is the first in a series which explores the general
structure of such problems. It attempts to answer the following question:

1.1. Question. Given a bicomplete category C, together with a subcategory wC ⊆ C which
is closed under two-of-three and retracts, when is there a model structure on C such that
wC is the subcategory of weak equivalences?

This question is very difficult, and we do not possess a complete answer to it. However,
the study of some cases has yielded many interesting families of examples, and we present
the first few here.

Often the subcategory wC is obtained through a functor F : C → D by defining wC def
=

F−1(isoD). In this paper we address the case when D is a preorder: a category where
|Hom(A,B)| ≤ 1 for all objects A,B ∈ D. Although it turns out that we cannot answer
this question in full generality even with this simplification, we answer it in the following
three cases:

1. F has a right adjoint which is a section.
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2. F : C → E, where E is the category with two objects and one noninvertible morphism
between them.

3. F = RC, where RC is the universal functor from C to a preorder.

In fact, it turns out that the methods which allow us to answer these questions answer
more general questions than the one asked here. For example, the construction which
gives the model structure in case (2) can also be used to construct a model structure
where the noninvertible weak equivalences are the preimage of only one of the objects.
Whenever possible we state the results we obtain in full generality, only applying them
to the case when D is a preorder when necessary.

We will spend the majority of our time on the third type of model structure, as it
is the one with the most interesting applications. It generalizes a model structure on
the category of finite graphs constructed in [Dro12], and in this case gives an interesting
homotopy-theoretic perspective on what the notion of a “core” for an infinite graph should
be. (This will be discussed in Section 6.)

The following theorem sums up the main results of the paper.

1.2. Theorem. Let F : C → D be a functor as described in cases 1-3. There exists a model
structure on C such that the weak equivalences are F−1(isoD). This model structure is
left proper.

A recurring example in this paper is the category of semi-simplicial sets. This has as
objects functors ∆op

inj → Set, where ∆inj is the category of nonempty ordered sets and
injections between them. Any simplicial set is also a semi-simplicial set, and the geometric
realization of a semi-simplicial set is homotopy equivalent to the geometric realization
of the original simplicial set. However, this category is not a model for the homotopy
theory of topological spaces, in the sense that it does not have a model structure Quillen
equivalent to the model structure on topological spaces. In this paper we will show that it
does have several intriguing model structures on it, including several where the dimension
of a semi-simplicial set is a homotopy invariant. For more details, see Examples 3.5, 4.9
and 5.4.

As another application of this theorem we consider the model structure constructed
in [Dro12] for the category of finite graphs. This model structure is interesting in that
it gives a homotopy-theoretic expression of a combinatorial invariant: two graphs are
weakly equivalent if and only if they have the same core. The theorem allows us to
construct an analogous structure on the category of infinite graphs, and thus gives a
possible generalization of the notion of “core” to the context of infinite graphs. The
notion of core for infinite graphs is not agreed upon, although several candidates are
defined; our new notion of core does not agree with any of the existing candidates for the
notion of the core of an infinite graph.

The organization of this paper is as follows. Section 2 discusses model structures and
some categorical preliminaries necessary for the paper. Sections 3-5 discuss cases 1-3 in
detail. Finally, section 6 analyzes the implications that the model structure from section
5 has for the notion of a core for infinite graphs.
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Notation and terminology. We will say that a category is bicomplete if it has all finite
limits and colimits. We only use finite limits and colimits instead of the usual assumption
of small limits and colimits as we do not need to use the techniques of cofibrant generation
for constructing our model structures. Thus categories such as the category of finite graphs
can be given model structures in our examples.

A preorder is a category where for all objects A and B, |Hom(A,B)| ≤ 1.
We write ∅ for the initial object in a category and ∗ for the terminal object.

2. Preliminaries

2.1. Weak factorization systems.

2.2. Definition. In a category C, we say that the morphism f :A→ B has the left lifting
property with respect to the morphism g:C → D if for any commutative diagram of solid
arrows

A //

f
��

C

g
��

B //

h

>>

D

there is a morphism h which makes the complete diagram commutative. We will write
f � g if f has the left lifting property with respect to g.

For any class of morphisms S, we define

S� = {g ∈ C | f � g for all f ∈ S},
�S = {f ∈ C | f � g for all g ∈ S}.

Note that for any set S, the sets S� and �S are closed under retracts.

2.3. Definition. A maximal lifting system (L,R) in a category C is a pair of classes of
morphisms, such that L = �R and R = L�.

The following theorem is well-known; for a proof (and a more general statement), see
[MP12, 14.1.8].

2.4. Theorem. [Folklore] If (L,R) is a maximal lifting system in a category C, L and
R contain all isomorphisms and are closed under composition and retraction. Moreover,
L is closed under coproducts and pushouts along morphisms in C, and R is closed under
products and pullbacks along morphisms in C.

We recall the definition of a weak factorization system. For more on weak factorization
systems, see for example [AHR02] or [Rie14, Section 11].

2.5. Definition. A weak factorization system (L,R) in the category C is a maximal
lifting system such that any morphism in C can be factored as g ◦f with f ∈ L and g ∈ R.

From this point on, we will write WFS for “weak factorization system.” The following
is a well-known result for recognizing WFSs; for a proof, see [MP12, 14.1.13].
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2.6. Lemma. [Folklore] If (L,R) is a pair of classes of morphisms in a category C such
that

1. f � g for all f ∈ L and g ∈ R,

2. all morphisms f ∈ C can be can be factored as fR ◦ fL, where fR ∈ R and fL ∈ L,
and

3. L and R are closed under retracts,

then (L,R) is a WFS.

As an example of how lifting properties can classify properties of morphisms, we
present the following characterization of retractions and sections.

2.7. Definition. A morphism r:A→ B in a category is called a retraction if it is possible
to factorize the identity of B as 1B = rs for some morphism s. Dually, a morphism
s:A → B is called a section if it is possible to factorize the identity of A as 1A = rs for
some morphism r.

2.8. Lemma. The class of retractions is exactly {∅→ A |A ∈ C}�. Dually, the class of
sections is exactly �{A→ ∗ |A ∈ C}.

2.9. Model categories. We now recall the definition of a model structure on a cate-
gory. Instead of using the most traditional approach [Hir03, Hov99] we use an equivalent
axiomatization using WFSs. For a more thorough treatment of model categories along
these lines, see for example [MP12, Section 14.2] or [Rie14, Section 11.2].

2.10. Definition. A model structure C on a bicomplete category C is a tuple of three
subcategories of C called the weak equivalences (Cwe), the cofibrations (Ccof) and the fi-
brations (Cfib). Those three sets should satisfy the following axioms.

WFS The pairs
(Ccof ,Cfib ∩ Cwe) (Ccof ∩ Cwe,Cfib)

are WFSs.

2OF3 For composable morphisms f and g, if two of the morphisms f , g and gf are weak
equivalences, then so is the third.

We call a morphism which is both a cofibration (resp. fibration) and a weak equivalence
an acyclic cofibration (resp. acyclic fibration).

One nontrivial consequence of these axioms is that Cwe is closed under retracts. This
result is due to Tierney, but we could not find it in his writings; for a proof of this lemma,
see [MP12, 14.2.5] or [Rie14, 11.2.3].

2.11. Lemma. [Tierney] Cwe is closed under retracts.

The following two lemmas will be used below to construct model structures. We omit
the proofs, as they are simple definition checks.
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2.12. Lemma. Given a bicomplete category C, together with subcategories f̃C ⊆ wC ⊆ C,
where f̃C is closed under pullbacks and wC satisfies (2OF3), we define

Cwe = wC Ccof = �f̃C Cfib = (Ccof ∩ Cwe)
�.

If (Ccof , f̃C) and (Ccof ∩Cwe,Cfib) are WFSs and Cwe ∩Cfib = f̃C, then (Cwe,Ccof ,Cfib)
is a model structure on C.

2.13. Lemma. Given a bicomplete category C together with a subcategory wC which sat-
isfies (2OF3), we define

Cwe = wC Ccof = C Cfib = C�
we.

If (Cwe,Cfib) is a WFS then C is a model structure on C.

We conclude the discussion of model categories by recalling the definition of a proper
model category.

2.14. Definition. A model structure is left (resp. right) proper if the pushout (resp.
pullback) of a weak equivalence along a cofibration (resp. fibration) is always a weak
equivalence.

2.15. Splitting and disjoint coproducts. Our last topic in this section is split-
ting and disjoint coproducts. We present several examples, as these notions interact in
nontrivial ways. We write A tB for the coproduct of A and B.

2.16. Definition. A category is said to have splitting coproducts if for any morphism
f :X → A t B there exist objects XL and XR such that X ∼= XL t XR, and morphisms
fL:XL → A and fR:XR → B such that f ∼= fL t fR. (Although XL and XR depend on
f , we do omit it from the notation.)

2.17. Definition. A category is said to have disjoint coproducts if, for any coproduct
A t B, the natural injections i1:A → A t B and i2:B → A t B are monic, and the
following three squares are pullback squares:

A
1A //

1A
��

A

i1
��

A
i1 // A tB

∅ //

��

B

i2
��

A
i1 // A tB

B
1B //

1B
��

B

i2
��

B
i2 // A tB

2.18. Example. We present examples of how these definitions interact.

1. The categories of sets and graphs both have splitting coproducts and disjoint coprod-
ucts.

2. The category of vector spaces and linear maps over R has disjoint coproducts but
not splitting coproducts.
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3. The category of pointed finite sets has both disjoint and splitting coproducts.

4. The lattice
B

!!
∅ // X

<<

""

∗

A

==

has splitting but not disjoint coproducts, as ∗ = A t B but the pullback of the two
inclusions is X.

5. The lattice
B

��
∅ // X

>>

//

  

C // ∗

A

??

has neither disjoint nor splitting coproducts. Just as in (4) it does not have disjoint
coproducts, and it does not have splitting coproducts because C → ∗ = AtB cannot
be written as (Y → A) t (Z → B) for any Y or Z in the lattice.

2.19. Lemma. Suppose that C has disjoint coproducts, and suppose that there exists a
morphism f :A→ B such that the diagram

B

i2
��

A

f
;;

i1 // A tB

commutes. Then A ∼= ∅.

Proof. We have the following diagram, where both squares are pullback squares:

A
1A //

��

A

f
��

i1

~~

∅ //

��

B

i2
��

A
i1 // A tB

If we consider the composite pullback, we need to take the pullback of i1 along i1, which
(as C has disjoint coproducts) is A with the identity morphism. Thus the composite down
the left must be the identity on A, and A ∼= ∅, as desired.
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3. The case of a functor with an adjoint section

In many cases where a model category is required, the subcategory of weak equivalences
is given as the preimage of the isomorphisms under a functor. In this section we explore
the question of how much extra structure on the functor is required to show that the
model structure exists directly from the existence of the functor.

Let C be a bicomplete category and suppose that F : C → D is a functor with a right
adjoint G:D → C such that the counit ε:FG→ 1D is a natural isomorphism; in this case,
we say that G is a section of F . We would like to define a model structure on C such that
D = Ho C and F is the localization functor.

3.1. Proposition. Suppose that F : C → D is a functor with a section G:D → C. We
define three subcategories of C by

Cadj
we = F−1(isoD) Cadj

cof = C Cadj
fib = (Cadj

we )�.

Suppose that either

(a) Cadj
we is closed under pullbacks along G(D), or

(b) for any f :A→ B, A→ B ×GF (B) GF (A) is in Cadj
we .

Then these three subcategories form a left proper model structure. If D is bicomplete we
can consider D to be a model category where the weak equivalences are the isomorphisms
and all morphisms are both cofibrations and fibrations. In this case, (F,G) is a Quillen
equivalence.

Proof. First, notice that the image of G is inside Cadj
fib. A commutative square

A //

f ∼
��

G(X)

G(p)

��
B // G(Y )

has a lift because F (f) is an isomorphism in the adjoint square. Thus a lift exists in the
original square and G(p) ∈ (Cadj

we )� = Cadj
fib.

Now we check that we have a model structure on C. As Cadj
we clearly satisfies (2OF3),

by Lemma 2.13 we only need to check that (Cadj
we ,C

adj
fib) is a WFS. We use Lemma 2.6.

From the definitions we know that Cadj
we and Cadj

fib are closed under retracts, so condition

(3) holds. As Cadj
fib = (Cadj

we )�, condition (1) holds as well.
It remains to check condition (2): any morphism can be factored as a weak equivalence
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followed by a fibration. Let f :A→ B be any morphism, and consider the diagram

A ηA

&&

f

))

i

''
B ×GF (B) GF (A) //

����

GF (A)

GF (f)
����

B
ηB // GF (B)

where η: 1C → GF is the unit of the adjunction. We need to show that i is a weak
equivalence. If (b) holds then this is true by assumption. On the other hand, since ε
is a natural isomorphism we know that as F (ηX) is an isomorphism for all X, ηA and
ηB are weak equivalences. If (a) holds then B ×GF (B) GF (A) → GF (A) is also a weak
equivalence, and by (2OF3) i is, as well. In either case we have a factorization, as desired.
Thus (Cadj

we ,C
adj
fib) is a WFS, as desired.

It remains to check that Cadj is left proper. Consider any diagram

C A
goo � � i // B

where g is a weak equivalence. Since F is a left adjoint, F (B → B ∪A C) = F (B) →
F (B) ∪F (A) F (C), which is an isomorphism because F (g) is an isomorphism. Thus the
pushout of g along i is a weak equivalence, as desired.

We need to check that if D is bicomplete then (F,G) is, indeed, a Quillen equivalence.
Clearly F preserves cofibrations and acyclic cofibrations, so we have a Quillen pair. It
remains to show that FA → X is an isomorphism if and only if A → GX is a weak
equivalence. But FA→ X is an isomorphism if and only ifGFA→ GX is an isomorphism
(as FG ' 1D), which is an isomorphism if and only if A

∼→ GFA → GX is a weak
equivalence, as desired.

3.2. Remark. One may ask whether the model structure constructed in Proposition 3.1
is right proper. Unfortunately, we could not resolve that question. The model structures
constructed in Examples 3.4 and 3.5 below are right proper, but we could not find a proof
that this is generally the case.

Conditions (a) and (b) are a bit annoying, as we do not have a conceptual explanation
of why they are necessary; they are assumed simply because they are needed in the proof.
Morally speaking, they should correspond to the fact that D is a much simpler category
than C, and thus that we don’t need any more information about the problem than just
the structure of D. For very simple D this is the case:

3.3. Corollary. If D is a preorder then condition (b) always holds. Thus for any
functor F : C → D with a section we have a model structure Cadj with Cadj

we = F−1(isoD).
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Proof. We need to show that F (i:A→ B×GF (B)GF (A)) ∈ isoD if D is a preorder. Let
π2:B×GF (B)GF (A)→ GF (A) be the projection morphism; then we know that π2i = ηA.
Since FG = 1D, in particular we know that F (ηA) = 1F (A); thus F (π2i) = F (π2)F (i) =
1F (A). Since D is a preorder, this means that F (i) is an isomorphism, as desired.

We present a couple of examples of model structures constructed using this theorem.

3.4. Example. Let π0:Top → Set be the functor which takes a topological space to
the set of its connected components. This functor has a right adjoint −δ which endows a
set with the discrete topology. To check that a model structure exists with weak equiv-
alences equal to π−10 (isoSet) (the morphisms which induce bijections between connected
components) we will show that condition (b) holds. Let f :A→ B be a continuous map of
spaces. Write A =

∐
i∈I Ai and B =

∐
j∈J Bj, with Ai and Bj connected; by an abuse of

notation, write f : I → J for the induced map on connected components. Thus π0(A)δ = I
and π0(B)δ = J , and

B ×π0(B)δ π0(A)δ ∼=
∐
i∈I

Bf(i)

with the map A → B ×GF (B) GF (A) sending Ai to Bf(i) by f . This induces a bijection
on connected components, so it is a weak equivalence, as desired.

3.5. Example. Let sinjSet be the category of semi-simplicial sets as defined in the
introduction. For X ∈ sinjSet, let dimX be the smallest integer n such that X(0 < · · · <
k) is empty for all k > n; if such an integer does not exist then we write dimX =∞. Let
Z+
≥0 be the category with objects nonnegative integers and ∞ and morphisms n → m if

n ≤ m. We have a functor F : sinjSet → Z+
≥0 given by taking X to dimX. This functor

has right adjoint G which takes n to Dn: ∆op
inj → Set defined by

Dn(m) =

{
∗ if m ≤ n

∅ otherwise.

Note that FG = 1, and thus by Corollary 3.3 we have a model structure on sinjSet where
X and Y are weakly equivalent exactly when they have the same dimension.

4. Model structures from simple preorders

In the previous section, we showed that if D is a preorder then for any functor F : C → D
with a section there exists a model structure C on C such that Cwe = F−1(isoD). This
result is not completely satisfying, however, as the condition that F has a right adjoint
section is much too strong to hold in general. Thus in this section we will try to analyze
this problem with the (equally strong but) different assumption that the structure of
HoC is very simple. In the course of this exploration we actually construct several model
structures whose homotopy categories are not preorders; we include them in the discussion
as well, since their proofs are identical, and they give an interesting family of model
structures.
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The simplest that HoC could be, of course, is if it is equivalent to the trivial category.
Such a model structure always exists, by setting the weak equivalences and the cofibrations
to be all morphisms, and the fibrations to be the isomorphisms. This resolved, we consider
the second-simplest case, when HoC has two objects and one morphism between them.
Let E be the category with two objects, ∅ and ∗, and one non-identity morphism ∅→ ∗.
In this case the model structure C divides objects of C into “big” objects and “small”
objects, but does not distinguish between different “big” or different “small” objects.

4.1. Definition. A cut of a category C is a functor F : C → E; such a cut is called trivial
if C = F−1(∅) or C = F−1(∗). Given any cut F , we define IF = F−1(∅), PF = F−1(∗).
When F is clear from context we omit the subscript from the notation.

We start with a more general construction which will give us three model structures
associated to any cut. These three model structures will either (a) classify objects into
“big” and “small”, (b) distinguish between all “small” objects but have all “big” objects
be equivalent, or (c) distinguish between all “big” objects but have all “small” objects be
equivalent.

4.2. Proposition. Let E′ be the total order with three objects, ∅ → E → ∗. Suppose
that C has a “double cut”, a functor F : C → E′. Then we have a model structure CF on
C given by

CF
cof = {A→ B |F (B) 6= ∅} ∪ iso C CF

fib = {X → Y |F (X) 6= ∗} ∪ iso C,

and
CF
we = F−1{1∅, 1∗} ∪ iso C.

Proof. We need to check the axioms of a model structure. CF
we clearly satisfies (2OF3),

so we focus on (WFS). We will prove that (CF
cof ,CF

we ∩CF
fib) is a WFS; the other one will

follow by duality. We use Lemma 2.6. As all three of the above classes are closed under
retracts, condition (3) is satisfied. Note that

CF
we ∩ CF

fib = F−1(1∅) ∪ iso C.

Thus we can say that a noninvertible morphism f :X → Y is an acyclic fibration when
F (Y ) = ∅, and we see that any morphism is either a cofibration or an acyclic fibration.
In such situations factorizations trivially exist, and condition (2) is satisfied. Thus it
remains to check condition (1).

Let f :A → B ∈ CF
cof and g:X → Y ∈ CF

we ∩ CF
fib, and suppose that we have a

commutative square
A //

f
��

X

g
��

B // Y

If either f or g is an isomorphism then this square clearly has a lift, so we assume
that neither is an isomorphism. Then F (g) = 1∅, and in particular F (Y ) = ∅. But
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F (B) 6= ∅, and thus we cannot have a morphism B → Y . Contradiction. Thus in any
such square either f or g must be an isomorphism and f � g. So condition (1) holds, and
(CF

cof ,CF
we ∩ CF

fib) is a WFS, as desired.

We now use this proposition to construct the model structures associated to a cut.

4.3. Corollary. Given any cut F of a bicomplete C we define the model structure CbF

(the balanced model structure associated to F ) on C by

CbF
we = {A→ B |B ∈ I or A ∈ P} ∪ iso C = F−1(isoE)

CbF
cof = {A→ B |B ∈ P} ∪ iso C CbF

fib = {A→ B |A ∈ I} ∪ iso C.

This model structure is both left and right proper.

CbF is the model structure that can distinguish between “big” and “small” objects,
but does not detect any other differences.

Proof. Let F ′ be the double cut defined by composing F with the functor E→ E′ taking
∅ to ∅ and ∗ to ∗. Applying Proposition 4.2 to F ′ we get the desired structure.

As the model structure is self-dual, it suffices to show that it is left proper. Suppose
that we have a diagram of noninvertible morphisms

C Aoo � � i // B.

As i is a cofibration, B ∈ PF , and thus the pushout B → B ∪A C ∈ PF . But then
B → B ∪A C is a weak equivalence, as desired.

4.4. Remark. Note that we didn’t use the fact that A → C is a weak equivalence, so
in fact the pushout of any morphism along a noninvertible cofibration must be a weak
equivalence. This reflects that the balanced model structure is not very discriminating.

Thus for any cut F : C → E we can construct a model structure with homotopy category
equivalent to E. Note, however, that F need not be a Quillen equivalence, as it does not
necessarily have an adjoint. For example, consider the category

A // B

��
∅

??

  

∗

C // D

??

and define F to map ∅, A and B to ∅ and C, D and ∗ to ∗. Then F does not preserve
either pullbacks or pushouts, so it is not a right or a left adjoint.
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4.5. Corollary. Given any cut F of a bicomplete C we have a model structure CrF on
C given by

CrF
we = P ∪ iso C CrF

cof = C CrF
fib = (CrF

we)
�.

This model structure is left proper. As the definition of a cut is self-dual, we also have a
dual model structure C`F where all morphisms are fibrations and the noninvertible weak
equivalences are morphisms in I; this model structure is right proper.

CrF can distinguish between all objects in I (the “small” objects), but collapses all
objects in P to a single one.

Proof. We construct CrF by composing the cut with the functor E → E′ which takes
∅ to E and ∗ to ∗ and taking the model structure constructed in Proposition 4.2. As
(CrF

we,CrF
fib) is a WFS, we know that CrF

we is closed under pushouts. Thus CrF is left proper.
However, CrF does not have to be right proper. Let C be the category

∅ //

��

A

��
B // ∗

and let F be the cut that takes ∅ and A to ∅ and B and ∗ to ∗. Then the only nontrivial
weak equivalence is B → ∗, and A is a fibrant object. If CrF were proper we would have
to have ∅→ A be a weak equivalence, but in this model structure it is not. Thus in this
case CrF is not right proper, as claimed.

The second part of the corollary follows by duality.

In particular, the two examples constructed in this proof also prove the following:

4.6. Corollary. The model structure constructed in Proposition 4.2 is not necessarily
left or right proper.

Thus any cut in a category C gives at least three different (but possibly equivalent)
model structures on C. This means that any category with uncountably many cuts has
uncountably many model structures, and more generally that any category with κ cuts
has at least κ model structures.

4.7. Example. Any cut of a pointed category must be trivial, which means that in a
model structure associated to a cut, the weak equivalence are either all morphisms or just
the isomorphisms.

4.8. Example. The category Set has a single non-trivial cut, which takes the empty set
to ∅ and all other sets to ∗. All model structures on Set where not all morphisms are
weak equivalences are Quillen equivalent to either CbF or C`F . (For an enumeration of
the model structures on Set, see [Cam].)

More generally, many Set-based categories (topological spaces, simplicial sets, etc.)
have a single non-trivial cut, which gives rise to a similar family of model structures.
However, these do not generally cover all possible model structures.
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4.9. Example. The category sinjSet (defined in Example 3.5) has many different cuts;
for example, for any n we have a cut Fn defined by Fn(X) = ∅ if dimX ≤ n and
Fn(X) = ∗ otherwise. Corollaries 4.3 and 4.5 give model structures which distinguish
between semi-simplicial sets based on their dimensions: CbFn has X and Y equivalent if
dimX, dimY ≤ n or dimX, dimY > n, CrFn has X and Y equivalent if dimX, dimY > n
and C`Fn has X and Y equivalent if dimX, dimY ≤ n.

It is possible for different cuts to yield equivalent model structures. For example,
consider the category C with objects R ∪ {±∞}, and with a morphism a → b if a < b.
Let

Fa(b) =

{
∅ if b < a

∗ otherwise.

Then Fa is a cut for any finite value of a; let Ca be the model structure constructed
by Corollary 4.5 for Fa. If we choose a < a′ then the functor G:Ca → Ca′ given by
G(b) = b − a′ + a preserves both cofibrations and weak equivalences and is clearly an
equivalence of categories, and thus gives a Quillen equivalence between Ca and Ca′ .

However, in many cases we can show that different cuts will yield inequivalent model
structures.

4.10. Corollary. If a category C has a family of cuts {Fα: C → E}α∈A such that if
α 6= α′ then Iα and Iα′ are not equivalent categories, then C has at least |A| nonequivalent
model structures.

Dually, if such a family of cuts exists with Pα 6' Pα′ for all distinct α, α′ ∈ A then C
has at least |A| nonequivalent model structures.

Proof. Let α 6= α′ ∈ A, and let (Iα,Pα) and (Iα′ ,Pα′) be obtained from Fα and Fα′ ,
respectively. Let Cα and Cα′ be the model structures constructed by the first part of Corol-
lary 4.5. A zigzag of Quillen equivalences between Cα and Cα′ would give an equivalence
of homotopy categories. However, the homotopy category of Cα is (Iα)+, the category
Iα with a new terminal object added. As an equivalence must take terminal objects to
terminal objects, an equivalence of (Iα)+ with (Iα′)+ must give an equivalence of Iα with
Iα′ ; as these are inequivalent, we know that Cα and Cα′ must be inequivalent, as desired.

The dual version follows from the dual version of Corollary 4.5.

4.11. Example. The model structures CrFn from Example 4.9 are all non-equivalent.
Let Sn = F−1n (∅); by Corollary 4.10 it suffices to check that these are nonequivalent.

We define the monic length of a category C with a terminal object to be the maximum
length of a chain

A0 → A1 → · · · → Ak = ∗ ∈ C
such that each morphism is a noninvertible monomorphism and Ak is the terminal object
of C; this is an equivalence invariant. In Sn the terminal object is Dn, defined by

Dn(k) =

{
∗ if k ≤ n

∅ otherwise.
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All monomorphisms in Sn are levelwise injections, so the monic length of Sn is n + 1,
given by

∅ → D0 → D1 → · · · → Dn.

As if m 6= n then m+ 1 6= n+ 1, we see that Sm and Sn are not equivalent, as claimed.

5. The generalized core model structure

There are two motivations for the construction of the generalized core model category.
The first is a continuation of the type of analysis given in the previous section; however,
in this case instead of taking D to be the simplest possible preorder, we take it to be the
most complicated. More formally, we have the following definition:

5.1. Definition. Let C be a category. We define the preorder P (C) with obP (C) = ob C,
and HomP (C)(X, Y ) equaling the one-point set if there exists a morphism X → Y ∈ C,
and the empty set otherwise. We will write X ∼ Y if X is isomorphic to Y in P (C).

There is a canonical functor RC: C → P (C), such that any functor F : C → D, where D
is a preorder, factors through RC. In this section, we construct a model structure on C such
that the weak equivalences are R−1C (isoP (C)). Note that P is a functor Cat→ PreOrd,
which is left adjoint to the forgetful functor U :PreOrd→ Cat.1

The second motivation for constructing the generalized core model structure is to
generalize the construction of the core model category structure in [Dro12]. The core of a
graph is the smallest retract of the graph, and two graphsG andG′ have isomorphic cores if
and only if there exist morphisms f :G→ G′ and g:G′ → G in the category of graphs. (For
more on cores, see [GR01, Chapter 6].) In [Dro12], Droz constructed a model structure
on the category of finite graphs where the weak equivalences are exactly the morphisms
between graphs with isomorphic cores. It turns out that a similar construction will work
in any category, and in particular on the category of infinite graphs. This gives rise to
an application to infinite graph theory: an alternate definition of the core of an infinite
graph. There is very little known about cores of infinite graphs, and it turns out that the
homotopy-theoretic perspective gives an entirely new possible definition of a core. For
more on this, see Section 6.

The main result of this section is the following:

5.2. Theorem. There is a model structure Ccore with homotopy category P (C) on any
bicomplete category C. A morphism f :A → B is a weak equivalence iff A ∼ B. The
acyclic fibrations are exactly the retractions in C.

If in addition C has splitting and disjoint coproducts then this structure is both left and
right proper.

1Technically, P and U are only functors if we restrict our attention to small categories; otherwise, we
need to worry about the 2-category structure of Cat and PreOrd and check that it is a 2-adjunction.
However, as in the rest of this paper we are only concerned with the functor RC , which exists in any case,
we blithely sweep these problems under the rug.
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We call Ccore the generalized core model structure on C. Before we begin the proof, we
present a couple of examples of such model structures.

5.3. Example. Let Set be the category of sets. P (Set) is the category with two objects
and one noninvertible morphism between them. The core model structure can distinguish
between empty and nonempty sets, but cannot distinguish between nonempty sets. The
fibrations are the surjective morphisms and the cofibrations are the injective morphisms.

More generally, for many set-based categories (such as topological spaces, simplicial
sets, etc.) the core model structure has as the weak equivalences all morphisms between
“nonempty” objects.

5.4. Example. The category sinjSet (defined in Example 3.5) has a core which is more
complicated than the core of simplicial sets. For example, if dimX > dimY then there
are no morphisms X → Y ∈ sinjSet, and in fact dimension is a homotopy invariant
in the generalized core model structure, since if there is a morphism X → Y and a
morphism Y → X then dimX = dimY . However, unlike in Example 3.5, it is not the
only invariant, as there exist X and Y with dimX = dimY but with X and Y not
isomorphic in P (sinjSet).

Proof of Theorem 5.2. We define wC to be the preimage under RC of isoP (C), and
f̃C to be the subcategory of retractions in C. These satisfy the conditions of Lemma 2.12.
Let Ccore be the candidate constructed as in Lemma 2.12; we will show that it satisfies the
necessary conditions to be a model structure. Since Ccore

we satisfies (2OF3) by definition,
we focus on the other three conditions.

First, an observation: suppose that f :A → B is any morphism in C. Then in Ccore,
the canonical projection p1:A×B → A is an acyclic fibration, and the canonical inclusion
i1:B → B t A is a cofibration and a weak equivalence. The first follows trivially from
the definition of acyclic fibration, since f and 1A give a morphism A → A × B which is
a section of p1. For the second, note that a canonical injection is always a cofibration as
it is isomorphic to 1B t (∅ → A), and inclusions of the initial object are cofibrations by
Lemma 2.8. It is a weak equivalence because f gives a retraction B t A→ B.

We now prove that f̃C = Ccore
we ∩Ccore

fib , that is, that f̃C is exactly the acyclic fibrations.

We first show that f̃C ⊆ Ccore
we ∩ Ccore

fib . By definition, f̃C ⊆ wC = Ccore
we . We also have

f̃C = (Ccore
cof )� ⊆ (Ccore

cof ∩ Ccore
we )� = Ccore

fib , as desired. Now let f :A → B ∈ Ccore
we ∩ Ccore

fib .

As f ∈ Ccore
fib , it lifts on the right of i1:B

∼
↪→ B t B. Let b be any morphism B → A,

which exists since f ∈ Ccore
we , so that we have a commutative diagram

B b //
� _

i1 ∼
��

A

f
����

B tB
fbt1B

//

h

∃

77

B

This diagram shows that hi2 is a section of f , so that f is a retraction and therefore
f̃C ⊇ Ccore

we ∩ Ccore
fib , as desired.
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Now we need to show that (Ccore
cof , f̃C) and (Ccore

cof ∩ Ccore
we ,Ccore

fib ) are WFSs. We prove
this using Lemma 2.6. Ccore

we is closed under retracts because A ∼ B is an equivalence
relation. Ccore

cof and Ccore
fib are closed under retracts because they are defined by lifting

properties, and f̃C is closed under retracts because it is equal to Ccore
we ∩ Ccore

fib . Thus
condition (3) of the lemma holds. Condition (1) holds by definition of Ccore

cof and Ccore
fib .

Thus to show that these are WFSs it suffices to check condition (2).
First we factor any morphism as a cofibration followed by an acyclic fibration. Any

morphism f :A→ B factors as

A �
� i1 // A tB ft1B

∼
// // B

where the morphism i1 is a canonical injection into a coproduct (and thus a cofibration)
and f t 1B is a retraction. This proves condition (2), and thus (Ccore

cof , f̃C) is a WFS.
Now we factor any morphism f :A→ B as an acyclic cofibration followed by a fibration.

In particular, we will show that the factorization

A �
� i1
∼

// A t (A×B)
ftp2 // // B ,

where i1 is the canonical injection and p2 is the projection of the product on its second
factor, works. By our previous analysis we know that i1 is an acyclic cofibration, so we
just need to prove that f t p2:A t (A × B) → B is a fibration. Let e:K → L be any
acyclic cofibration and consider any commutative diagram:

K
k //

� _

e ∼
��

A t (A×B)

ftp2
��

L
l // B

In order to show that a lift exists, it suffices to show that the lift h exists in the following
diagram:

K
i1 //

� _

e ∼
��

K t L
et1L
����

kt(kg×l) // A t (A×B)

ftp2
��

L
1L //

h

;;

L
l // B

where g is any morphism from L to K (which exists because e is a weak equivalence).
Note that the morphism kt (kg× l) is not the coproduct of two morphisms, but is rather
the universal morphism induced by k and (kg× l). As i2:L→ K tL is a section of et1L,
e t 1L ∈ f̃C, it lifts on the right of e ∈ Ccore

cof . Thus (Ccore
cof ∩ Ccore

we ,Ccore
fib ) is a WFS, as

desired.
We defer the proof of left and right properness to Proposition 5.6.
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Before moving on to prove properness, we need to analyze the cofibrations in this
model structure. In general, the cofibrations in the core model structure are very difficult
to analyze; however, in the case when C has splitting and disjoint coproducts it is possible:

5.5. Proposition. If C has splitting and disjoint coproducts, then any cofibration in
the generalized core model structure, c:A → B, is isomorphic to a canonical inclusion
i1:A→ A tX for some object X.

Proof. The square

A
i1 //

� _

c
��

A tB
ct1B����

B
1B //

h

;;

B

commutes. As C has splitting coproducts, we can write h = hLthR with hL:BL → A and
hR:BR → B. Thus c:A → BL t BR, so we can again use splitting to write c = cL t cR.
We can then rewrite the above diagram as follows:

AL t AR
i1 //

cLtcR
��

A tB
ct1B
��

BL tBR

∼= //

hLthR
66

B

By considering the restriction to AR we get that the following diagram commutes:

AR

cR
��

i1 // AR tB

BR
hR // B

i2

;;

Thus hRcR satisfies the conditions of Lemma 2.19 and we conclude that AR = ∅ and
AL ∼= A. Now consider the restriction to AL; we get the following diagram:

AL
i1 //

cL
��

A

c

��
BL

i1 //

hL

>>

B

As AL = A we know that c factors through i1:BL → B as i1cL. The upper triangle says
that hLcL = 1A, and the lower triangle and the fact that c factors through i1 says that
i1cLhL = i1; as i1 is monic, cLhL = 1BL and we see that cL is an isomorphism. So we are
done.
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We can now prove that the generalized core model structure is left proper and right
proper.

5.6. Proposition. In a category with splitting and disjoint coproducts the generalized
core model structure is left proper and right proper.

Proof. We first need to prove left properness: that the pushout of a weak equivalence
along a cofibration is a weak equivalence. By Proposition 5.5, we can assume that the
cofibration is a canonical inclusion i1:A → A t C and that the weak equivalence is
w:A→ B; then we have a pushout square

A
i1 //

w
��

A t C
wt1C
��

B
i1 // B t C

We want to show that w t 1C is a weak equivalence, or in other words that there is a
morphism BtC → AtC. As w is a weak equivalence there exists a morphism f :B → A;
then f t 1C is the desired morphism, and we are done.

We now consider right properness. In any model category we can factor a weak
equivalence as an acyclic cofibration followed by an acyclic fibration. We know that acyclic
fibrations are preserved by pullbacks, so in order to show right properness it suffices to
show that the pullback of an acyclic cofibration along a fibration is a weak equivalence.

By Proposition 5.5 we can assume that our cofibration is a canonical injection i1:A→
A t B. Let f :C → A t B be the fibration along which we want to take a pullback. By
splitting of coproducts, we can write f = fL t fR with fL:CL → A and fR:CR → B. Let
D be the pullback of our two morphisms, so that we have a diagram

D //

����

CL t CR
fLtfR����

A �
�

i1

∼ // A tB

We want to show that there exists a morphism g:CLtCR → D. Suppose that there exists
a morphism g′:CR → CL. Then the commutative diagram

CL t CR
fLtg′

��

1CLtfLg
′
// CL

i1 // CL t CR
fLtfR
��

A �
�

i1

∼ // A tB

shows that the morphism CL t CR → D exists, as desired. Thus all that we have left to
show is that g′ exists.
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Since i1 is a weak equivalence there exists a morphism r:B → A. We consider the
following diagram, where h exists because fL t fR is a fibration and CR → CR tCR is an
acyclic cofibration:

CR
i2 //

� _

i2 ∼
��

CL t CR
fLtfR
����

CR t CR
(rfR)tfR

//

h
55

A tB

As we have splitting coproducts, we can write hi1:CR → CL t CR as a coproduct of
hL:X → CL and hR:Y → CR. If we can show that there exists a morphism Y → CL we
will be done, as CR ∼= X t Y . We have a commutative square

Y
fRhR //

rfRi2
��

B

i2
��

A
i1 // A tB

As C has disjoint coproducts the pullback of i1 and i2 is ∅; thus we have a morphism
Y → ∅→ CL and we are done.

. At the beginning of this section we made the choice of setting the acyclic fibrations to
be the retractions. Instead, we could have taken the dual definition, and constructed a
model structure where the acyclic cofibrations are the sections:

5.7. Theorem. There is a model structure Ccocore on C where f :A → B is a weak
equivalence exactly when A ∼ B and the acyclic cofibrations are the sections. If C has
splitting and disjoint coproducts then this model structure is right proper; if in addition
binary coproducts distribute over binary products then it is left proper.

Proof. The proof that the model structure exists follows by duality from the proof of
Theorem 5.2. We defer the proof of properness to Corollary 5.9 and Proposition 5.10.

We call this model structure the generalized cocore model structure. Morally speaking,
the generalized core and the generalized cocore model structures should be Quillen equiv-
alent, although we do not know how to prove this in full generality. In the case when C
has splitting and disjoint coproducts, however, this does turn out to be the case:

5.8. Proposition. If C has splitting and disjoint coproducts, then the identity functor
is a left Quillen equivalence from the generalized core model structure to the generalized
cocore model structure.

Proof. We know that Ccore
we = Ccocore

we , so it suffices to show that Ccore
fib ⊇ Ccocore

fib . Equiv-
alently, it suffices to show that Ccore

cof ∩ Ccore
we ⊆ Ccocore

cof ∩ Ccocore
we .

In the generalized cocore model structure the acyclic cofibrations are sections. In the
generalized core model structure the acyclic cofibrations are those morphisms f :A →
AtB for which a morphism g:B → A exists. If such a morphism exists then the induced
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morphism 1A t g is clearly a retraction for f , so all acyclic cofibrations in the generalized
core model structure have retractions. Thus all acyclic cofibrations in the core model
structure are also acyclic cofibrations in the cocore model structure, as desired.

Right properness of the generalized cocore model structure follows directly from this
proposition.

5.9. Corollary. If C has splitting and disjoint coproducts then the generalized cocore
model structure is right proper.

Proof. By Proposition 5.8 we know that the identity functor is a right Quillen equiva-
lence from the generalized cocore model structure to the generalized core model structure;
as the two structures have the same weak equivalences it suffices to show that the pull-
back is a weak equivalence in the generalized core model structure. This follows from
Proposition 5.6.

To finish the discussion of the cocore model structure, we would like to show that the
generalized cocore model structure is left proper. However, because of the way we defined
the acyclic fibrations, it turns out to be very difficult to do so in general. By introducing
a further assumption we get the following result.

5.10. Proposition. If C has splitting and disjoint coproducts and, moreover, if binary
products distribute over binary coproducts, the generalized cocore model structure is left
proper.

Proof. Let c:A → B be a cofibration. Since in our model structure the acyclic cofi-
brations are the sections, the projections C × D → C are fibrations. In particular,
p2: (A t ∗) × B → B is a fibration. However, as products distribute over coproducts we
know that (A t ∗) × B ∼= (A × B) t B, so there exists a morphism B → (A t ∗) × B.
Thus the morphism p2 t 1B: (A×B) tB → B is an acyclic fibration.

We consider the following commutative diagram and deduce the existence of a lifting
morphism h.

A� _
c

��

i1◦(1A×c) // (A×B) tB
p2t1B∼
����

B
1B //

h
55

B

By applying the logic used in Proposition 5.5, we see that this diagram is induced from
two diagrams

A
1A×c //

� _

cL
��

A×B
p2
����

∅ //

��

B

1B
��

BL
i1 //

hL
77

B BR
i2 //

hR

99

B

Note that p1hLcL = p1(1A × c) = 1A, so cL is a section. Thus any cofibration is a
composition of a section and a canonical inclusion.
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Thus it suffices to show that the pushout of a weak equivalence along a canonical
inclusion or a section is still a weak equivalence. The pushout of a weak equivalence
f :A→ C along a canonical inclusion i1:A→ AtB is just f t 1B:AtB → C tB, which
is clearly also a weak equivalence. The pushout of a section is another section, and as
all sections are weak equivalences by (2OF3) the pushout of a weak equivalence along a
section is another weak equivalence, as desired. So we are done.

We conclude this section with an application of this theorem to the core model struc-
ture defined in [Dro12] on the category of finite graphs. This model structure agrees with
the generalized core model structure defined in Theorem 5.2.

5.11. Corollary. The categories of finite graphs and of infinite graphs have splitting
and disjoint coproducts and binary products distribute over binary coproducts. Thus the
generalized core and generalized cocore model structures on each are both left proper and
right proper.

Proof. We will show that the categories of graphs have the desired properties; the rest
follows from the above results. First we check splitting coproducts. Suppose that we have
a morphism f :X → AtB; this is a map from the set of vertices of X to the disjoint union
of the vertices of A and B. Let XL be the complete subgraph of X on the preimage of the
vertices of A and let XR be the complete subgraph on the preimage of the vertices of B.
XL and XR are disjoint subgraphs of X whose union is X, so we see that X ∼= XL tXR

and f = (f |A:XL → A) t (f |B:XR → B). Thus we have splitting coproducts.
To check that we have disjoint coproducts we just need to check the definition on the

vertices, where it holds because it holds in the category of sets.
It remains to show that binary products distribute over binary coproducts. In partic-

ular, we want to show that for graphs A, B and C we have

A× (B t C) ∼= (A×B) t (A× C).

This follows from the definitions of graphs and the fact that products distribute over
coproducts in the category of sets.

6. Concepts of cores for infinite graphs

We called the model structure constructed in Section 5 the “generalized core model struc-
ture” because in the case when C is the category of finite graphs2, homotopy types cor-
respond exactly to cores. More precisely, in the model structure two graphs are weakly
equivalent exactly when they have the same core. (For more on the core, see [GR01],
section 6.2.) Inspired by this, we can consider the generalized core model structure on the
category of all graphs, and ask for a classification of the homotopy types of this category.
One conjecture is that there should be a notion of a “core” for a (possibly infinite) graph
such that cores classify homotopy types in the generalized core model structure.

2By “finite graph” we mean an undirected graph with no repeated edges.
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Diverse generalizations of the notion of core to infinite graphs have been explored by
Bauslaugh in [Bau95].

1. An s-core is a graph such that all endomorphisms are surjections (on the vertices).

2. An r-core is a graph without proper retractions.

3. An a-core is a graph such that all endomorphisms are automorphisms.

4. An i-core is a graph for which all endomorphisms are injections.

5. An e-core is a graph such that all endomorphisms preserve non-adjacency.

These definitions are known to be equivalent for finite graphs, and are all proved to be
different when considering infinite graphs in [Bau95].

Once a definition of core is chosen, we can define a core of a graph G as one of its
subgraphs H, which is a core and for which a morphism G→ H exists. It would also make
sense to define the core as a retraction of G; however, as this definition is more restrictive
than the previous one, the results of this section will also hold under this definition.

It is natural to ask if applying our generalized core construction to the category of
all graphs gives a notion of core that corresponds to one of those defined above. More
precisely, is it the case that two graphs are weakly equivalent if they have the same “core”,
for some notion of “core” defined above? The answer turns out to be “no.” We prove
this by exhibiting two graphs, one of which does not contain a core in the sense of (1)-(3),
and one of which does not contain a core in the sense of (3)-(5). As every graph has a
“homotopy type” in the generalized core model structure, this means that none of these
definitions of a core classify homotopy types in the case of the generalized core model
structure.

Note that while the definitions above were originally given for general “structures”
(understood as combinatorial structures), and exemplified by oriented graphs, it can be
shown ([PT80]) that all of the relevant examples and results can be transferred to the
category of undirected graphs using a well-chosen fully faithful “edge-replacement” func-
tor. Thus it suffices to show that there exist directed infinite graphs with no core, and it
will also hold for undirected graphs.

We construct our examples by adapting methods from [Bau95].

6.1. Theorem. Let G be the graph with vertices {1, 2, . . .} and with an edge from n to
n+ 1 for all n. Then G has no s-core, r-core or a-core. The zipper graph in Figure 1 has
no a-core, i-core or e-core.

Proof. Any endomorphism ϕ of G is uniquely determined by ϕ(1), and must have an
image isomorphic to itself. Thus G has a core if and only if it is a core. However, it is
clearly not an s-core, an r-core or an a-core, and thus G has none of these cores.

The zipper graph is composed of three infinite rays with a common point, two of the
rays going to the common point, one ray coming out of the common point and additional
decorations. We observe that the endomorphisms of the zipper graph map the outgoing
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Figure 1: Prolonging this graph in three directions without end, we obtain the zipper
graph.
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ray to itself by a “shift toward the right”. The decorations insure the absence of an
automorphism mapping one of the incoming rays to the other. Since the non-trivial
endomorphisms of the zipper graph are non-injective but surjective, the zipper graph has
no i-core or a-core. Moreover, looking at non-adjacent vertices of the decorations of the
lower incoming ray, we see that they can sometimes be mapped to adjacent vertices. This
shows that the zipper graph has no e-core and concludes the proof of our theorem.

We conclude that the generalized core model structure has a notion of homotopy type
which does not correspond to any of Bauslaugh’s definition of cores.
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