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CYCLIC HOMOLOGY ARISING FROM ADJUNCTIONS

NIELS KOWALZIG, ULRICH KRAHMER, AND PAUL SLEVIN

ABSTRACT. Given a monad and a comonad, one obtains a distributive law between
them from lifts of one through an adjunction for the other. In particular, this yields for
any bialgebroid the Yetter-Drinfel’d distributive law between the comonad given by a
module coalgebra and the monad given by a comodule algebra. It is this self-dual setting
that reproduces the cyclic homology of associative and of Hopf algebras in the monadic
framework of Bohm and Stefan. In fact, their approach generates two duplicial objects
and morphisms between them which are mutual inverses if and only if the duplicial
objects are cyclic. A 2-categorical perspective on the process of twisting coefficients is
provided and the role of the two notions of bimonad studied in the literature is clarified.

1. Introduction

1.1. BACKGROUND AND AIM. The Dold-Kan correspondence generalises chain complexes
in abelian categories to general simplicial objects, and thus homological algebra to homo-
topical algebra. The classical homology theories defined by an augmented algebra (such
as group, Lie algebra, Hochschild, de Rham and Poisson homology) become expressed as
the homology of suitable comonads T, defined via simplicial objects Cp(N, M) obtained
from the bar construction (see, e.g., [Wei94]).

Connes’ cyclic homology created a new paradigm of homology theories defined in terms
of mixed complexes [Kas87, [DK85]. The homotopical counterparts are cyclic [Con83| or
more generally duplicial objects [DK85, [DK87], and Béhm and Stefan [BS08] showed
how Cr(N, M) becomes duplicial in the presence of a second comonad S compatible in a
suitable sense with N, M and T.

The aim of the present article is to study how the cyclic homology of associative
algebras and of Hopf algebras in the original sense of Connes and Moscovici [CMO98] fits
into this monadic formalism, extending the construction from [KK11], and to clarify the
role of different notions of bimonad in this generalisation.

1.2. DISTRIBUTIVE LAWS ARISING FROM ADJUNCTIONS. Inspired by [MW14] [AC12] we
begin by describing the relation of distributive laws between (co)monads and of lifts of
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one of them through an adjunction for the other. In particular, we have:

1.3. THEOREM. Let F 4 U be an adjunction, B := (B, u,n), B=UF, and T = (T, A, ¢),
T = FU, be the associated (co)monads, and S = (S, A5 &5%) and C = (C, A% ) be

comonads with a laz isomorphism 2: CU — US,

B—5 .B

i

A=A

If A: FC — SF corresponds under the adjunction to QF o Cn: C — USF, where n is the
unit of B, then the following are (mized) distributive laws:

§: BC = UFC YA USF £ CUF = CB,
v: TS = FUS P20 peU A% SFU = ST.

See Theorem on p. for a more detailed statement. For Eilenberg-Moore
adjunctions (B = AB), such lifts S of a given comonad C correspond bijectively to mixed
distributive laws between B and C (a dual statement holds for coKleisli adjunctions A =
Br), cf. Section [2.13]

Sections contain various technical results that we would like to add to the theory
developed in [BS08], while the final two Sections [f| and [] discuss examples. In particular,
we further develop the 2-categorical viewpoint of [BS12], interpreting the passage from
mixed distributive laws between B, C to distributive laws between T, S in the case of an
Eilenberg-Moore adjunction as the application of a 2-functor (Proposition . Further-
more, Section describes how different lifts S,V of a given functor C are related to
each other.

1.4. COEFFICIENTS. In Section [3| we discuss left and right x-coalgebras N respectively
M that serve as coefficients of cyclic homology.

The structure of right y-coalgebras is easily described in terms of C-coalgebra struc-
tures on UM (Proposition[3.5). In the example from [KK11] associated to a Hopf algebroid
H, these are simply right H-modules and left H-comodules, see Section below.

A special case is when the C-coalgebra structure on UM arises from an S-coalgebra
structure on M. In the Hopf algebroid case, these are given by Hopf modules. We show
that in general, such coefficients are homologically trivial (Proposition @ and can be
also interpreted as 1-cells from the trivial distributive law (Propositions |3__]L—O| and .
One reason for discussing them is to point out that general y-coalgebras can not be
reinterpreted as 1-cells.

Similarly, T-opcoalgebras yield homologically trivial left y-coalgebras. In the Hopf
algebroid example, we present a construction of homologically non-trivial examples from
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Yetter-Drinfel’d modules, where the Yetter-Drinfel’d condition is necessary for the well-
definedness of the left y-coalgebra structure; it does not arise as a condition for the
resulting duplicial functor to be cyclic.

1.5. DUPLICIAL OBJECTS. Section {4 recalls the construction of duplicial objects. We em-
phasize the self-duality of the situation by defining in fact two duplicial objects C(N, M)
and C¢”(N, M), arising from bar resolutions using T respectively S. There is a canonical
pair of morphisms of duplicial objects between these which are mutual inverses if and
only if the two objects are cyclic (Proposition .

Furthermore, we describe in Section the process of twisting a pair of coefficients
M, N by what we called a factorisation in [KS14]. This is motivated by the example of
the twisted cyclic homology of an associative algebra [KMT03] and constitutes our main
application of the 2-categorical language.

1.6. HOPF MONADS. One of our motivations in this project is to understand how various
notions of bimonads studied in the literature lead to examples of the above theory that
generalise known ones arising from bialgebras and bialgebroids.

All give rise to distributive laws, but it seems to us that opmodule adjunctions over
opmonoidal adjunctions as studied recently by Aguiar and Chase [ACI2] are the under-
pinning of the cyclic homology theories from noncommutative geometry: such adjunctions
are associated to opmonoidal adjunctions

E L —H,
E

so here H and £ are monoidal categories, E is a strong monoidal functor and H is an
opmonoidal functor, see Section [5.1} In the key example, H is the category H-Mod of
modules over a bialgebroid H and &£ is the category of bimodules over the base algebra
A of H. In the special case of the cyclic homology of an associative algebra A, we have
H =& and H = E = id, so this adjunction is irrelevant. Now the actual opmodule
adjunctions defining cyclic homology are formed by an H-module category B and an
E-module category A. In the example, one can pick any H-module coalgebra C' and
any H-comodule algebra B, take B to be the category B-Mod of B-modules, A be the
category A-Mod of A-modules, and the pair of comonads S,C is given by C' ®4 —. To
obtain the cyclic homology of an associative algebra one takes B to be the category of
A-bimodules (or rather right A°-modules). Another very natural example is given by a
quantum homogeneous space [MS99], where A = k is commutative, H is a Hopf algebra,
B is a left coideal subalgebra and C' := A/AB* where B~ is the kernel of the counit of H
restricted to B. So here the distributive law arises from the fact that B admits a C-Galois
extension to a Hopf algebra H; following, e.g., [MMO02] we call (B,C) a Doi-Koppinen
datum.

Bimonads in the sense of Mesablishvili and Wisbauer also provide examples of the
theory considered. There is no monoidal structure required on the categories involved,
but instead we have B = C, see Section [0} At the end of the paper we give an example of
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such a bimonad which is not related to bialgebroids and noncommutative geometry, but
indicates potential applications of cyclic homology in computer science.

2. Distributive laws

2.1. DISTRIBUTIVE LAWS. We assume the reader is familiar with 2-categorical construc-
tions, see, e.g., [KS72, [Lei04] for more background. Given a 2-category C, we denote
by C,. the 2-category obtained by reversing all 2-cells in C, and by C* we denote the 2-
category obtained by reversing all 1-cells in C. We write Cmd(C) to refer to the 2-category
Mnd(C,). of comonads in C, and End(C) for the 2-category of endo-1-cells in C, the 1-cells
of which are of the same variance as those in Cmd(C), so that there is a forgetful 2-functor
Cmd(C) — End(C). See also [Str72] for more background on (co)monads.

2.2. DEFINITION. Let B = (B, uB,n®) and A = (A, ™, n*) be monads on categories C
respectively D, and let X2: C — D be a functor. A natural transformation o: AYX — ¥B
is called a lax morphism of monads if (X,0) is a 1-cell in Mnd(Cat), that is, if the two
diagrams

AAY A% AYB B, yBB 52 Ay
”Azl lZ“B zk LU
AT B B

g

commute. We denote this by o: AX — XB.

Analogously, one defines colax morphisms o: XA — BY, where X: D — C and A, B are
as before, and (co)lax morphism of comonads. Note that a lax morphism of (co)monads
can be equivalently described as a (co)monad in End(Cat).

2.3. REMARK. Note that while a lax morphism of monads is a 1-cell in Mnd(Cat), a lax
morphism of comonads is a 1-cell in Cmd(Cat,),. Dually, a colax morphism of monads is
a 1l-cell in Mnd(Cat,), whilst a colax morphism of comonads is a 1-cell in Cmd(Cat).

2.4. DEFINITION. A distributive law y: AB — BA between monads A, B is a natural
transformation x: AB — BA which is both a lax and a colax morphism of monads.

Analogously, one defines distributive laws between comonads and mized distributive
laws [Bur73] between monads and comonads.

2.5. THE 2-CATEGORIES Dist AND Mix. Since this will simplify the presentation of some
results, we turn comonad and mixed distributive laws into the 0-cells of 2-categories Dist
respectively Mix. This closely follows Street [Str72], see also [KS14]:

2.6. DEFINITION. We denote by Dist the 2-category Cmd(Cmd(Cat)*)* of comonads (with
colax morphisms as 1-cells) in the 2-category of comonads (with lax morphisms as 1-cells).
Thus explicitly,



CYCLIC HOMOLOGY ARISING FROM ADJUNCTIONS 1071

1. 0-cells are quadruples (B, x,T,S), where x: TS — ST is a comonad distributive law
on a category B,

2. 1-cells (B, x,T,S) —» (D, ,G,C) are triples (X, 0,7), where 3: B — D is a functor,
o: GX — XT is a lax morphism of comonads, and v: XS — CX s a colax morphism
of comonads satisfying the Yang-Baxter equation, i.e.,

STS —-¥ST 4
ot
GCZ TCGE Co

oS
GXS
o

commutes, and

3. 2-cells (¥,0,7) = (X',0',7) are natural transformations a: ¥ — ¥’ for which the

diagrams
Gy S gy S 25, 5
O’l lo" 'Yl j’Y’
ET T EIT CE T CEI
commute.

In the sequel, we will denote 1-cells diagrammatically as:

Similarly, we define the 2-category Mix := Mnd(Cmd(Cat)) of mixed distributive laws.

2.7. DISTRIBUTIVE LAWS ARISING FROM ADJUNCTIONS. The topic of this paper is dis-
tributive laws that are compatible in a specific way with an adjunction for one of the
involved comonads: let B = (B, 1, 7) be a monad on a category .A. Suppose

AL =B

U

is an adjunction for B, that is, B = UF, and let T := (T,A,¢) with T := FU be the
induced comonad on B.
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2.8. DEFINITION. IfS: B — B and C: A — A are endofunctors for which the diagram

B-—5-B

of o

commutes up to a natural isomorphism 2: CU — US, then we call C an extension of S
and S a lift of C through the adjunction.

In general, any natural transformation €2: CU — US uniquely determines a mate
A: FC — SF that corresponds to

Cn

C CUF %, USF

under the adjunction [Lei04]. The following theorem, which closely follows [Lei04, Lem-
mata 6.1.1 and 6.1.4], constructs a canonical pair of distributive laws from A:

2.9. THEOREM. Suppose that S,C, and ) are as in Definition |2.8. Then the natural
transformations

9: BC = UFC -YA~ USF 2L CUF = CB

and
y: TS = FUS 2 peU A% SFU = ST

are lax endomorphisms of the monad B respectively the comonad T. If C and S are parts
of comonads C = (C, A% &) respectively S = (S, A5, &%), and if Q is a lax morphism of
comonads, then 0 is a mized distributive law and x is a comonad distributive law.

PROOF. Both (U,Q 1) and (F, A) are 1-cells in the 2-category End(Cat) of endofunctors
in Cat. The unit and the counit of the adjunction F - U are 2-cells by construction; hence
(F,A) 4 (U,Q7!) is an adjunction defining a monad and a comonad whose underlying
1-cells are (UF, ) and (FU, x) respectively (which means that 6 and x are lax endomor-
phisms of B respectively T). If C and S are parts of comonads C respectively S and €2 is
a lax morphism of comonads, then the same argument applies with End(Cat) replaced by
Cmd(Cat), but in this case 6 and x are distributive laws. "

2.10. REMARK. Note that the lax morphisms 6, x are unique such that the following
diagrams commute respectively:

UFCU oU CUFU Us 2 cu 2" curu

UFQl lCUa ﬁUSL LQFU

UFUS US——~CU UFUS USFU
UeS 0-1 Ux

2.11. DEFINITION. A comonad distributive law x as in Theorem[2.9 s said to arise from
the adjunction F — U.
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2.12. EXAMPLE. A trivial example which will nevertheless play a role below is the case
where C = B, S =T, and €2 = id. In this case, y and 6 are given by

TT = FUFU “"% FU "% FUFU = TT,
UFn

BB = UFUF £ UF —L UFUF = BB.

2.13. THE EILENBERG-MOORE AND THE COKLEISLI CASES. Functors do not necessarily
lift respectively extend through an adjunction (for example, the functor on Set which
assigns the empty set to each set does not lift to k-Mod), and if they do, they may not
do so uniquely. Theorem says only that once a lift respectively extension is chosen,
there is a unique compatible pair of lax endomorphisms 6 and y.

One extremal situation in which specifying a lax endomorphism 6: BC — CB uniquely
determines a lift S of C is when B is the Eilenberg-Moore category A. In this case,
we write B := T, B := T and 6 := y. The unique lift S is given on objects (X, )
by S(X,a) = (CX,Ca o 60X). Using Theorem (with = id), one recovers 6, see,
e.g., [App65}, Joh75]. In the sequel, we will denote S by CY. If C is part of a comonad C
and 2 is a lax morphism, then we denote the corresponding comonad lift S by C?.

Dually, one can take A to be the coKleisli category Br in which case a lax endomor-
phism y yields an extension C of a functor S. This means that every comonad distributive
law and every mixed distributive law arises from an adjunction.

In the remainder of this section, we discuss the functoriality of the above constructions.
This hinges on the following remark:

2.14. LEMMA. The 2-category Cmd(Cat) admits Eilenberg-Moore constructions for mon-
ads.

In other words, the inclusion 2-functor Cmd(Cat) — Mnd(Cmd(Cat)) has a right
2-adjoint, which is defined by

C A.B (A]B’(C‘S') (270.’ ,.y) (Eo‘j;;/)
o s I
A DY R
D 11; A (D ,ID) ) (Z/’ O'I, ,Y/) (Z/ ’ 7/)

Here, Y7 is the lifting of the functor ¥ via the lax morphism of monads ¢. The natural
transformation v: XC — DX lifts to a natural transformation 7: ¥°C% — D¥%7 if and
only if the Yang-Baxter equation is satisfied, and 7 is a colax morphism of comonads if and
only if  is. The natural transformation « lifts to a natural transformation &: 27 — /¢
if and only if a: (X,0) = (¥/,0') is a 2-cell in Mnd(Cat), and & becomes a 2-cell in
Cmd(Cat) if and only if a: (3,7) = (X',7/) is a 2-cell in Cmd(Cat).

Having fixed this notation, observe finally that a natural transformation o: AYX — XB
lifts to a natural transformation &: AX? — Y°B if and only if o is compatible with the
multiplication of the monads A and B. In this situation, we have:
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2.15. PROPOSITION. The assignment

O . S B
Cact VLR (2, 0,7) (£,5,7)
(Bon) l(za,&m “a — .
A I~y o~
D 1; A DY Dl]} A (2170177/) (EIU, I7 /)

1s a 2-functor v: Mix — Dist.

PROOF. For any 2-category C which admits Eilenberg-Moore constructions for monads,
there is a 2-functor Alg,: Mnd(C) — Cmd(C*)* (see [Str72, p. 160]). By choosing
C = Cmd(Cat) in this construction, we get the above 2-functor. "

Analogously, we obtain a 2-functor j: Dist — Mix by taking extensions to coKleisli
categories. It is those distributive laws in the image of the 2-functor 7 that are the main
object of study in this paper.

2.16. REMARK. Let F 4 U be an adjunction and let S be the lift of a comonad C through
the adjunction via Q as in Section 2.7 Consider the comparison functor UYs: B — A%,
The colax morphism Q~': US — CU lifts to a colax morphism Q~': UVsS — C/UYe.
This gives rise to a 1-cell (UY%, id,Q_l): X — 6. Thus the image under ¢ of a general
1-cell § — 9 of mixed distributive laws can be composed with the 1-cell given by the
comparison functor to give a new 1-cell y — ).

2.17. GENERALISING THE GALOIS MAP. Theorem yields comonad distributive laws
from lifts through an adjunction, and different lifts produce different distributive laws.
Here we describe how these are related in terms of suitable generalisations of the Galois
map from the theory of Hopf algebras (see Section below for the example motivating
the terminology).

2.18. DEFINITION. If S,V: B — B are lifts of C: A — A through ¥ -4 U with isomor-
phisms Q: CU — US and ®: CU — UV, we define a natural isomorphism

V. B(F—,8—) - B(F—,V-)
of functors A°® x B — Set on components by the composition
B(FX,SY)— A(X,USY) — A(X,UVY) — B(FX,VY),

where the middle map s induced by Py o Q{,l: USY — UVY and the outer ones are
induced by the adjunction F — U.

The following properties are easy consequences of the definition:
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2.19. PROPOSITION. Let S and V be two lifts of an endofunctor C through an adjunction
F 4 U. Then:

1. The inverse of I'>V is given by T'V:S.

FS’V

2. The natural transformation maps a morphism f: FX — SY to

° —1
Fx X purx FUL pusy S0 ) puvy Y% vy

3. If x® and xV denote the lax morphisms determined by the two lifts, then
I3V (%) = x V.

So, in the applications of Theorem [2.9] all distributive laws obtained from different
lifts S,V of a given comonad through an adjunction are obtained from each other by
application of 'V,

In particular, we can consider different lifts of B itself: recall the trivial Example
of Theorem [2.9, where C = B and S = T, and let V be any other lift of B through
the adjunction. By taking X to be UY for an object Y of B, one obtains a natural
transformation I'""V: B(T—, T—) — B(T—,V—) that we can evaluate on id: TY — TY,
which produces a natural transformation TV (id): T — V.

Adapting [MW10), Definition 1.3], we define:

2.20. DEFINITION. We say that F s V-Galois if

I'TV(id): T = FU "~ FUFU = FUT -2 UV V> v

s an isomorphism.

The following proposition provides the connection to Hopf algebra theory:

2.21. PROPOSITION. If F is V-Galois and 0: BB — BB s the lax morphism arising from
the lift V of B, then the natural transformation

Bu

3: BB 2" BBB -2~ BBB BB

18 an isomorphism.
PROOF. If F is V-Galois, then UT'TV(id)F is an isomorphism

UTF = UFUF — 2" _ UFUFUF = UFUTF Y2 yruvE YYE yvF.

Let now x: TV — VT be the lax morphism corresponding to # as in Theorem [2.9
Inserting eV = (Ve) o x and Uy o UF® = ®FU 0 fU and B = UF, the isomorphism
becomes

UTF = BB 22 BBB -2+~ BBB = BUFUF 2*U£ yyFUF WYL yyr

Finally, we have by construction UesF = p, and using the naturality of ® this gives
UVeF o ®FUF = ®F o BUeF. Composing the above isomorphism with ®~'F gives 3. m
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It is this associated map S that is used to distinguish Hopf algebras amongst bialgebras,
see Section [6] below.

3. Coefficients

3.1. COALGEBRAS OVER COMONADS. Let T = (T,AT,eT) and S = (S,AS,£5) be
comonads on a category B, and let x: TS — ST be a distributive law. First, we re-
call:

3.2. DEFINITION. A T-coalgebra is a triple (M, Y, V), where M: Y — B is a functor and
V:M — TM is a natural transformation such that the diagrams

M—Y = TM M —Y~ TM
VL LATM \ laTM
T™™ — TTM M

TV

commute.
Dually, one defines T-opcoalgebras (N, Z, V) where V: N — NT, as well as algebras
and opalgebras involving monads.

3.3. COALGEBRAS OVER DISTRIBUTIVE LAWS. We now discuss y-coalgebras, which serve
as coefficients in the homological constructions in the next section.

3.4. DEFINITION. A right x-coalgebra is a triple (M, Y, p), where M: Y — B is a functor
and p: TM — SM is a natural transformation such that the diagrams

Tp

T™ 22 M TSM T™
eT™M
pj lxM / LP
SM SSM STM M= SM
ASM Sp SM

commute. Dually, we define left y-coalgebras (N, Z, \).
The following characterises right y-coalgebras in the setting of Theorem [2.9]

3.5. PROPOSITION. In the situation of Theorem[2.9, let M: Y — B be a functor.

1. Right x-coalgebra structures p on M correspond to C-coalgebra structures ¥V on the
functor UM: Y — A.

2. Let S and V be two lifts of the functor C through the adjunction, and let x° and
xV denote the comonad distributive laws determined by the lifts S and V respec-
tively. Then TSV maps right x5-coalgebra structures p> on M bijectively to right

xV-coalgebra structures p¥ on M.

PRrROOF. For part (1), right y-coalgebra structures p: FUM — SM are mapped under the
adjunction to V: UM — USM =~ CUM. Part (2) follows immediately since I'>V is the
composition of the adjunction isomorphisms and ® o Q7. [
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3.6. REMARK. The referee of this paper helpfully pointed out that given an adjunction
V < G for the comonad S and an extension Q of the comonad T through the adjunction,
left x-coalgebra structures on N: B — Z correspond in complete analogy to Q-opcoalgebra
structures on NV.

3.7. TWISTING BY 1-CELLS. Here we show how factorisations of distributive laws as
considered in [KS14] can be used to obtain new y-coalgebras from old ones. To this end,
fix a 1-cell in the 2-category Dist:

¢l

T

3.8. LEMMA. Let (M, Y, p) be a right x-coalgebra. Then (XM,Y,yMoXpooM) is a right
T-coalgebra.

PROOF. This is proved for the case that x = 7 in [KS14], but the same proof applies to
this slightly more general situation. n

Dually, left 7-coalgebras (N, Z, \) define left y-coalgebras (NX, Z,No o AX o N«v). The
following diagram illustrates the situation:

Z>%n €l

The dotted arrows represent the induced x-coalgebras from Lemma |3.8
This will be applied in Section below in the context of duplicial functors.

3.9. x-COALGEBRAS FROM COALGEBRAS OVER COMONADS. In the remainder of this
section, we discuss a class of coefficients that lead to contractible simplicial objects, see
Proposition below. In the Hopf algebroid setting, these are the Hopf (or entwined)
modules as studied in [ACI12, [BMO9§].

Note first that T-coalgebras can be equivalently viewed as 1-cells from respectively to
the trivial distributive law:

3.10. PROPOSITION. Given an S-coalgebra (M,Y,V®) and a T-opcoalgebra (N, Z,V7T),
there is a pair of 1-cells

. id y S X, T
1 y I B

j(M e™, VS) j(N VT, Ne%)
s__Bm id__,Z_id

and all 1-cells id — x respectively x — id are of this form.

Furthermore, these 1-cells can also be viewed as x-coalgebras:
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3.11. PROPOSITION. Let x: TS — ST be a comonad distributive law. Then:

1. Any S-coalgebra (M, Y, V®) defines a right x-coalgebra (M, Y,eTV5).

2. Any T-opcoalgebra (N, Z,V'T) defines a left x-coalgebra (N, Z,V7TeS).

Note, however, that there is no obvious way to associate a 1-cell in Dist to an arbitrary
right or left y-coalgebra.

3.12. ENTWINED ALGEBRAS. Finally, we describe how y-coalgebras as in Proposition|3.11
are in some sense lifts of entwined (also called mixed) algebras; throughout, #: BC — CB
is a mixed distributive law between a monad B and a comonad C on a category A.

3.13. DEFINITION. Let M: Y — A be a functor with a B-algebra structure 5: BM — M
and a C-coalgebra structure V: M — CM. We say that the quadruple (M, Y, 3,V) is an
entwined algebra with respect to 6 if the diagram

BM—"+~M—Y - CM
Bvl TCB (3.1)
BCM CBM

commautes.

Note that an entwined 6-algebra structure on a functor N: ) — A is equivalent to
an entwined [), f]-algebra structure on the functor 1 — [V, .A] which sends the unique
object in 1 to N. Without loss of generality, we therefore assume ) = 1 and thus consider
entwined algebras as objects in 4. With the obvious notion of morphism (given by
natural transformations compatible with V and ), entwined algebras form a category;
this is evidently isomorphic to the category (A]B)(Ce of C’-coalgebras. Dually we define an
entwined opalgebra structure on a functor N: A — Z for a distributive law CB — BC.

The following proposition explains the relation between entwined algebras and coal-
gebras for distributive laws y arising from an adjunction:

3.14. PROPOSITION. In the situation of Theorem[2.9, let M: Y — B be a functor and let
V:M — SM be a natural transformation.

1. If V is an S-coalgebra structure, then the structure morphisms

BUM = UFUM M UM, UM% UsM 275 UM

turn UM into an entwined algebra with respect to 6.

2. If B= A®, then the converse of (1) holds.
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PrOOF. Throughout this proof, undecorated arrows denote forgetful functors. Let 1
denote the identity monad (id,id,id) on B. The triangle identities of the adjunction
F <4 U imply that Ue: BU — U1 is a lax morphism of monads inducing a lifting

BYE gE

The universal property of 8, cf. Remark [2.10] is equivalent to the fact that 2 is a 2-cell
in Mnd(Cat):
(U,Ug)

(B,1) (A, B)
(S,id)j Q l(Cﬂ)
(87 j”‘) (U,Ué) (A7 IB)
Therefore,  lifts to a natural transformation
B UUE AB
Sj MQ lCe
B AP

UUe

Since Q: CU — US is a lax morphism of comonads, the lifting Q: C°UVe — UV=S is a lax
morphism of comonads, thus inducing a lifting

(UUS)Q_l

B° (AP
| |
B AP

UUE

The object map of the functor in the top row of this diagram is the construction in part
(1). If B = A8 then UY* =id, Q = id and S = C’, so the top functor in the diagram is
just the identity, implying part (2). n

Dually, entwined opalgebra structures on a B-opalgebra (N, Z,w) are related to left
x-coalgebras if the codomain Z of N is a category with coequalisers. First, we define
a functor Ng: A® — Z that takes a B-algebra morphism f: (X, a) — (Y,) to Ng(f)
defined using coequalisers:

wx 4(X,a)

NBX NX Ng (X, )
Na :
NB fl Nfl Na(f)
w v
NBY > NY —— = Np(V, B)

NB q(v,B)
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Thus Ng generalises the functor — ®g N defined by a left module N over a ring B on the
category of right B-modules.

Suppose that @ is invertible, and that N admits the structure of an entwined 67 !-
opalgebra, with coalgebra structure V: N — CN. There are two commutative diagrams:

NBX X NX NBX No NX
val VBXj
NCBX Vx NCBX Vx
Nexll Naxll
NBCX ———>NCX NBOX 5> NCBX <> NCX

Hence, using coequalisers, V extends to a natural transformation V: Ng — NpC?, and in
fact it gives N the structure of a C?-opcoalgebra. Since §~': C’B — BC? is a comonad
distributive law on A%, Proposition gives examples of homologically trivial left -1-
coalgebras of the form (Ng, Z, Ve).

4. Duplicial objects

4.1. THE BAR AND OPBAR RESOLUTIONS. Let T = (T, A, ¢) be a comonad on a category
B, and let M: Y — B be a functor.

4.2. DEFINITION. The bar resolution of M is the simplicial functor B(T,M): Y — B
defined by

B(T, M), = T""'M,  d; = TeT""'M, s; =T/AT" M,

where the face and degeneracy maps above are given in degree n. The opbar resolution
of M, denoted B°P(T,M), is the simplicial functor obtained by taking the opsimplicial
simplicial functor of B(T,M). Explicitly:

B°P(T, M),, = T"*'M, d; = T" "eT'M, s; =T 7ATIM.

Given any functor N: B — Z, we compose it with the above simplicial functors to
obtain new simplicial functors that we denote by

Cp(N,M) := NB(T,M),  C%(N,M) := NB°(T, M).

4.3. DUPLICIAL OBJECTS. Duplicial objects were defined by Dwyer and Kan [DK85| as
a mild generalisation of Connes’ cyclic objects [Con83|:
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4.4. DEFINITION. A duplicial object is a simplicial object (C,d;, s;) together with addi-
tional morphisms t: C,, — C,, satisfying

dt _ {tdil, 1 < 7 < n, {tSjl, 1 <j < n,

s;t =
d,, i=0, ! t%s,, j=0.

A duplicial object is cyclic if T := t"*! = id.
Equivalently, a duplicial object is a simplicial object which has in each degree an extra
degeneracy s_1: C, — Cy41. This corresponds to t via
S_q1:=18,, t=d,i15_1.

This turns a duplicial object also into a cosimplicial object, and hence a duplicial object
C' in an additive category carries a boundary and a coboundary map

Dwyer and Kan called such chain and cochain complexes duchain complexes and showed
that the normalised chain complex functor yields an equivalence between duplicial objects
and duchain complexes in an abelian category, thus extending the classical Dold-Kan
correspondence between simplicial objects and chain complexes.

If f,, € Z[z] is given by 1 — zf,(z) = (1 — z)"™ and B := sf,(bs), then one has

B*=0, bB+Bb=id—T,

and in this way cyclic objects give rise to mixed complexes (C, b, B) in the sense of [Kas87]
that can be used to define cyclic homology.

4.5. THE BOHM-STEFAN CONSTRUCTION. Let (B,x,T,S) be a 0-cell in Dist, and let
(M, Y, p) and (N, Z, \) be right and left y-coalgebras respectively. By abuse of notation,
we let x™ denote both natural transformations T"S — ST" and TS™ — S™T obtained by
repeated application of y (up to horizontal composition of identities), where x° = id. We
furthermore define natural transformations

tr: Cp(N,M),, — Cp(N,M),,, £5: C2(N, M), — CP(N, M),
by the diagrams

NT?SM —XM _ NST»M NTS"M —XM _ Ng»TM
NT”pT l/\T"M )\S"MT lNS”p
NTn—HM """""" iﬁi" ...... - NTn+1M Nsn—HM """""" ts ....... - Nsn—HM

4.6. THEOREM. The simplicial functors Ct(N,M) and C"(N, M) become duplicial func-
tors with duplicial operators given by tT respectively t°.

PROOF. The first operator being duplicial is exactly the case considered in [BS08], and
the second follows from a slight modification of their proof. ]
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4.7. CycLicITY. For each n > 0, we define a morphism R,,: NT""'M — NS"*!M in the
following way. For each 0 < < n, let r;,, denote the morphism

S NS igM X L NG i)

NsiTnJrlfiM
Then set
R, :==rppno0- - 0rgn.
Similarly, we can define a morphism L, : NS" M — NT"*'M whose definition involves
the left y-coalgebra structure A on N.

4.8. PROPOSITION. The above construction defines two morphisms
Cr(N, M) —E= CP(N, M) , CP(N, M) —£= Cr(N, M)

of duplicial functors. Furthermore, L o R = id if and only if Cr(N,M) is cyclic, and
Ro L =id if and only if CP(N, M) is cyclic.

PRrOOF. This is verified by straightforward computation. However, it is convenient to use a
diagrammatic calculus as, e.g., in [BS08], in which natural transformations NVM — NWM
are visualised as string diagrams, where V and W are words in S, T. For example ¢* will
be represented by the diagram

N T T T T M

N T T T T M
Crossing of strings represents the distributive law y and the bosonic propagators represent
the x-coalgebra structures A\: NS — NT respectively p: TM — SM.
For example, the identities Rd; = d;R and Rs; = s;RR follow from the commutative
diagrams in Definition which are represented diagrammatically by

T M T M
H l M
respectively
T M T M
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The relation RtT = t5R for n = 2 becomes

N T T T M N T T T M

N S S S M N S S S M

which reflects the naturality of A, p, and x. Similarly, L is a morphism of duplicial objects,
and one has (Lo R), = (t1)"*! and (Ro L), = (t5)"*+1. .

4.9. HOMOLOGICALLY TRIVIAL Y-COALGEBRAS. As we had announced above, x-coalge-
bras as in Proposition lead to contractible simplicial objects:

4.10. PROPOSITION. Let x: TS — ST be a comonad distributive law on a category B, and
let (M, Y, p) and (N, Z,\) be left and right x-coalgebras respectively. Suppose also that Z
is an abelian category. If either of (N, Z,\), (M, Y, p) arises as in Proposition[3.11], then
the chain complezes associated to both Cr(N, M) and Cg”(N, M) are contractible.

PROOF. Assume there is a T-opcoalgebra structure V: N — NT on N. The morphisms
VT"M: NT"* M — NT"+2M provide a contracting homotopy for the complex associated
to Cr(N, M), and the morphisms

NXn+1M Nsn+1p

NGn+1N YS"IM_ NGt NS +TM NS 2\

provide a contracting homotopy for the complex associated to Cg”(N, M). The other case
is similar. [

4.11. TWISTING BY 1-CELLS. Applying the twisting procedure described in Section [3.7]
a 1-cell
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in the 2-category Dist gives rise to morphisms between duplicial functors of the form
considered above: Theorem [4.6|and Lemma [3.8]yield duplicial structures on the simplicial
functors

Cr(NX, M), CF(NI,M), Cg(N,xM), CZ(N,XM),

and from Proposition [4.§ we obtain morphisms

Cr(NZ, M) 5 CP (NS, M), CP (N, M) 5 Cp(NE, M),
Ce(N, =M) = C2(N, M), CP(N, EM) - Cg (N, £M)

of duplicial objects which determine the cyclicity of each functor.
Additionally, repeated application of o: GX — YT and v: XS — CX yields two
duplicial morphisms

Cg(N, 2M) —= Cr(NS, M), CP (NS, M) —= CP(N, £M).

Note that for arbitrary functors M and N these are simplicial morphisms which become
duplicial morphisms if M and N have coalgebra structures.

5. Hopf monads and Hopf algebroids

5.1. OPMODULE ADJUNCTIONS. One example of Theorem is provided by an op-
monoidal adjunction between monoidal categories:

5.2. DEFINITION. An adjunction

H

(87®5715)$_ L _,(H7®'H71'H)

E

between monoidal categories is opmonoidal if both H and E are opmonoidal functors and
the unit and the counit of the adjunction are opmonoidal natural transformations.

Thus by definition, there are natural transformations
= HX®:Y) > HX®yHY, V:EK®yL) > EK®:EL

and morphisms Zy: H(1g) — 13 and ¥y: E(1y4) — 1¢. It follows that ¥ and ¥y are in fact
isomorphisms. Hence opmonoidal adjunctions are a special case of doctrinal adjunctions
[Kel72]; some authors call opmonoidal adjunctions comonoidal adjunctions or bimonads.
We refer, e.g., to [AC12, BLV11 McC02, MW14| [Moe02] for more information.

It follows that

H(lg) @ —  EH(le) ®¢ —

form a compatible pair of comonads as in Theorem whose comonad structures are
induced by the natural coalgebra (comonoid) structures on 1¢.

However, the examples we are more interested in are given by opmodule adjunctions
(introduced under the name comodule adjunctions in [ACI2] Definition 4.1.1]). First, we
recall:
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5.3. DEFINITION. Let H: (£,®¢,1¢) — (H,®«, 1%) be an opmonoidal functor and let
(A, ®4) and (B,®p) be (left) E-module respectively H-module categories. An H-opmodule
is a functor F: A — B together with a natural transformation ©: F(Y®4Z) > HY QsFZ
such that the diagrams

F(XQuY Qu2) ——=H(X®:Y)RsFZ

°| ja&gid

HX @5 F(Y @4 Z) — g HX @5 HY @5 FZ
and
F(le ®4 Z) —2>H(1s) @5 FZ
[
=13 ®pFZ

commute, where we have assumed for simplicity that all involved categories are strict.

5.4. DEFINITION. Let H 4 E be an opmonoidal adjunction between monoidal categories
(€,®¢,1s) respectively (H, R4, 1%). An opmodule adjunction over H 4 E is an adjunc-
tion F 4 U between an E-module category (A,®4) and an H-module category (B,®g),
together with natural transformations

O:FY®sZ2)>HY®sFZ, Q:UL®zM)—>EL®4UM
that turn F and U into H- respectively E-opmodules, such that

EH UF
Y QuZ 8" _EHY ®4 UFZ

] B

UF(Y &a Z) Te U(HY Xp FZ)
and
EHE®B€FU
HEL ®3 FUM L &g M
@T ]EFU
F(EL@A UM) ) FU(L®B M)
commute.

It follows that 2 is an isomorphism (see [ACI2l Proposition 4.1.2] and also [Kel72|
Theorem 1.4] for a more general theorem in the setting of doctrinal adjunctions).
Now any coalgebra C' in ‘H defines a compatible pair of comonads

S=C®—, C=EC®4-

on B respectively A. It is such an instance of Theorem that provides the monadic
generalisation of the setting from [KKT11], see Section [5.14l
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5.5. BIALGEBROIDS AND HOPF ALGEBROIDS. Opmonoidal adjunctions can be seen as

categorical generalisations of bialgebras and more generally (left) bialgebroids. We briefly
recall the definitions but refer to [Béh09, DS97, [KK11l [SzI03] for further details and
references.

5.6. DEFINITION. If E s a k-algebra, then an E-ring is a k-algebra map n: E — H.

In particular, when E = A° := A ®; A° is the enveloping algebra of a k-algebra A,
then H carries two A-bimodule structures given by

avh<ab:=nla®;b)h, arh<b:=hnbya).

5.7. DEFINITION. [Tak77] A bialgebroid is an A®-ring n : A* — H for which .H, is a
coalgebra in (A°-Mod,®4, A) whose coproduct A: H — H, ®4 ,H satisfies

a» A(h) = A(h) <a,  A(gh) = A(g)A(h),

and whose counit e: H — A defines a unital H-action on A given by h(a) :=e(a » h).

Finally, by a Hopf algebroid we mean left rather than full Hopf algebroid, so there is
in general no antipode [KR13]:

5.8. DEFINITION. [Sch00] A Hopf algebroid is a bialgebroid with bijective Galois map
B:vH @uor He > Ho @4 -H, g®aer h — A(g)h.
As usual, we abbreviate
A(h) = hay®a hy,  BTH(h®al) =t hy ®aor h_. (5.1)
5.9. THE OPMONOIDAL ADJUNCTION. Every F-ring H defines a forgetful functor
E: H-Mod — E-Mod

with left adjoint H = H®g —. In the sequel, we abbreviate H := H-Mod and £ := F-Mod.
If H is a bialgebroid, then H is monoidal with tensor product K &y L of two left H-
modules K and L given by the tensor product K ®4 L of the underlying A-bimodules
whose H-module structure is given by

h(k @ 1) == hay (k) ®@a bz (D).

So by definition, we have E(K ®y L) = EK ®4 EL. The opmonoidal structure = on H is
defined by the map [BLV1Il [AC12]

HX®4Y) = H®u (X®@4Y) - HX @u HY = (H @1 X) @u (H @0 V),
h®ae (2 @ay) = (ha) Qae ) ®a (hiz) Rae y).

Schauenburg proved that this establishes a bijective correspondence between bialge-
broid structures on H and monoidal structures on H-Mod [Sch98, Theorem 5.1]:
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5.10. THEOREM. The following data are equivalent for an A®-ring n: A® — H:
1. A bialgebroid structure on H.

2. A monoidal structure (®,1) on H-Mod such that the adjunction
(A®-Mod,®4, A) T > (H-Mod, ®, 1)
induced by n s opmonoidal.
Consequently, we obtain an opmonoidal monad
EH = ,H,®ac —

on & = A°-Mod. This takes the unit object A to the cocentre H ® 4. A of the A-bimodule
,H., and the comonad H(1¢) ®¢ — is given by

(H®ae A) ®a —,

where the A-bimodule structure on the cocentre is given by the actions »,< on H.
The lift to H = H-Mod takes a left H-module L to (H ®4c A) ®4 L with action

9(h®ae 1) ®a 1) = (90)h ®@a= 1) ®a g2l
and the distributive law resulting from Theorem is given by
X: g ®ac (h®ac 1) ®al) = (91yh ®ac 1) ®a (g(2) @ae 1).
That is, it is the map induced by the Yetter-Drinfel’d braiding
H ®aH—> H, ®a.H, g®ah— guyh®a g

For A = k, that is, when H is a Hopf algebra, and also trivially when H = A°, the
monad and the comonad on A°-Mod coincide and are also a bimonad in the sense of
Mesablishvili and Wisbauer, c¢f. Section [0} An example where the two are different is
the Weyl algebra, or more generally, the universal enveloping algebra of a Lie-Rinehart
algebra [Hue9§|. In these examples, A is commutative but not central in H in general, so
vH ®4e — is different from H, ®4 —.

5.11. DoI1-KOPPINEN DATA. The instance of Theorem 2.9 that we are most interested
in is an opmodule adjunction associated to the following structure:
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5.12. DEFINITION. A Doi-Koppinen datum is a triple (H,C, B) of an H-module coalgebra
C and an H-comodule algebra B over a bialgebroid H.

This means that C' is a coalgebra in the monoidal category H-Mod. Similarly, the
category H-Comod of left H-comodules is also monoidal (see, e.g., [B6h09, Section 3.6]),
and this defines the notion of a comodule algebra. Explicitly, B is an A-ring ng: A —> B
together with a coassociative coaction

6:B_>H<1 ®AB7 be(—l)@Ab(O)a
which is counital and an algebra map,
18(e(b-1))b) = b, (bd)(-1) ® (bd)(0) = b-1yd(-1) ® broyd(0)-

Similarly, as in the definition of a bialgebroid itself, for this condition to be well-defined
one must also require

b—1) ®a b(o)ﬁB(a) = a»b1) ®a b).
The key example that reproduces [KK11] is the following:

5.13. THE OPMODULE ADJUNCTION. For any Doi-Koppinen datum (H,C, B), the H-
coaction 0 on B turns the Eilenberg-Moore adjunction A-Mod = B-Mod for the monad
B := B®4 — into an opmodule adjunction for the opmonoidal adjunction & ——H
defined in Section [5.9) The H-module category structure of B-Mod is given by the left
B-action

b(l X4 m) = b(_l)l Xa b(o)m,

where b € B, [ € L (an H-module), and m € M (a B-module).

Hence, as explained in Section C defines a compatible pair of comonads C' ®4 —
on B-Mod and A-Mod. The distributive law resulting from Theorem generalises the
Yetter-Drinfel’d braiding, as it is given for a B-module M by

X:B®a(C®aM) — CR®as(B®aM),
b®a (c®@am) +— b1)c®a (bo)y @am).

5.14. THE MAIN EXAMPLE. If H is a bialgebroid, then C' := H is a module coalgebra
with left action given by multiplication and coalgebra structure given by that of H. If H is
a Hopf algebroid, then B := H°P is a comodule algebra with unit map ng(a) := n(1®y a)
and coaction

5:]__]01)_)]__]4 ®A ,HOp, bl—>b_®Ab+.

In the sequel we write B as — ® 00 H rather than H°? ®4 — to work with H only. Then

the distributive law becomes

XZ(H@AM)®AOPH — H®A(M®AOPH),
(c®am)®amw b = b_c®a (M ®aor by),
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for b,ce H.
Proposition completely characterises the right y-coalgebras: in this example, they
are given by right H-modules and left H-comodules M with right y-coalgebra structure

p:mQaor h — h,m(_l) Ra m(o)h+.

In general, the characterisation of left y-coalgebras mentioned in Remark does not
provide us with such an explicit description. Note, however, that one obtains left y-
coalgebras from (left-left) Yetter-Drinfel’d modules:

5.15. DEFINITION. A Yetter-Drinfel’d module over H is a left H-comodule and left H -
module N such that for all he H,n € N, one has

(hn)1y ®@a (hn)) = haqyn-nh- ®a hi@yni)-
Indeed, each such Yetter-Drinfel’d module defines a left y-coalgebra
N:= —®y N: H®-Mod — k-Mod
whose y-coalgebra structure is given by
A (h®az)Qun— (xn1y4+hy acr ho_ni_1)—) Qu n(0).-

The resulting duplicial object Cp(N, M) is the one studied in [KK11l [Kow13].
Identifying (— ®a0 H) @y N = — Qa0p N, the x-coalgebra structure becomes

A (h®ax)®un — xn1y4hy @aor hon(_1)_n().

Using this identification, we give explicit expressions of the operators L, and R, as well
as t& that appeared in Sections and : first of all, observe that the right H-module
structure on SM := H, ®4 M is given by

(h®am)g :=g-h®amg.,

whereas the right H-module structure on TM := M @400 H. is given by
(m @400 h)g :=m Qao» hg.

The cyclic operator from Section [4.5] then results as

tT(m ® 00 ' @aop - - - @aop A" @ 0p 1)
= mgyhy @aor I ®acr -+ @ao» I
®aov (n(—pyh” - hl_m(—l))-‘r ®aov (n(—pyh” - hl_m(—l))—n(O)a
and for the operators L and R from Section [4.7]one obtains with the help of the properties
[Sch00, Prop. 3.7] of the translation map (5.1)):
Ly: (M Qa @ah" " @am)@pun—
(mn(—1)+h} @aer K2 Qo -+ Quor W™ 'n(_1)-) @u (),
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along with

Ryt (m®@uor h!' ®pov -+ @aor B @aor 1) @ 1>
(m(—n—l) ®a m(—n)h%l) Xa m(—n+1)h%2)h%1) A -
®4 M- 1himhin-1) By ©a M) @t hipyryhiny - higyn-

Compare these maps with those obtained in [KK11, Lemma 4.10]. Hence, one has:

(L, o Ry) ((m ®por W' @uov -+ - Qa0 K" @400 1) Qp n) =
m(0) Pl 1)y + iy ) (1) 1)+ @itor M)~y By
& A0p h%l)_m(,n),m(,nJrl)Jrh%QHh%1)+ & gop - -
®@aov hyy_ - h%n)fm(*l)*(h%nJrl) e h?2)n)(*1)*(h%n+l) - hipyn)(o)
= M) ((hé) T }1?2)”)(71)7”(*1))4r @00 h%1)+ Qaep -+
®acr 1y, Oace Ay - h%nf ((héz) e h?2)n)(—1)m(—1))_(h%2) - hiyn) ).

Finally, if M ®a0r N is a stable anti Yetter-Drinfel’d module [BSO0§|, that is, if
M) (n-1M1)+ aor (N-1yM(-1))-1(0) = 1M Bacr N
holds for all n e N, m € M, we conclude by

(Ln O Rn)(m ®Aop hl ®Aop e ®Aop hn ®Aop n)
= m @aer iy, @aor -+ @aow hityy @aew Iy iy hygy -+ higyn
== m®Aop hl ®A0P L ®Aop h?’b ®Aop n.

Observe that in [Kowl3| this cyclicity condition was obtained for a different complex
which, however, computes the same homology.

5.16. THE ANTIPODE AS A 1-CELL. If A = k, then the four actions »,<, », « coincide
and H is a Hopf algebra with antipode S: H — H given by S(h) = e(hs)h_. The aim
of this brief section is to remark that this defines a 1-cell that connects the two instances
of Theorem provided by the opmonoidal adjunction and the opmodule adjunction
considered above.

Indeed, in this case we have A°-Mod = A-Mod = k-Mod, but H°°~-Mod # H-Mod
unless H is commutative. However, S defines a lax morphism o: —®yH id > H & —id,
given in components by

The fact that this is a lax morphism is equivalent to the fact that S is an algebra anti-
homomorphism. Also, the lifted comonads agree and are given by H ®; — with comonad
structure given by the coalgebra structure of H; clearly, v = id: idH ®; — — H ®; —id is
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a colax morphism. Furthermore, the Yang-Baxter condition is satisfied, so we have that
(id, 0,7) is a 1-cell in the 2-category of mixed distributive laws. If we apply the 2-functor
i to this, we get a l-cell (3,5,7) between a comonad distributive law on the category
of left H-modules and one on the category of right H-modules. The identity lifts to the
functor ¥: H-Mod — Mod-H which sends a left H-module X to the right H-module with
right action given by

x<h:=S8S(h)x.

6. Hopf monads a la Mesablishvili-Wisbauer

6.1. BIMONADS. A bimonad in the sense of [MWTI] is a sextuple (A, u,n, A® &2, 0),
where A: C — C is a functor, (A, 1, n) is a monad, (A, A, &%) is a comonad and §: AA —
AA is a mixed distributive law satisfying a list of compatibility conditions.
In particular, 1 and A4 are required to be compatible in the sense that there is a
commutative diagram
AA oA A AA
AAA AAA

The other defining conditions rule the compatibility between the unit and the counit with
each other and with u respectively A*, see [MWTI] for the details.

It follows immediately that we also obtain an instance of Theorem in this situation:
if we take A = C® to be the Eilenberg-Moore category of the monad B = (A, i, n) as in
Section [2.13] then the mixed distributive law 6 defines a lift V = (V,AV,eV) of the
comonad C = (A, A% &%) to A.

Note that in general, neither A nor C need to be monoidal, so B is in general not
an opmonoidal monad. Conversely, recall that for the examples of Theorem obtained
from opmonoidal monads, B need not equal C.

6.2. EXAMPLES FROM BIALGEBRAS. In the main example of bimonads in the above
sense, we in fact do have B = C and we are in the situation of Section [5.9|for a bialgebra
H over A = k. The commutativity of amounts to the fact that the coproduct is an
algebra map.

This setting provides an instance of Proposition since there are two lifts of B = C
from A = k-Mod to B = H-Mod: the canonical lift S = T = FU which takes a left
H-module L to the H-module H ®;. L with H-module structure given by multiplication
in the first tensor component, and the lift V which takes L to H®; L with H-action given
by the codiagonal action g(h®yy) = ga)h @y, g(2)y, that is, the one defining the monoidal
structure on B.

In this example, the map 3 from Proposition is given by

H@y L > H®r L, g&kyr— ga) ®k g2)y
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which for L = H is the Galois map from Definition [5.§f This is bijective for all L if
and only if it is so for L = H, which is also equivalent to H being a Hopf algebra.
However, this Galois map should not just be viewed as a k-linear map, but as a natural
H-module morphism between the two H-modules T(L) and V(L), and this is the natural
transformation TV (id) from Section [2.17]

As shown in [LMW15, Theorem 5.8(c)], this characterisation of Hopf algebras in terms
of the bijectivity of the Galois map extends straightforwardly to Hopf monads.

6.3. AN EXAMPLE NOT FROM BIALGEBRAS. Another example of a bimonad is the
nonempty list monad L™ on Set, which assigns to a set X the set L*X of all nonempty
lists of elements in X, denoted [x1,...,2z,]. The monad multiplication is given by con-
catenation of lists and the unit maps z to [x]. The comonad comultiplication is given by
Alzy, ..., xn] = [[z1, .-, 20]s - - -, [2a]], the counit is €[z, ..., x,] = 21, and the mixed
distributive law

0: LYTL*T - L*L*

is defined as follows: given a list
[['rl,l? s 7171,n1]7 ey [Im,lv ce. axm,nm]]

in LTLT X, its image under fx is the list with
m
Z ni(m—i+1)
i=1

terms, given by the lexicographic order, that is

[[$1,17 L21,2371 - - ,$m,1], ce e [xl,npr,l; 31, -- ,$m,1],

[:C2,17 x3,1 LR wxm,l]? ety I:xQ,nw xS,la s xm,l]v

.oy

(2], [£mal, - - - [xmmm]}

One verifies straightforwardly:

6.4. PROPOSITION. L™ becomes a bimonad on Set whose Eilenberg-Moore category is
Setl” =~ SemiGp, the category of (nonunital) semigroups.

The second lift V of the comonad L™ that one obtains from the bimonad structure on
SemiGp is as follows. Given a semigroup X, we have VX = L*X as sets, but the binary
operation is given by

VX xVX - VX
[x17 R 7xm][y17 A 7yn] = [m1y17 A 7Imy17 y17 AR Jyn]'
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Following Proposition (3.5, given a semigroup X, the unit turns the underlying set of
X into an LL*-coalgebra and hence we get a right y-coalgebra structure on X. Explicitly,
px: TX — VX is given by

plei, .. xn] =[x, x0Ty oo Ty
The image of p is known as the left machine expansion of X [BR84].

6.5. PROPOSITION. The only 6-entwined algebra is the trivial semigroup 5.

PROOF. An L*-coalgebra structure 5: T'— LL*T is equivalent to T" being a forest of at
most countable height (rooted) trees, where each level may have arbitrary cardinality.
The structure map [ sends x to the finite list of predecessors of x. A #-entwined algebra
is therefore such a forest, which also has the structure of a semigroup such that for all
x,y € T with 8(y) = [y, v1,- - -, yn] we have

B(I?/) = [xyv'ryh s TYns Y, Yty - - Jyn]

Let T be a f-entwined algebra. If T" is non-empty, then there must be a root. We can
multiply this root with itself to generate branches of arbitrary height. Suppose that we
have a branch of height two; that is to say, an element y € T with S(y) = [y, z] (so, in
particular, z # y). Then f(xy) = |zy,y], but f(zx) = |zx,zy,z,y]. This is impossible
since  and y cannot both be the predecessor of xy. [
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