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CATEGORIES ENRICHED OVER A QUANTALOID: ALGEBRAS

QIANG PU AND DEXUE ZHANG

Abstract. Given a small quantaloid Q with a set of objects Q0, it is proved that
complete skeletal Q-categories, completely distributive skeletal Q-categories, and Q-
powersets of Q-typed sets are all monadic over the slice category of Set over Q0.

1. Introduction

A quantaloid [Ros1996] is a category enriched over the symmetric monoidal closed cate-
gory Sup consisting of complete lattices and suprema-preserving functions. Since a quan-
taloid Q is a bicategory [Ben1967] (a 2-category indeed), following [BC1982, BCSW1983,
Str1981, Wal1981], a theory of categories enriched over Q (or Q-categories for short) has
been developed, see e.g. [Stu2005, Stu2006, Stu2007].

Given a small quantaloid Q, with Q0 its set of objects, objects in the slice category
Set ↓ Q0 are called Q-typed sets. Then Q-categories can be treated as structured Q-
typed sets. In this paper, we emphasize this aspect of Q-categories. That is to say, we
treat the theory of Q-categories as one on the topos Set ↓ Q0. It should be stressed that
this theory is not developed within the topos Set ↓ Q0, but rather, it depends heavily
on the structure of Q which is formed outside of that topos. The role of Q is something
like a “dynamic table of truth values” (c.f. [Stu2007]). The purpose of this paper is
to show that some interesting classes of Q-categories are exactly the Eilenberg-Moore
algebras corresponding to certain monads on the topos Set ↓ Q0. These results show that
the relationship between Q-categories and Q-typed sets are analogous to that between
preordered sets and sets, exemplifying a benefit of treating Q-categories as structured
Q-typed sets (instead of structured sets).

First, both the categoryQ-Sup consisting of complete skeletalQ-categories and cocon-
tinuous Q-functors and the category Q-CD consisting of completely distributive skeletal
Q-categories and bicontinuous Q-functors are monadic over Set ↓ Q0. These conclusions
extend the classical results that both the category Sup of complete lattices and join-
preserving maps, and the category CD of completely distributive lattices and complete
lattice homomorphisms, are monadic over Set.

Second, the correspondence that sends each object A in Set ↓ Q0 to its Q-powerset
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|PA| (defined below) yields a monadic functor (Set ↓ Q0)
op // Set ↓ Q0. We hasten to

remark that the monadicity of (Set ↓ Q0)
op over Set ↓ Q0 is a special case of a general

result in topos theory [MM1992] that states that for each topos E, the opposite category
Eop is monadic over E. The point of the result presented here is that for each non-empty
set X, there exist many monadic functors from (Set ↓ X)op to Set ↓ X.

The contents are arranged as follows. In Section 2 we recall some basic concepts and
results about Q-categories and fix notations for later use. Section 3 proves that both
Q-Sup and Q-CD are monadic over Set ↓ Q0. Section 4 proves the monadicity of the
functor (Set ↓ Q0)

op //Set ↓ Q0 that sends each object A in Set ↓ Q0 to its Q-powerset.

2. Categories enriched over a quantaloid

We refer to [Stu2005, Stu2006] for an overview of the theory of quantaloid-enriched cate-
gories. In this preliminary section, we recall some basic concepts and fix some notations for
later use. It should be noted that the theory of quantaloid-enriched categories is a special
case of that of W-categories; and that some of the results in this section are also known
to be valid forW-categories, for example, the construction of PA and the Yoneda lemma.
The reader is referred to [BC1982, BCSW1983, Str1981, Str1983, Wal1981, Wal1982] for
more on these categories.

Q-categories, Q-functors, and Q-distributors. A quantaloidQ is a category such
that Q(X, Y ) is a complete lattice for any objects X, Y in Q and that the composition ◦
of arrows preserves suprema in both variables, i.e.

g ◦
∨
i

fi =
∨
i

g ◦ fi and
∨
i

gi ◦ f =
∨
i

gi ◦ f

whenever the operations are defined. The identity arrow on an object X is written 1X .
The top and bottom elements in Q(X, Y ) are denoted by >X,Y and ⊥X,Y respectively.
The identity 1X is required to be different from the bottom element ⊥X,X for all objects
X in Q. However, for different objects X and Y , it may happen that >X,Y = ⊥X,Y . The
class of objects in Q is denoted by Q0 as usual.

For any arrow f : X // Y and any object Z in a quantaloid Q, both of the maps

− ◦ f : Q(Y, Z) //Q(X,Z), f ◦ − : Q(Z,X) //Q(Z, Y )

have respective right adjoints

− ↙ f : Q(X,Z) //Q(Y, Z), f ↘ − : Q(Z, Y ) //Q(Z,X).

The operators ↘ and ↙ are called the right and left implication respectively.
In this paper, Q is assumed to be a small quantaloid. This means that Q0 is a set.
A Q-typed set A is a pair (A0, t) with A0 being a set and t a function A0

//Q0. The
function t is called the type function of A with the value tx the type of x. Type functions
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of Q-typed sets are all denoted by “t”, as usual. A type-preserving map F : A // B
between Q-typed sets is a function F : A0

//B0 such that t(Fx) = tx for all x ∈ A0. The
category of Q-typed sets and type-preserving maps is exactly the slice category Set ↓ Q0.

For each X ∈ Q0, we write ∗X for the Q-typed set with exactly one element ∗ that is
of type X.

For a Q-typed set A = (A0, t), the underlying set A0 is often written A for simplicity
if no confusion would arise.

A Q-matrix φ : A //◦ B between Q-typed sets is a function that assigns to each pair
(x, y) ∈ A × B an arrow φ(x, y) ∈ Q(tx, ty). In particular, if A (resp. B) is of the form
∗X , then we write φ(x) for φ(∗, x) (resp. φ(x, ∗)).
Q-typed sets and Q-matrices constitute a quantaloid Q-Mat in which

• The composition ψ ◦ φ : A //◦ C of φ : A //◦ B and ψ : B //◦ C is given by

(ψ ◦ φ)(x, z) =
∨
y∈B

ψ(y, z) ◦ φ(x, y).

• The identity Q-matrix idA : A //◦ A on a Q-typed set A is given by

idA(x, y) =

{
1tx, x = y;
⊥tx,ty, otherwise.

• The local order is defined pointwise, that is,

φ1 ≤ φ2 : A //◦ B if and ony if φ1(x, y) ≤ φ2(x, y) for all (x, y) ∈ A×B.

• For any Q-matrices φ : A //◦ B,ψ : B //◦ C and λ : A //◦ C, λ↙ φ : B //◦ C and
ψ ↘ λ : A //◦ B are respectively given by

(λ↙ φ)(y, z) =
∧
x∈A

λ(x, z)↙ φ(x, y), (ψ ↘ λ)(x, y) =
∧
z∈C0

ψ(y, z)↘ λ(x, z).

A Q-category A is a monad in the 2-category Q-Mat. Explicitly, a Q-category is a
pair (A,A) where A is a Q-typed set and A : A //◦ A is a Q-matrix such that idA ≤ A
and A ◦ A ≤ A.

In the following we write A for a Q-category, |A| for its underlying Q-typed set and
A0 for the underlying set of |A|.

A Q-functor F : A //B between Q-categories is a type-preserving map F : |A| // |B|
such that A(x, y) ≤ B(Fx, Fy) for all objects x, y in A. The category of Q-categories and
Q-functors is denoted by Q-Cat.

The correspondence A 7→ |A| defines a (forgetful) functor |-| : Q-Cat // Set ↓ Q0.
Conversely, each Q-typed set A together with the identity Q-matrix on A is a Q-category.
Such Q-categories are said to be discrete. In this paper, we do not distinguish Q-typed
sets and discrete Q-categories.
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For a Q-functor F : A // B between Q-categories, we write F instead of |F | for the
underlying type-preserving map |A| // |B|.

The underlying order of a Q-category A [Stu2005] refers to the preorder on the set of
objects in A defined by

x ≤ y ⇐⇒ tx = ty and 1tx ≤ A(x, y).

It is trivial that Q-functors preserve underlying orders of Q-categories. Two objects x, y
of A are isomorphic, in symbols x ∼= y, if x ≤ y and y ≤ x. A Q-category A is skeletal if
its underlying order is antisymmetric.

The underlying order of a Q-category B induces a preorder on the set of all Q-functors
from a Q-category A to B:

F ≤ G ⇐⇒ ∀x ∈ A, Fx ≤ Gx.

Thus, Q-Cat is indeed a locally ordered category. Two Q-functors F,G : A // B are
isomorphic, in symbols F ∼= G, if F ≤ G and G ≤ F .

A pair of Q-functors F : A //B and G : B //A is said to form an adjunction, written
F a G : A ⇀ B, if 1A ≤ G ◦ F and F ◦G ≤ 1B. In this case, F is called a left adjoint of
G and G a right adjoint of F .

A Q-distributor φ : A //◦ B between Q-categories is a Q-matrix φ : |A| //◦ |B| that is
compatible with the structures on A and B in the sense that

B(y, y′) ◦ φ(x, y) ≤ φ(x, y′) and φ(x, y) ◦ A(x′, x) ≤ φ(x′, y)

for any objects x, x′ in A and y, y′ in B; or equivalently, φ ◦ A = φ = B ◦ φ in Q-Mat.
Q-categories and Q-distributors constitute a quantaloid Q-Dist in which compositions,
the left and right implications are calculated as in Q-Mat.

Following [Lack2010], for a 2-category C, we denote by Cop (Cco, resp.) the 2-category
obtained by reversing the 1-arrows (the 2-arrows, resp.) in C. For each quantaloid
Q, Qop is also a quantaloid, but Qco is not in general. Given a Q-category A, there
is a corresponding Qop-category Aop with the same underlying Q-typed set as that of
A and with Aop(x, y) = A(y, x).1 For each Q-distributor φ : A //◦ B, the assignment
φop(y, x) = φ(x, y) defines a Qop-distributor Bop //◦ Aop. If F : A // B is a Q-functor,
then

F op : Aop // Bop, x 7→ Fx

is a Qop-functor. Furthermore, F ≤ G in Q-Cat if and only if Gop ≤ F op in Qop-Cat.
Therefore, (Q-Cat)co is isomorphic to Qop-Cat [Stu2005].

1We would like to point out that the terminologies adopted here are not exactly the same as in
our main references, [Stu2005, Stu2006], on quantaloid-enriched categories. Our Q-categories and Q-
distributors are exactly the Qop-categories and Qop-distributors in the sense of Stubbe. The difference
arises in the interpretations of A(x, y) for a Q-category A: it is interpreted as the hom-arrow from y to x
in [Stu2005, Stu2006], but from x to y here. Note that this difference also leads to the swap of presheaves
and co-presheaves.
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The graph and cograph of a Q-functor F : A // B refer to the Q-distributors F\ =
B(F−,−) : A //◦ B and F \ = B(−, F−) : B //◦ A respectively. F\ is a left adjoint of F \

in Q-Dist, i.e., A ≤ F \ ◦ F\ and F\ ◦ F \ ≤ B.
The following proposition is a special case of an observation in [BCSW1983] about

modules (= distributors) between W-categories. We record it here because of its useful-
ness.

2.1. Proposition. Let F : A // B be a Q-functor.

(1) F is fully faithful in the sense that A(x, y) = B(Fx, Fy) for all x, y ∈ A if and only
if F \ ◦ F\ = A.

(2) If F is essentially surjective in the sense that there is some x ∈ A such that Fx ∼= y
in B for all y ∈ B, then F\ ◦ F \ = B.

A presheaf [Stu2005] on a Q-category A is a Q-distributor of the form φ : A //◦ ∗X .
All presheaves on A constitute a skeletal Q-category PA with

tφ = X and PA(φ, φ′) = φ′ ↙ φ

for any φ : A //◦ ∗X and φ′ : A //◦ ∗Y .
Dually, a co-presheaf on A is a Q-distributor of the form ψ : ∗X //◦ A. All co-

presheaves on A constitute a skeletal Q-category P†A with

tψ = X and P†A(ψ, ψ′) = ψ′ ↘ ψ

for any ψ : ∗X //◦ A and ψ′ : ∗Y //◦ A.
It should be stressed that the underlying order of PA coincides with the local order

in Q-Dist while the underlying order of P†A is the reverse local order in Q-Dist.
The correspondences

x 7→ A(−, x) : A //◦ ∗tx
and

x 7→ A(x,−) : ∗tx //◦ A

define two Q-functors
YA : A // PA

and
Y†
A : A // P†A

which are called respectively the Yoneda and the co-Yoneda embedding due to the fol-
lowing:
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2.2. Lemma. (Yoneda lemma, [Stu2005]) PA(YA(x), φ) = φ(x) and P†A(ψ,Y†
A(x)) =

ψ(x) for any x ∈ A, φ ∈ PA, and ψ ∈ P†A.
The correspondence A 7→ PA gives a contravariant functor

P : (Q-Cat)op //Q-Cat

that sends a Q-functor F : A // B to

PF : PB // PA, PF (ψ) = ψ ◦ F\.

Dually, the correspondence A 7→ P†A gives a contravariant functor

P† : Q-Cat // (Q-Cat)op

that sends a Q-functor F : A // B to

P†F : P†B // P†A, P†F (ψ) = F \ ◦ ψ.

2.3. Theorem. [Hoh2014, Stu2005] The functor P† : Q-Cat //(Q-Cat)op is left adjoint
to P : (Q-Cat)op //Q-Cat.

2.4. Proposition. [Stu2013] Let F : A // B be a Q-functor.
(1) The Q-functor PF has a left adjoint ∃F : PA // PB and a right adjoint ∀F :
PA // PB given by ∃F (φ) = φ ◦ F \ and ∀F (φ) = φ↙ F\, respectively.

(2) The Q-functor P†F : P†B // P†A has a left adjoint ∀†F : P†A // P†B and a right
adjoint ∃†F : P†A //P†B given by ∀†F (ψ) = F \ ↘ ψ and ∃†F (ψ) = F\◦ψ, respectively.

Different notations have been used for the Q-functors ∃F ,∀F ,∃†F and ∀†F in [SZ2013a,
Stu2013]. The notations adopted here originate from topos theory [MM1992].

2.5. Proposition. Given a pair of Q-functors F : A //B and G : B //A, the following
are equivalent:

(1) F a G : A⇀ B.

(2) ∃F a ∃G : PA⇀ PB.

(3) PF a PG : PB⇀ PA.

(4) ∃†F a ∃
†
G : P†A⇀ P†B.

(5) P†F a P†G : P†B⇀ P†A.
Proof. We prove the equivalence of (1) and (2) for example.

(1)⇒ (2) This follows from the fact that a 2-functor preserves adjunctions [Lack2010].
(2) ⇒ (1) For any object x in A,

YA(x) ≤ ∃G ◦ ∃F (YA(x)) = YA(x) ◦ (G ◦ F )\ = YA(GFx)

showing that x ≤ GFx. Thus 1A ≤ G ◦ F . Similarly it can be verified that F ◦ G ≤ 1B.
Hence F a G : A⇀ B.
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It is clear that the assignments F 7→ ∃F and F 7→ ∃†F give rise to two functors:

P∃ : Q-Cat //Q-Cat and P†
∃ : Q-Cat //Q-Cat.

Both P∃ and P†
∃ preserve the local order in Q-Cat, hence both of them are 2-functorial

Q-Cat //Q-Cat. Both of the contravariant functors P and P† reverse the local order,
so, both of them are 2-functorial from Q-Catcoop to Q-Cat.

For any Q-functor F , it follows from Proposition 2.4 that P†F a P†
∃F . Thus,

P∃(P†F ) a P∃(P†
∃F ) by Proposition 2.5(2). Also by Proposition 2.4 one has P∃(P†F ) a

P(P†F ). Thus, P(P†F ) = P∃(P†
∃F ). This proves the following:

2.6. Corollary. [Hoh2014, Stu2013] P ◦ P† = P∃ ◦ P†
∃.

Q-Cat Q-Cat
P†
∃ // Q-Cat

Q-Cat

P∃

��

Q-Cat

Q-Catop

P†

��
Q-Catop Q-CatP //

The following conclusion is a direct consequence of Proposition 2.1, it will be useful
in the last section.

2.7. Proposition. Let F : A // B be a Q-functor.

(1) F is fully faithful if and only if PF ◦ ∃F = 1PA if and only if P†F ◦ ∃†F = 1P†A.

(2) If F is essentially surjective, then ∃F ◦ PF = 1PB and ∃†F ◦ P†F = 1P†B.

Complete and completely distributive Q-categories. Let A be a Q-category
and φ : A //◦ ∗X a presheaf on A. A supremum of φ is an object supφ in A of type X
such that for any x in A,

A(supφ, x) = PA(φ,YA(x));

or equivalently, A(supφ,−) = A ↙ φ. It is clear that the supremum of a presheaf
A //◦ ∗X , if exists, is unique up to isomorphism. Dually, the infimum of a co-presheaf
ψ : ∗X //◦ A is an object inf ψ in A of type X such that for any x in A,

A(x, inf ψ) = P†A(Y†
A(x), ψ);

or equivalently, A(−, inf ψ) = ψ ↘ A.

2.8. Definition. [Stu2005] A Q-category A is cocomplete if every presheaf on A has a
supremum; A is complete if every co-presheaf on A has an infimum.

It is known that (i) A is cocomplete if and only if the Yoneda embedding YA : A //PA
has a left adjoint supA : PA // A; (ii) A is complete if the co-Yoneda embedding Y†

A :
A //P†A has a right adjoint infA : P†A //A; and (iii) A is complete if and only if it is
cocomplete.
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2.9. Example. [Stu2005] Let A be a Q-category. Then both PA and P†A are complete,
hence cocomplete. Explicitly, for any Φ ∈ P(PA) and Ψ ∈ P†(PA),

sup Φ = Φ ◦ (YA)\, and inf Ψ = Ψ↘ (YA)\;

for any Φ ∈ P(P†A) and Ψ ∈ P†(P†A),

sup Φ = (Y†
A)\ ↙ Φ, and inf Ψ = (Y†

A)\ ◦Ψ.

In particular, supPA = PYA and infP†A = P†Y†
A.

A Q-functor F : A //B is said to be cocontinuous if it preserves suprema in the sense
that F (supAφ) is a supremum of ∃F (φ) whenever supAφ exists. Dually, F : A //B is con-
tinuous if it preserves infima in the sense that F (infAφ) is an infimum of ∃†F (ψ) whenever
infAψ exists. F : A // B is bicontinuous if it is both cocontinuous and continuous.

It is known [Stu2005] that a Q-functor F : A // B between complete Q-categories is
a left adjoint (resp. right adjoint) if and only if F is cocontinuous (resp. continuous). In
particular, for eachQ-functor F : A //B, PF : PB //PA is bicontinuous; ∃F : PA //PB
is cocontinuous; and ∀F : PA // PB is continuous.

2.10. Definition. [Stu2007] AQ-category A is completely distributive if it is cocomplete
and the left adjoint supA : PA // A of the Yoneda embedding YA : A // PA has a left
adjoint ⇓A: A // PA.

Note that completely distributive Q-categories are said to be totally continuous in
[Stu2007]. Here we call them completely distributive following the practice in lattice
theory, e.g. [Joh1982, Ran1952, Wood2004].

2.11. Example. [Stu2007] For aQ-category A, it follows from Example 2.9 that supPA =
PYA. Thus, supPA is a right adjoint by Proposition 2.4. This shows that PA is completely
distributive.

2.12. Proposition. Let A,B be skeletal Q-categories, F : A //B a left and right adjoint
Q-functor.

(1) If F is an epimorphism in Q-Cat and A is completely distributive, then so is B.

(2) If F is a monomorphism in Q-Cat and B is completely distributive, then so is A.

Proof. (1) Suppose that H a F a G. Then F ◦G ◦ F = F , hence F ◦G = 1B since F is
an epimorphism. It follows that for any y ∈ B,

(PG ◦ YA ◦G)(y) = PG(YA(Gy)) = A(G−, Gy) = B(F ◦G−, y) = B(−, y) = YB(y),

showing that PG ◦ YA ◦G = YB.
By assumption, the Yoneda embedding YA has a left adjoint supA that also has a left

adjoint ⇓A. By virtue of Proposition 2.5 it holds that PH a PF a PG, hence

(PH◦ ⇓A ◦H) a (F ◦ supA ◦ PF ) a PG ◦ YA ◦G = YB.
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Therefore, B is completely distributive with supB = F ◦ supA ◦PF .
(2) Suppose that H a F a G. Then F ◦H ◦ F = F ◦ G ◦ F = F , and thus H ◦ F =

G ◦ F = 1A since F is a monomorphism. Hence, for each x in A,

(PF ◦ YB ◦ F )(x) = PF (YB(Fx)) = B(F−, Fx) = A(H ◦ F−, x) = A(−, x) = YA(x).

That means PF ◦ YB ◦ F = YA. Since ∃F a PF , supB a YB, and H a F , it follows
that H ◦ supB ◦ ∃F is a left adjoint of YA = PF ◦ YB ◦ F . Therefore, A is complete
with supA = H ◦ supB ◦∃F . Since F is cocontinuous (being a left adjoint), we have that
F ◦ supA = supB ◦∃F . Hence

supA = G ◦ F ◦ supA = G ◦ supB ◦ ∃F .

This shows that supA : PA −→ A is a composite of right adjoints (∃F is a right adjoint by
Proposition 2.5, supB is a right adjoint by complete distributivity of B), hence it is itself
a right adjoint. The conclusion thus follows.

Now we form the following categories:

• Q-Sup, the category of skeletal cocomplete Q-categories and cocontinuous Q-func-
tors.

• Q-Inf, the category of skeletal complete Q-categories and continuous Q-functors.

• Q-CD, the category of skeletal completely distributive Q-categories and bicontinu-
ous Q-functors.

The categories Q-Sup and Q-Inf are dually isomorphic. For each cocontinuous Q-
functor F : A //B between complete Q-categories, let F a denote its right adjoint. Dually,
for each continuous Q-functor G : B //A between complete Q-categories, let G` denote
its left adjoint. Then we obtain a pair of functors

Q-Inf Q-Supopoo (-)a

Q-Inf Q-Supop

(-)`
//

that are inverse to each other.

The questions. The categories Q-Sup, Q-CD are respectively the Q-analogue of the
category Sup of complete lattices and join-preserving maps, and the category CD of
completely distributive lattices and complete lattice homomorphisms. Since both Sup
and CD are monadic over Set [Joh1982], our first question is whether the categories
Q-Sup and Q-CD are monadic over Set ↓ Q0?

The forgetful functor |-| : Q-Cat //Set ↓ Q0 has a left adjoint I : Set ↓ Q0
//Q-Cat,

given by identifying Q-typed sets with discrete Q-categories. Consider the adjunction
|P†| a |P| obtained by composing the following

Set ↓ Q0 Q-Cat
I
// Q-Cat Q-Catop

P†
// Q-Catop (Set ↓ Q0)

op.
|-|op

//Set ↓ Q0 Q-Catoo |-|
Q-Cat Q-Catopoo P

Q-Catop (Set ↓ Q0)
op.

oo Iop
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It is clear that |P†| a |P| is the Q-version of the adjunction Pop a P : Set // Setop.
It is known that P : Setop // Set is monadic and the corresponding algebras are the
complete atomic Boolean algebras [Joh1982]. So, it is natural to ask what are the algebras
of the monad determined by the adjunction |P†| a |P|? This is the second question we’ll
consider in this paper.

Before proceeding, we list below some known facts about Q-Cat, Q-Sup, and Q-CD.
(a) The monad corresponding to the adjunction I a |-| : Set ↓ Q0

// Q-Cat is the
identity monad on Set ↓ Q0, hence its Eilenberg-Moore category is Set ↓ Q0. Therefore,
the forgetful functor |-| : Q-Cat // Set ↓ Q0 is not monadic. This is an extension of the
well-known fact that the forgetful functor from preordered sets to sets is not monadic.

(b) The composite of the adjunctions

Q-Cat Q-Inf
P†
∃

// Q-Inf Q-Supop

(-)`
// Q-Supop Q-Catop

Eop
//Q-Cat Q-Infoo E†

Q-Inf Q-Supopoo (-)a

Q-Supop Q-Catopoo
Pop
∃

is exactly the adjunction P† a P : Q-Cat ⇀ Q-Catop in Theorem 2.3. It is proved in
[Stu2013] that the algebras of the monad corresponding to the adjunction P† a P are the
completely distributive Q-categories with bicontinuous Q-functors as morphisms. Hence,
the category Q-CD is monadic over Q-Cat.

(c) Restricting the codomain of the 2-functor P∃ : Q-Cat //Q-Cat to Q-Sup gives
a left adjoint, also written P∃, to the forgetful functor E : Q-Sup //Q-Cat. It is proved
in [Stu2013] that the forgetful functor Q-Sup //Q-Cat is lax-idempotent monadic (see
Theorem 3.16 below).

3. Q-Sup and Q-CD are monadic over Set ↓ Q0

The aim of this section is to show that both Q-Sup and Q-CD are strictly monadic over
Set ↓ Q0. Recall that a right adjoint functor G : D // C is monadic (resp. strictly
monadic) [Mac1998, MM1992] if the comparison functor K : D //CT is an equivalence
(resp. isomorphism) of categories, where T is the corresponding monad and CT is the
Eilenberg-Moore category of T-algebras and homomorphisms. A category D is (strictly)
monadic over a category C if there exists a (strictly) monadic functor G : D //C.

For an object x in a Q-category A and an arrow f : tx //Y in Q, the tensor of f and
x, denoted by f ⊗ x, is an object in A of type Y such that A(f ⊗ x,−) = A(x,−) ↙ f .
Dually, for an arrow g : Y // tx, the cotensor of g and x, denote by g � x, is an object
in A of type Y such that A(−, g � x) = g ↘ A(−, x). A Q-category A is tensored if
the tensor f ⊗ x exists for all objects x in A and all arrows f in Q with codomain tx
[Stu2006]. The dual notion is cotensored.

It is easy to see that the tensor f ⊗x is the supremum of the presheaf f ◦A(−, x); the
cotensor g � x is the infimum of the co-presheaf A(x,−) ◦ g. So, a complete Q-category
is both tensored and cotensored.
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For each Q-category A and each object X in Q, write AX for the preordered set
consisting of objects of type X in A together with the underlying order. It is known that
if A is a complete Q-category then AX is a complete preordered set for each X in Q.
The following proposition was observed in [LZ09] for quantale-enriched categories and in
[Shen2014] for the general setting.

3.1. Proposition. Let A and B be Q-categories, and F : |A| // |B| be a type-preserving
map. If both A and B are tensored, then F : A // B is a Q-functor if and only if

(1) For any object x in A and arrow f : tx // Y , f ⊗ Fx ≤ F (f ⊗ x);

(2) For any object X in Q, F : AX
// BX is order-preserving.

Dually, if both A and B are cotensored, then F : A // B is a Q-functor if and only if

(1’) For any object x in A and arrow g : Y // tx, F (g�x) ≤ g�Fx;

(2’) For any object X in Q, F : AX
// BX is order-preserving.

3.2. Proposition. [Stu2006] Let A and B be Q-categories, F : |A| // |B| a type-
preserving map. If A is tensored, then F : A // B is a left adjoint Q-functor if and
only if

(1) F preserves tensors in the sense that F (f ⊗ x) = f ⊗ Fx for all objects x in A and
all arrows f : tx // Y ;

(2) For all objects X in Q, F : AX
// BX is a left adjoint.

Dually, if A is cotensored, then F : A // B is a right adjoint Q-functor if and only if

(1’) F preserves cotensors in the sense that F (g�x) = g�Fx for all objects x in A
and all arrows g : Y // tx;

(2’) For all objects X in Q, F : AX
// BX is a right adjoint.

3.3. Definition. [SZ2013a] A closure operator on a Q-category A is a Q-functor c :
A // A such that 1A ≤ c and c2 ≤ c.

3.4. Lemma. If c : A //A is a closure operator on a skeletal Q-category A, then c(A) =
{x ∈ A | c(x) = x} and c : A // c(A) is left adjoint to the inclusion i : c(A) ↪→ A.

Proof. Since A is skeletal and c2(x) is isomorphic to c(x) for each x in A, it follows
immediately that c(A) = {x ∈ A | c(x) = x}.

Since c ◦ i(y) = c(y) = y for any y in c(A) and i ◦ c(x) = c(x) ≥ x for any x in A, it
follows that c ◦ i = 1c(A) and i ◦ c ≥ 1A. Hence, c is left adjoint to i.
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3.5. Definition. A congruence on a complete skeletal Q-category A is an equivalence
relation R on the underlying set A0 subject to the following conditions:

(i) (x, y) ∈ R implies tx = ty, that is, equivalent elements have the same type.

(ii) For each object X in Q, the subset R∩ (AX×AX) is closed w.r.t. joins in AX×AX .

(iii) If (x, y) ∈ R, then (f ⊗ x, f ⊗ y) ∈ R for all f : tx // Y .

A congruence R is complete if it satisfies moreover:

(iv) For each object X in Q, the subset R∩(AX×AX) is closed w.r.t. meets in AX×AX .

(v) If (x, y) ∈ R, then (g�x, g�y) ∈ R for all g : Y // tx in Q.

For a congruence R on a complete skeletal Q-category A, define a map c : A0
// A0

by putting c(x) to be the greatest element in the equivalence class of x (which is a subset
of the complete lattice Atx). Then c is clearly type-preserving.

3.6. Lemma. If R is a congruence on a complete skeletal Q-category A, then c : A //A
is a closure operator. Furthermore, if R is complete then c : A //A is also a right adjoint.

Proof. It is easy to check that c has the following properties:
(a) c : AX

// AX preserves order for each object X in Q.
(b) For each x in A, x ≤ c(x) = c2(x).
(c) For any object x in A and any f : tx // Y in Q, f ⊗ c(x) ≤ c(f ⊗ x).
Properties (a) and (c) ensure that c : A // A is a Q-functor by virtue of Proposition

3.1, hence a closure operator by (b).
It remains to show that c : A // A is a right adjoint if R is a complete congruence.

We apply Proposition 3.2 to accomplish this.
Since c : A // A is a Q-functor, one has that g � c(x) ≥ c(g � x) for all x and

g : Y //tx by Proposition 3.1. Meanwhile, condition (v) ensures that g�c(x) ≤ c(g�x).
Therefore, g�c(x) = c(g�x). This proves that c preserves cotensors.

Let {xi} be a family of elements in AX . On one hand, since (xi, c(xi)) ∈ R for any xi
and R is closed w.r.t. meets, it follows that (

∧
xi,
∧
c(xi)) ∈ R. Thus, c(

∧
xi) ≥

∧
c(xi).

On the other hand, since c : AX
//AX preserves order, it is clear that c(

∧
xi) ≤

∧
c(xi).

Therefore, c : AX
//AX is meet-preserving, hence a right adjoint since AX is a complete

lattice.

3.7. Lemma. Let A be a skeletal complete Q-category, c : A // A a closure operator.
Then c(A), as a subcategory of A, is complete.

Proof. Let i be the embedding c(A) ↪→ A. It is easy to check that Pi ◦ YA ◦ i = Yc(A).
Since c a i (Lemma 3.4), supA a YA (A is cocomplete) and Pc a Pi (Proposition 2.5),
then

c ◦ supA ◦ Pc a Pi ◦ YA ◦ i = Yc(A),

showing that the Yoneda embedding Yc(A) has a left adjoint, hence c(A) is cocomplete,
hence complete.
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3.8. Theorem. The forgetful functor |-| : Q-Sup // Set ↓ Q0 is strictly monadic.

Proof. Since both of the forgetful functors Q-Sup //Q-Cat and Q-Cat // Set ↓ Q0

are right adjoints, it follows that the forgetful functor |-| : Q-Sup // Set ↓ Q0, being a
composite of right adjoints, is itself a right adjoint. Thus, by virtue of Beck’s theorem
(Theorem 1 on page 151 in [Mac1998]), it suffices to show that |-| : Q-CD // Set ↓ Q0

creates split coequalizers.
Given a pair of cocontinuous Q-functors F,G : A // B between complete skeletal

Q-categories, a split coequalizer of F,G : |A| // |B| in Set ↓ Q0 is, by definition, a

type-preserving map H : |B| // C with type-preserving maps C K // |B| L // |A| such
that

H ◦ F = H ◦G, F ◦ L = 1, H ◦K = 1, G ◦ L = K ◦H.

Define a relation R on B0 by

R = {(y1, y2) ∈ B0 × B0 | H(y1) = H(y2)}.

Claim 1: For any y1, y2 ∈ B0, (y1, y2) ∈ R if and only if there is a pair (x1, x2) ∈
A0 × A0 such that G(x1) = G(x2) and y1 = F (x1), y2 = F (x2).

Sufficiency is easy. For necessity, let x1 = L(y1) and x2 = L(y2). Then

G(x1) = G ◦ L(y1) = K ◦H(y1) = K ◦H(y2) = G ◦ L(y2) = G(x2),

and
F (x1) = F ◦ L(y1) = y1, F (x2) = F ◦ L(y2) = y2.

Claim 2: The relation R is a congruence on B.
This follows from Claim 1 and the fact that both F and G preserve tensors and joins

(with respect to the underlying orders).
Thus, R determines a closure operator c : B //B by Lemma 3.6. It follows from Lemma

3.7 that c(B) is complete. Since the underlying Q-typed set of c(B) is essentially the Q-
typed set C, hence C can be made into a complete Q-category C (which is isomorphic to
c(B)) such that H : B // C is a cocontinuous Q-functor. This proves that the forgetful
functor |-| : Q-CD // Set ↓ Q0 creates split coequalizers.

Since (Q-Inf)co is isomorphic to Qop-Sup as 2-categories, applying the above theorem
to Qop yields:

3.9. Theorem. The forgetful functor Q-Inf // Set ↓ Q0 is strictly monadic.

Our next task is to show that the forgetful functor |-| : Q-CD // Set ↓ Q0 is strictly
monadic. We show that it is a right adjoint first. Given a continuous Q-functor F :
A // B between complete Q-categories, it follows from Proposition 2.4 and 2.5 that
P∃F : PA //PB is bicontinuous. Therefore, by restricting the domain and the codomain
of the functor P∃ : Q-Cat //Q-Sup one obtains a functor P inf

∃ : Q-Inf //Q-CD that
is left adjoint to the forgetful functor E inf : Q-CD //Q-Inf . Then the forgetful functor
|-| : Q-CD // Set ↓ Q0, as a composite of right adjoints, is a right adjoint.
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3.10. Lemma. Let A be a skeletal completely distributive Q-category; c : A // A be a
right adjoint and a closure operator. Then c(A) is completely distributive.

Proof. This follows from Proposition 2.12(1) and the fact that c : A // c(A) is both a
left and a right adjoint.

3.11. Theorem. The forgetful functor |-| : Q-CD // Set ↓ Q0 is strictly monadic.

Proof. It suffices to check that the forgetful functor |-| : Q-CD // Set ↓ Q0 creates
split coequalizers. We only include here a sketch of the proof since it is similar to that of
Theorem 3.8.

Suppose F,G : A // B are bicontinuous Q-functors between completely distributive
skeletal Q-categories and H : |B| // C is a split coequalizer of F,G : |A| // |B| in

Set ↓ Q0. By definition there exist type-preserving maps C K // |B| L // |A| such that

H ◦ F = H ◦G, F ◦ L = 1, H ◦K = 1, G ◦ L = K ◦H.

Define a relation R on B0 by R = {(y1, y2) ∈ B0 × B0 | H(y1) = H(y2)}. Then R is
a complete congruence on B. This follows easily from Claim 1 in Theorem 3.8 and the
fact that both F and G preserve tensors, cotensors, joins and meets (with respect to
the underlying orders). By virtue of Lemma 3.6, the relation R determines a Q-functor
c : B // B which is both a closure operator and a right adjoint. Then c(B) is completely
distributive by Lemma 3.10. Since the underlying Q-typed set of c(B) is isomorphic to C,
it follows that C can be made into a completely distributive Q-category C (isomorphic to
c(B)) such that H : B // C is a bicontinuous Q-functor. This proves that the forgetful
functor |-| : Q-CD // Set ↓ Q0 creates split coequalizers.

In the remainder of this section, we show that the forgetful functor Q-CD //Q-Inf
is monadic. But, we do not know whether so is the forgetful functor Q-CD //Q-Sup.

Consider the adjunction P∃ a E : Q-Cat ⇀ Q-Sup. The corresponding monad is
given by

P∃ = {P∃ : Q-Cat //Q-Cat, Y : 1⇒ P∃, sup : P2
∃ ⇒ P∃}.

The monad P∃ is an example of monads that are of Kock-Zöberlein type. The following
proposition, extracted from [Kock1995, Zob1976], is taken from [Hof2013].

3.12. Proposition. Let T = (T, e,m) be a monad on a locally ordered category C with
T a 2-functor. Then the following are equivalent:

(1) TeX ≤ eTX for all objects X.

(2) TeX a mX for all objects X.

(3) mX a eTX for all objects X.

(4) For any object X and morphism h : TX //X, the pair (X, h) is a T-algebra if and
only if h ◦ eX = 1X . In this case, h a eX .
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A monad on a locally-ordered category is said to be of Kock-Zöberlein type, if it
satisfies one (hence all) of the equivalent conditions in Proposition 3.12. This kind of
monads are examples of lax-idempotent 2-monads on 2-categories introduced by G.M.
Kelly and S. Lack [KL1997], so, we’ll call them lax-idempotent in this paper.

A 2-functor T : C //D between locally-ordered categories is lax-idempotent monadic
if it is monadic and the corresponding monad is lax-idempotent.

3.13. Proposition. [Stu2013] The monad P∃ = (P∃,Y, sup) is lax-idempotent.

Proof. The conclusion was proved in [Stu2013]. Here we repeat the proof for later use.
For any Q-category A, since supPA = PYA (Example 2.9) and P∃YA a PYA (Proposition
2.4), it follows that P∃YA a supPA. Hence P∃YA = P∃YA ◦ supPA ◦YPA ≤ YPA, completing
the proof.

3.14. Corollary. [Stu2013] For a Q-category A, the following are equivalent:

(1) A is complete.

(2) The Yoneda embedding YA : A // PA has a left inverse PA // A.

3.15. Corollary. Given a Q-category A and a Q-functor F : PA // A, (A, F ) is a
P∃-algebra if and only if A is a skeletal complete Q-category and F = supA.

It follows from Corollary 3.15 that the category of P∃-algebras is equivalent to the
category of skeletal complete Q-categories and cocontinuous Q-functors.

3.16. Theorem. [Stu2013] The forgetful functor Q-Sup // Q-Cat is lax-idempotent
monadic.

A 2-functor T : C //D between locally-ordered categories is colax-idempotent monadic
if T co : Cco // Dco is lax-idempotent monadic. Since the 2-category (Q-Cat)co is iso-
morphic to Qop-Cat, and (Q-Inf)co to Qop-Sup, applying the above theorem to Qop we
obtain:

3.17. Corollary. The forgetful functor Q-Inf //Q-Cat is colax-idempotent monadic.

Now we come to the last conclusion in this section.

3.18. Proposition. The forgetful functor Q-CD //Q-Inf is lax-idempotent monadic.

Proof. Consider the monad Pinf
∃ generated by the adjunction P inf

∃ a E inf (see the
paragraph following Theorem 3.9). By the same argument for P∃ one deduces that
the monad Pinf

∃ is lax-idempotent. So, it remains to check that the forgetful functor
E inf : Q-CD //Q-Inf is monadic.

Let A be a complete skeletal Q-category and F : PA // A a continuous Q-functor.
If (A, F ) is a Pinf

∃ -algebra, then F is a left inverse of the Yoneda embedding YA by
Proposition 3.12(4), hence A is complete and F = supA by corollaries 3.14 and 3.15.
Thus, supA is a right adjoint, showing that A is completely distributive. Therefore, the

correspondence (A, F ) 7→ A defines a functor Q-InfP
inf
∃ //Q-CD that is inverse to the

comparison functor
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Q-CD //Q-InfP
inf
∃ , A 7→ (A, supA).

The conclusion thus follows.

The monadicity of the forgetful functor Q-CD //Set ↓ Q0 does not follow from that
of the forgetful functors Q-Inf //Q-Cat and Q-CD //Q-Inf , since the composite of
monadic functors need not be monadic, see [Bor1994], page 214.

4. Q-powersets as algebras

It is well-known (e.g. [Joh1982, MM1992]) that the contravariant powerset functor P :
Setop // Set is monadic with a left adjoint given by Pop : Set // Setop; and that the
algebras corresponding to the monad generated by the adjunction Pop a P are powersets
(or equivalently, complete atomic Boolean algebras). In this section, we establish a Q-
version of this conclusion. That is, if we denote by |P†| a |P| the adjunction obtained by
composing the following

Set ↓ Q0 Q-Cat
I
// Q-Cat Q-Catop

P†
// Q-Catop (Set ↓ Q0)

op.
|-|op

//Set ↓ Q0 Q-Catoo |-|
Q-Cat Q-Catopoo P

Q-Catop (Set ↓ Q0)
op,

oo Iop

then the functor |P| : (Set ↓ Q0)
op // Set ↓ Q0 is monadic and the corresponding

Eilenberg-Moore algebras are exactly the Q-powersets of Q-typed sets.
The monadicity of the powerset functor P : Setop //Set is a special case of a general

result in topos theory [MM1992] that states that for each topos E, the opposite category
Eop is monadic over E. In particular, for each set X, (Set ↓ X)op is monadic over Set ↓ X
with the (internal) powerset functor being a monadic one. We’d like to remark that the
conclusion presented here shows that, for each non-empty set X, there exist many monadic
functors from (Set ↓ X)op to Set ↓ X.

Before proceeding, we spell out some facts of the adjunction |P†| a |P|.
First, the functor |P| sends each Q-typed set A to the underlying Q-typed set |PA|

of PA, where A is regarded as a discrete Q-category. The Q-typed set |PA| is called the
Q-powerset of A.

Second, for each type-preserving map F : A // B between Q-typed sets, |P|F is the
underlying type-preserving map of PF : PB // PA. Similarly, |P†|F is the underlying
type-preserving map of P†F : P†B // P†A. So, for a type-preserving map F between
Q-typed sets, we simply write PF (P†F , resp.) for |P|F (|P†|F , resp.) if no confusion
would arise.

Third, the unit and counit of the adjunction |P†| a |P| are respectively given by

εA = Y|P†A| ◦ Y†
A : A // |P†A| // |P|P†A||

and
γA = Y†

|PA| ◦ YA : A // |PA| // |P†|PA||
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for any Q-typed set A.
The following lemma is a counterpart of the Beck-Chevalley condition in [MM1992],

Theorem 2, page 206.

4.1. Lemma. Let

A CF //A

B

H

��

C

D

K

��
B D

G
//

be a pullback square in Set ↓ Q0. Then the square of Q-distributors between discrete
Q-categories

A C
F\ //◦

B

A

H\

OO

◦

D

C

K\

OO

◦

B D
G\

//◦

commutes; or equivalently, the square of Q-functors

PC PAPF //PC

PD

∃K

��

PA

PB

∃H

��
PD PB

PG
//

commutes.

Proof. By hypothesis, we can assume that the underlying set of A is

{(y, z) ∈ B × C | Gy = Kz},

the type function is given by t[(y, z)] = ty = tz for all (y, z) ∈ A, and that both H and F
are projections. For all b ∈ B and c ∈ C,

(F\ ◦H\)(b, c) =
∨

(y,z)∈A

idC(z, c) ◦ idB(b, y) =

{
1tb, Gb = Kc;
⊥tb,tc, otherwise.

It follows that

K\ ◦G\(b, c) =
∨
d∈D

idD(d,Kc) ◦ idD(Gb, d) = idD(Gb,Kc) = F\ ◦H\(b, c).
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That is, the second square commutes.
It remains to check that the second square commutes if and only if so does the third

one. Since ∃H ◦ PF (φ) = φ ◦ F\ ◦H\ and PG ◦ ∃K(φ) = φ ◦K\ ◦G\ for all φ ∈ PC, the
commutativity of the third square follows trivially from that of the second one. Conversely,
if the third square commutes, then for all c ∈ C,

F\ ◦H\(−, c) = idC(−, c) ◦ F\ ◦H\ = ∃H ◦ PF (idC(−, c))

and
K\ ◦G\(−, c) = idC(−, c) ◦K\ ◦G\ = PG ◦ ∃K(idC(−, c)),

hence, the second one commutes.

4.2. Theorem. The functor |P| : (Set ↓ Q0)
op // Set ↓ Q0 is monadic.

Proof. Since Set ↓ Q0 is a complete category, we apply Corollary 3 on page 180 in
[MM1992] to prove the conclusion. That is, we show that |P| : (Set ↓ Q0)

op //Set ↓ Q0

reflects isomorphisms and preserves coequalizers of reflexive pairs.
Since |P| : (Set ↓ Q0)

op // Set ↓ Q0 is faithful, it reflects both monomorphisms and
epimorphisms. Since the slice category Set ↓ Q0 is a topos, an arrow in Set ↓ Q0 is an
isomorphism if and only if it is both a monomorphism and an epimorphism. Consequently,
|P| : (Set ↓ Q0)

op // Set ↓ Q0 reflects isomorphisms.
It remains to check that |P| : (Set ↓ Q0)

op // Set ↓ Q0 preserves coequalizers of
reflexive pairs. Recall that a pair of arrows r, s : X //Y in a category is reflexive if there
exists an arrow i : Y //X such that r ◦ i = 1Y = s◦ i. So, a reflexive pair in (Set ↓ Q0)

op

is a pair of arrows F,G : A // B in Set ↓ Q0 together with an arrow K : B // A such
that K ◦ F = K ◦ G = 1A. We must show that if H : C // A is an equalizer of F and
G in Set ↓ Q0 then |P|H = PH : |PC| // |PA| is a coequalizer of PF and PG. That
is, for each L : |PA| // D in Set ↓ Q0 with L ◦ PF = L ◦ PG, there exists a unique
L̄ : |PC| //D such that L̄ ◦ PH = L.

Uniqueness. It is obvious that, as an equalizer, H : C // A is a monomorphism in
Set ↓ Q0. Hence H is a fully faithful Q-functor between discrete Q-categories C and A.
Thus, L̄ = L̄ ◦ PH ◦ ∃H = L ◦ ∃H by Proposition 2.7(1).

Existence. It suffices to verify that L◦∃H ◦PH = L. First, we check that the square

C AH //C

A

H

��

A

B

F

��
A B

G
//

is a pullback in Set ↓ Q0. Given a pair of arrows F ′, G′ : D // A with F ◦ F ′ = G ◦G′,
since K ◦ F = K ◦G = 1A, we have that

F ′ = K ◦ F ◦ F ′ = K ◦G ◦G′ = G′.
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Because H : C //A is an equalizer of F and G, there is a unique U : D //A such that
F ′ = H ◦U = G′. This proves that the square is a pullback. Then it follows from Lemma
4.1 that PG ◦ ∃F = ∃H ◦ PH. Finally, since K ◦ F = 1A, it follows that F : A // B is a
fully faithful Q-functor if we treat A and B as discrete Q-categories. Thus, PF ◦∃F = 1PA
by Proposition 2.7(1). Therefore,

L = L ◦ PF ◦ ∃F = L ◦ PG ◦ ∃F = L ◦ ∃H ◦ PH.

The proof is thus completed.

4.3. Remark. In general, the monadic functor |P| : (Set ↓ Q0)
op //Set ↓ Q0 is different

from the “internal” powerset functor for the topos Set ↓ Q0. It is easily verified that |P|
coincides with the internal powerset functor if Q is given by

Q(X, Y ) =

{
2 = {0, 1}, if X = Y ;
1 = {0}, otherwise.

Furthermore, if there exist different objects X, Y in Q with Q(X, Y ) containing at
least two elements, then the functor |P| cannot be isomorphic to the internal powerset
functor [−, B] : (Set ↓ Q0)

op // Set ↓ Q0 for any B in Set ↓ Q0. To see this, we first
note that for each A in Set ↓ Q0 and Z in Q0, an element in [A,B] with type Z is exactly
a function AZ // BZ , where AZ is the set of elements in A with type Z, and likewise
for BZ . Now, let C be a Q-typed set consisting of only one element with type X. Then
there is exactly one element in [C,B] that is of type Y (namely, the unique map from
the empty set to BY ), but there are at least two elements in |P|C that are of type Y .
Therefore, [−, B] and |P| cannot be isomorphic.

In the following we describe the Eilenberg-Moore algebras of the monad generated by
the adjunction |P†| a |P|. The corresponding monad is given by

|B| = {|B| : Set ↓ Q0
// Set ↓ Q0, ε : 1⇒ |B|, δ : |B|2 ⇒ |B|}

where

• |B|F = |P|(|P†|F ) : |P|P†A|| // |P|P†B|| for any type-preserving map F : A //B,

• εA = EP†A ◦ Y†
A : A // |P†A| // |P|P†A|| for any Q-typed set A,

• δA = Pγ|P†A| : |B|2A // |B|A for any Q-typed set A.

For each Q-typed set B, (|PB|,PγB) is a |B|-algebra. The following theorem says
that all |B|-algebras are of this form.

4.4. Theorem. Every |B|-algebra is of the form (|PB|,PγB) for some Q-typed set B.
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Proof. Suppose that (A,F ) is a |B|-algebra. That is, A is a Q-typed set, F : |B|A //A
is a type-preserving map such that F ◦ εA = 1A and F ◦ δA = F ◦ |B|F . We show that
there is some Q-typed set B such that (A,F ) is isomorphic to (|PB|,PγB).

Consider the pullback

B |P†A|i //B

|P†A|

i′

��

|P†A|

|P†|BA||

P†F

��
|P†A| |P†|BA||γ|P†A|

//

in Set ↓ Q0. We claim that B satisfies the requirement. The proof is divided into three
steps.

Step 1. i = i′. This follows easily from the triangular identity P†εA ◦ γ|P†A| = 1|P†A|
and the equality P†εA ◦ P†F = P†(F ◦ εA) = 1|P†A|. Consequently, i is an equalizer of
P†F and γ|P†A|.

Step 2. KA = Pi ◦ εA : (A,F ) // (|PB|,PγB) is a homomorphism between |B|-
algebras, i.e., KA ◦ F = PγB ◦ |B|KA. To see this, we calculate:

KA ◦ F = Pi ◦ εA ◦ F
= Pi ◦ |B|F ◦ ε|B|A (naturailty of ε)

= P(P†F ◦ i) ◦ ε|B|A (P†F : |P†A| // |P†(|B|A)|)
= P(γ|P†A| ◦ i) ◦ ε|B|A (i equalizes P†F and γ|P†A|)

= Pi ◦ Pγ|P†A| ◦ ε|B|A
= Pi ◦ δA ◦ ε|B|A
= Pi (δA ◦ ε|B|A = 1|B|A)

= Pi ◦ |B|F ◦ |B|εA (F ◦ εA = 1A)

= P(γ|P†A| ◦ i) ◦ |B|εA (i equalizes P†F and γ|P†A|)

= P(|P†|(Pi) ◦ γB) ◦ |B|εA (naturailty of γ)

= PγB ◦ |B|(Pi) ◦ |B|εA
= PγB ◦ |B|KA.

Step 3. KA : (A,F ) // (|PB|,PγB) is an isomorphism between |B|-algebras. It
suffices to check that KA : A // |PB| is an isomorphism in Set ↓ Q0.

Let LA = F ◦ ∃i. On the one hand, it follows from the calculations in Step 2 that

KA ◦ LA = Pi ◦ εA ◦ F ◦ ∃i = Pi ◦ ∃i = 1|PB|,

where the last equality holds due to Proposition 2.7(1).
On the other hand, by virtue of Lemma 4.1 and the definition of δA one has that

∃i ◦ Pi = Pγ|P†A| ◦ ∃P†F = δA ◦ ∃P†F .
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Since P†F : |P†A| // |P†(|B|A)| is fully faithful (P†εA ◦ P†F = 1|P†A|), it holds that

|B|F ◦ ∃P†F = P(P†F ) ◦ ∃P†F = 1|B|A

by Proposition 2.7(1). Consequently,

LA ◦KA = F ◦ ∃i ◦ Pi ◦ εA
= F ◦ δA ◦ ∃P†F ◦ εA
= F ◦ |B|F ◦ ∃P†F ◦ εA ((A,F ) is a |B|-algebra)

= F ◦ εA (|B|F ◦ ∃P†F = 1|B|A)

= 1A.

Therefore, KA : A // |PB| is an isomorphism between Q-typed sets.

4.5. Remark. From the point of view of fuzzy sets [Zad1965], a Q-typed set is nothing
but a “fuzzy set valued in Q0”. Viewed in this perspective, the functor

|P| : (Set ↓ Q0)
op // Set ↓ Q0

is a fuzzy counterpart of the contravariant powerset functor P : Setop // Set; the above
theorem can be thought of as a fuzzy version of the Stone duality between sets and
complete atomic Boolean algebras. Thus, it is not surprising that the functor |P| has
applications in the theory of fuzzy sets. Interested readers are referred to [Hoh2014,
SZ2013b, Stu2014] for more discussions on related topics.

Finally, consider the adjunction |-|op◦P† a P◦Iop obtained by composing the following
adjunctions

Q-Cat Q-Catop

P†
// Q-Catop (Set ↓ Q0)

op.
|-|op

//Q-Cat Q-Catopoo P
Q-Catop (Set ↓ Q0)

op.oo Iop

Let τ be the counit of the adjunction |-|op ◦ P† a P ◦ Iop and let B be the monad
on Q-Cat corresponding to this adjunction. Then the following theorem says that the
Eilenberg-Moore algebras of B are also the Q-powersets of Q-typed sets.

4.6. Theorem. If (A, F ) is a B-algebra, then there exists a Q-typed set B such that
(A, F ) is isomorphic to (PB,PτB).

Proof. Consider the pullback

B |P†A|i //B

|P†A|

i′

��

|P†A|

|P†(BA)|

P†F

��
|P†A| |P†(BA)|τ|P†A|

//

in Set ↓ Q0, where B = P ◦ Iop ◦ |-|op ◦ P†. Then B satisfies the requirement. The proof
is similar to that of Theorem 4.4 and is thus omitted here.
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