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A NOTE ON TRANSPORT OF ALGEBRAIC STRUCTURES

HENRIK HOLM

Abstract. We study transport of algebraic structures and prove a theorem which
subsumes results of Comfort and Ross on topological group structures on Stone-Čech
compactifications, of Chevalley and of Gil de Lamadrid and Jans on topological group
and ring structures on universal covering spaces, and of Gleason on topological group
structures on universal locally connected refinements.

1. Introduction

Transport of algebraic structures—a concept that will be made precise in Section 3—is a
well-known phenomenon. To illustrate what we have in mind, we mention some results
from the literature, which have motivated this note.

(a) Let M be a metric space with completion M → M̂ . Algebraic structures on M tend
to be inherited by M̂ . For example, let M = Q be equipped with the metric in-
duced by the Euclidian norm | · | or the p-adic norm | · |p. Then one has M̂ = R
(the real numbers) or M̂ = Qp (the p-adic numbers). In either case, M is a ring1 in
which addition and multiplication are continuous functions. As it is well-known, the
completion M̂ can, in both of these cases, also be made into a ring with continuous
addition and multiplication in such a way that M → M̂ becomes a ring homomor-
phism. This exemplifies that the algebraic structure of type “ring” ascends2 along
the map M → M̂ .

(b) Let X be a topological space with Stone-Čech compactification X → βX. [Comfort
and Ross (1966), Thm. 4.1] showed that if X is a pseudocompact topological group,
then βX admits a structure of a topological group in such a way that X → βX
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1 Of course, Q, R and Qp are even fields (p is a prime number), but a field is not an “algebraic
structure” in the sense discussed in this paper; see 2.1.

2 In this paper, we say, loosely speaking, that an algebraic structure of a given type (such as “group”
or “ring”) ascends, respectively, descends, along a map f : X → Y (more precisely, along an arrow in
some category) if every algebraic structure of that type on X, respectively, on Y , can be “transported” to
Y (that is, in the direction of the arrow), respectively, to X (that is, against the direction of the arrow),
in such a way that f : X → Y becomes a homomorphism of algebraic structures of the type in question.
The precise definitions can be found in Section 3.
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becomes a group homomorphism (and a homeomorphism onto its image). This illus-
trates that the algebraic structure of type “group” ascends along the map X → βX
for certain types of spaces X.

(c) Let X be a topological space which has a universal covering space X̃ → X. [Chevalley
(1946), Chap. II§8 Prop. 5] proved that if X is a topological group, then X̃ can be
made into a topological group in such a way that X̃ → X becomes a group homomor-
phism. By similar methods, [Gil de Lamadrid and Jans (1957), Thm. 1] showed that
if X is a topological ring, then X̃ can be equipped with the structure of a topological
ring such that X̃ → X becomes a ring homomorphism. This illustrates that the
algebraic structures of type “group” and “ring” descend along the map X̃ → X.

(d) Let X be a topological space and let X∗ → X be its universal locally connected
refinement in the sense of [Gleason (1963), Thm. A]. In Thm. D in loc. cit. it is
proved that if X is a topological group, then X∗ can be made into a topological group
in such a way that the map X∗ → X becomes a group homomorphism. This illustrates
that the algebraic structure of type “group” descends along the map X∗ → X.

The purpose of this note is to describe circumstances under which algebraic structures
ascend or descend along certain types of morphisms and to give useful applications. Our
main result, Theorem 3.4, is certainly not profound; it deals with an adjoint situation
and its proof is completely formal. However, despite its simplicity, the result has several
useful applications; some of them are collected in Theorem 1.1 below, which subsumes the
classic results (a)–(d) mentioned above. We consider these applications to be the main
content of this note, and they are our justification for presenting the details that lead to
Theorem 3.4.

1.1. Theorem. The following assertions hold.

(a) Let M be any metric space with completion M̂ . Every algebraic structure on M as-
cends uniquely along the canonical map M → M̂ .

(b) Let X be any pseudocompact and locally compact topological space with Stone-Čech
compactification βX. Every algebraic structure on X ascends uniquely along the
canonical map X → βX.

(c) Let X be any pointed topological space which has a pointed universal covering space X̃.
Every algebraic structure on Xdescends uniquely along the canonical map X̃ → X.

(d) Let X be any topological space with universal locally connected refinement X∗. Every
algebraic structure on X descends uniquely along the canonical map X∗ → X.

The paper is organized as follows: Section 2 contains a few preliminaries on universal
algebra, algebraic structures, and algebraic theories. In Section 3 we prove our main
result and in Section 4 we apply this result in various settings and thereby give a proof
of Theorem 1.1 above.
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2. Algebraic structures and algebraic theories

Algebraic structures are objects like groups and rings. In general, they are sets equipped
with operations subject to identities. The language of universal algebra makes this precise,
and we refer to e.g. [Burris and Sankappanavar (1981), Chap. II§10,11] for the relevant
notions.

2.1. Let Σ be an algebraic signature and let I be a set of identities of type Σ. An
algebraic structure of type (Σ, I) (called a (Σ, I)-algebra in [Mac Lane (1971), Chap. V§6])
is a Σ-algebra that satisfies every identity in I. A morphism of such structures is a
morphism of the underlying Σ-algebras. We write Struc(Σ, I) for the category of all
algebraic structures of type (Σ, I) and UΣ,I : Struc(Σ, I) → Set for the forgetful functor.
By an algebraic structure we just mean an algebraic structure of some type (Σ, I).

Note that a field, for example, is not an algebraic structure in the sense above. In the
literature, the category Struc(Σ, I) is often referred to as a variety or an equational class.

By definition, an algebraic structure of type (Σ, I) is, in particular, a set (and the
definition of what is means for a Σ-algebra to satisfy an identity refers specifically to
elements). In other words, what is defined above is algebraic structures in the category
Set. The standard way to deal with algebraic structures in more general categories goes
through algebraic theories. The book [Adámek, Rosický, and Vitale (2011)] is an excellent
account on algebraic theories, and we shall refer to this for relevant notions and results.

2.2. Following [Adámek, Rosický, and Vitale (2011), Chap. 1] an algebraic theory is a
small category with finite products. If T is an algebraic theory, then a T -algebra is a
functor T → Set that preserves finite products. A morphism of T -algebras is a natural
transformation. The category of all T -algebras and their morphisms is denoted by Alg(T ).

2.3. Example. Let N0 be the category whose objects are natural numbers and zero and
in which the hom-set N0(m,n) consists of all functions {0, . . . ,m− 1} → {0, . . . , n− 1}.
This category has finite coproducts; indeed, the coproduct of objects m,n ∈ N0 is the
sum m+ n. Thus the opposite category Nop

0 is an algebraic theory; we denote it by N as
in [Adámek, Rosický, and Vitale (2011), Exa. 1.9]. In this category, every object n ∈ N is
the n-fold product n ∼= 1× · · · × 1 of the object 1 (this also holds for n = 0, as the empty
product in a category yields the terminal object). In the cited example, it is also proved
that the functor e : Alg(N ) → Set given by A 7→ A(1) is an equivalence of categories. It
is customary to suppress this functor.

2.4. Let C be a fixed category. Recall that a concrete category over C is a pair (U , U)
where U is a category and U : U → C is a faithful functor. If (U , U) and (V , V ) are concrete
categories over C, then a concrete functor (U , U) → (V , V ) is a functor F : U → V with
V F = U . A concrete equivalence of concrete categories (U , U) and (V , V ) over C is a pair
of quasi-inverse concrete functors (U , U) � (V , V ).

2.5. Following [Adámek, Rosický, and Vitale (2011), Def. 11.3] a one-sorted algebraic
theory is a pair (T , T ), where T is an algebraic theory whose objects are natural numbers
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and zero and T : N → T is a product preserving functor which is the identity of objects.
This definition goes back to [Lawvere (1963)].

Let (T , T ) be a one-sorted algebraic theory. As noted above, one has n ∼= 1× · · · × 1
(n copies) in the category N . By applying the functor T (which is the identity on objects
and preserves products) to this isomorphism, one gets that n ∼= 1×· · ·×1 also holds in T .

2.6. For every one-sorted algebraic theory (T , T ), the functor Alg(T )
Alg(T )

// Alg(N ) ' Set
is faithful by [Adámek, Rosický, and Vitale (2011), Prop. 11.8], and hence (Alg(T ),Alg(T ))
is a concrete category over Set. The pair (Struc(Σ, I), UΣ,I) from 2.1 is also a concrete
category over Set. It is proved in [Adámek, Rosický, and Vitale (2011), Thm. 13.11]
that for every algebraic signature Σ and every set I of identities of type Σ, there exists a
one-sorted algebraic theory (TΣ,I, TΣ,I) and a concrete equivalence,

(1) (Alg(TΣ,I),Alg(TΣ,I)) ' (Struc(Σ, I), UΣ,I) .

Moreover, by [Adámek, Rosický, and Vitale (2011), Thm. 11.39] (which is called “one-
sorted algebraic duality”) such a one-sorted algebraic theory (TΣ,I, TΣ,I) is unique up to
isomorphism of one-sorted algebraic theories.

As shown in [Adámek, Rosický, and Vitale (2011), Rmk. 11.24 and Chap. 13], the
algebraic theory TΣ,I satisfying (1) can be constructed directly from the left adjoint of the
forgetful functor UΣ,I.

Now, the standard way to define algebraic structures of type (Σ, I) in a general category
(with finite products) is as follows.

2.7. Definition. Let T be an algebraic theory and let C be any category with finite
products. A T -algebra in C is a functor T → C that preserves finite products. A morphism
of T -algebras in C is a natural transformation. The category of all T -algebras in C and
their morphisms is denoted by AlgC(T ). Thus, AlgSet(T ) is nothing but Alg(T ) from 2.2.

The next lemma is straightforward to prove (the proof is the same as for C = Set).

2.8. Lemma. Let C be a category with finite products. There is an equivalence of cate-
gories eC : AlgC(N )→ C given by C̃ 7→ C̃(1).

2.9. Definition. Let Σ be an algebraic signature, let I be a set of identities of type Σ, and
let C be a category with finite products. Let (TΣ,I, TΣ,I) be the unique one-sorted algebraic
theory for which there is a concrete equivalence (1). Define the category

StrucC(Σ, I) := AlgC(TΣ,I)

and the forgetful functor UΣ,I
C as the composition AlgC(TΣ,I)

AlgC(TΣ,I)
// AlgC(N )

eC
'
// C .

We refer to an object in StrucC(Σ, I) as an algebraic structure of type (Σ, I) in C (even
though it is not actually an object in C, but a product preserving functor TΣ,I → C).
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2.10. Remark. The action of UΣ,I
C on an object X̃ (i.e. a functor TΣ,I → C) is X̃(1) ∈ C,

and the action of UΣ,I
C on a morphism σ̃ : X̃ → Ỹ (i.e. a natural transformation) is σ̃1.

As noted in 2.5 one has n ∼= 1 × · · · × 1 in TΣ,I. Thus, for any morphism σ̃ : X̃ → Ỹ
of TΣ,I-algebras in C one has σ̃n ∼= σ̃1 × · · · × σ̃1. This has two immediate consequences:

(a) The functor UΣ,I
C is faithful; thus (StrucC(Σ, I), UΣ,I

C ) is a concrete category over C.

(b) If UΣ,I
C (σ̃) is an isomorphism, then so is σ̃.

2.11. A priori an algebraic structure of type (Σ, I) in a category C is not actually an
object in C, but instead a product preserving functor TΣ,I → C. However, it is possible to—
and well-known that one can—interpret such a functor as an actual object in C equipped
with some additional structure. For example, if ΣGrp is the algebraic signature and IGrp is
the set of identities for groups, then the concrete category StrucC(ΣGrp, IGrp) of algebraic
structures of type (ΣGrp, IGrp) in C is concretely equivalent to the concrete category Grp(C)
of group objects in C. We remind the reader that a group object in C is a quadruple
(C,m, u, i) where C is an (actual) object in C and m,u, i are morphisms (where T is the
terminal object in C):

C × C m−→ C (called multiplication)

T
u−→ C (called unit)

C
i−→ C (called inverse)

that make the expected diagrams commutative. For example, if C = Top is the category
of topological spaces, then Grp(C) = Grp(Top) is the category of topological groups.

The category StrucC(ΣGrp, IGrp) is convenient for working with group structures in C
from a theoretical point of view, however, in specific examples (see Section 4) it is more
natural to have the equivalent category Grp(C) in mind.

3. The main result

Throughout this section, we fix an algebraic signature Σ and a set I of identities of type
Σ. For a category C with finite products we consider the category StrucC(Σ, I) of algebraic
structures of type (Σ, I) in C and its forgetful functor UC : StrucC(Σ, I)→ C from Def. 2.9.

3.1. Definition. By an algebraic structure of type (Σ, I) on an object C ∈ C we mean
an object C̃ ∈ StrucC(Σ, I) such that UC(C̃) = C.

This is the definition we shall formally use. However, as illustrated in 2.11, one can
think of an algebraic structure C̃ on an object C ∈ C as a pair C̃ = (C, {fσ}σ∈Σ) where
{fσ}σ∈Σ is a collection of morphisms in C, determined by the signature Σ, that make
certain diagrams, determined by the identities I, commutative.
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Now suppose that F : C → D is a product preserving functor between categories with
finite products. There is a commutative diagram,

AlgC(TΣ,I)

AlgF (TΣ,I)
��

AlgC(TΣ,I)
// AlgC(N )

AlgF (N )

��

eC
// C
F

��

AlgD(TΣ,I)
AlgD(TΣ,I)

// AlgD(N )
eD

// D,

where the horizontal functors AlgC(TΣ,I) and AlgD(TΣ,I) map a functor X̃ to X̃ ◦TΣ,I, and
the vertical functors AlgF (TΣ,I) and AlgF (N ) map a functor X̃ to F ◦ X̃. If we write F̃
for the functor AlgF (TΣ,I), i.e. F̃ (X̃) = F ◦ X̃, then the commutative diagram above is:

(2)

StrucC(Σ, I)
UC
//

F̃
��

C
F

��

StrucD(Σ, I) UD
// D.

Suppose that D̃ is an algebraic structure of type (Σ, I) on a given object D ∈ D. The
commutative diagram (2) induces two functors between comma categories ([Mac Lane
(1971), Chap. II§6]):

U D̃
F : (D̃ ↓ F̃ ) −→ (D ↓ F ) given by (C̃, ϕ̃) 7−→ (UC(C̃), UD(ϕ̃)) , and

UF
D̃

: (F̃ ↓ D̃) −→ (F ↓ D) given by (C̃, ψ̃) 7−→ (UC(C̃), UD(ψ̃)) .

With these functors at hand, we can now make precise what is meant by transport
(ascent and descent) of algebraic structures along morphisms.

3.2. Definition. Let D̃ be an algebraic structure of type (Σ, I) on a given object D ∈ D.

(a) Let C ∈ C be an object and let ϕ : D → F (C) be a morphism, i.e. (C,ϕ) ∈ (D ↓ F ).

We say that the algebraic structure D̃ ascends along ϕ if there exists an algebraic
structure C̃ of type (Σ, I) on C and a morphism ϕ̃ : D̃ → F̃ (C̃) in StrucD(Σ, I) such
that UD(ϕ̃) = ϕ, that is, (C̃, ϕ̃) is an object in (D̃ ↓ F̃ ) with U D̃

F (C̃, ϕ̃) = (C,ϕ).

We say that the algebraic structure D̃ ascends uniquely along ϕ if there a unique, up
to isomorphism, object (C̃, ϕ̃) in (D̃ ↓ F̃ ) with U D̃

F (C̃, ϕ̃) = (C,ϕ).

(b) Let C ∈ C be an object and let ψ : F (C)→ D be a morphism, i.e. (C,ψ) ∈ (F ↓ D).

We say that the algebraic structure D̃ descends along ψ if there exists an algebraic
structure C̃ of type (Σ, I) on C and a morphism ψ̃ : F̃ (C̃) → D̃ in StrucD(Σ, I) such
that UD(ψ̃) = ψ, that is, (C̃, ψ̃) is an object in (F̃ ↓ D̃) with UF

D̃
(C̃, ψ̃) = (C,ψ).

We say that the algebraic structure D̃ descends uniquely along ψ if there a unique,
up to isomorphism, object (C̃, ψ̃) in (F̃ ↓ D̃) with UF

D̃
(C̃, ψ̃) = (C,ψ).
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3.3. Lemma. Let 〈F,G, η, ε〉 : C → D be an adjunction of product preserving functors
between categories with finite products3. The induced functors F̃ ,G̃ (see the diagram (2))
are part of an adjunction

〈F̃ , G̃, η̃, ε̃〉 : StrucC(Σ, I) −→ StrucD(Σ, I)

with UC(η̃C̃) = ηUC(C̃) for C̃ ∈ StrucC(Σ, I) and UD(ε̃D̃) = εUD(D̃) for D̃ ∈ StrucD(Σ, I).

Proof. We use the shorthand notation T = TΣ,I and T = TΣ,I.
By definition, StrucX (Σ, I) is a full subcategory of the functor category X T (X = C,D).

Thus, for all product preserving functors C̃ : T → C and D̃ : T → D we must construct a
natural bijection (where we have written FC̃ = F ◦ C̃ and GD̃ = G ◦ D̃):

DT(FC̃, D̃) = DT(F̃ (C̃), D̃)
α
// CT(C̃, G̃(D̃)) = CT(C̃, GD̃)

β
oo (where β = α−1).

For a natural transformation σ : FC̃ → D̃ we set α(σ) = Gσ ◦ ηC̃, and for a natural
transformation τ : C̃ → GD̃ we set β(τ) = εD̃ ◦ Fτ . We then have

βα(σ) = β(Gσ ◦ ηC̃) = εD̃ ◦ FGσ ◦ FηC̃ = σ ◦ εF C̃ ◦ FηC̃ = σ ◦ idFC̃ = σ ,

where the first and second equalities are by definition, the third equality follows as ε is
a natural transformation, and the fourth equality follows as εF ◦ Fη = idF . Thus βα
is the identity on DT(FC̃, D̃), and a similar argument shows that αβ is the identity on
CT(C̃, GD̃).

The unit of this adjunction is η̃C̃ = α(idF̃ (C̃)) = ηC̃ : C̃ → G̃F̃ (C̃) = GFC̃. Thus,
UC(η̃C̃) is the morphism ηC̃(1) : C̃(1) → GFC̃(1), which is ηUC(C̃) : UC(C̃) → GF (UC(C̃));
see Remark 2.10. A similar argument shows that UD(ε̃D̃) = εUD(D̃).

3.4. Theorem. Let 〈F,G, η, ε〉 : C → D be an adjunction of product preserving functors
between categories with finite products. Let Σ be any algebraic signature and let I be a set
of identities of type Σ. The following conclusions hold.

(a) Let C ∈ C, set D = F (C) ∈ D, and consider the unit ηC : C → G(D). Every algebraic
structure of type (Σ, I) on C ascends uniquely along ηC.

(b) Let D ∈ D, set C = G(D) ∈ C, and consider the counit εD : F (C) → D. Every
algebraic structure of type (Σ, I) on D descends uniquely along εD.

3 Of course, G always preserves products since it is a right adjoint, so the assumption on the functors
is really just that F preserves finite products.
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Proof. We only prove part (a) since the proof of (b) is similar. In the proof, we use
the notation of Lemma 3.3. Let C̃ be an algebraic structure of type (Σ, I) on C. Then
D̃ = F̃ (C̃) is an algebraic structure of type (Σ, I) on D as UD(D̃) = UDF̃ (C̃) = FUC(C̃) =
F (C) = D. By Lemma 3.3, the unit η̃C̃ : C̃ → G̃(D̃) has the property that UC(η̃C̃) = ηC .
This proves that the given algebraic structure C̃ ascends along ηC . To prove that it ascends
uniquely, let D̃0 be any algebraic structure of type (Σ, I) on D and let ϕ̃ : C̃ → G̃(D̃0) be
any morphism with UC(ϕ̃) = ηC . As η̃C̃ : C̃ → G̃(D̃) is a universal arrow from C̃ to G̃,
that is, (D̃, η̃C̃) is the initial object in the comma category (C̃ ↓ G̃), there is a (unique)
morphism δ̃ : D̃ → D̃0 which makes the left diagram in the following display commutative:

C̃
η̃C̃

//

ϕ̃

��

G̃(D̃)

G̃(δ̃){{

G̃(D̃0)

C
ηC

//

ηC

��

G(D)

G(UD(δ̃))zz

G(D)

The right diagram above is obtained from the left one by applying the functor UC. As the
unit ηC : C → G(D) is a universal arrow from C to G, that is, (D, ηC) is the initial object
in the comma category (C ↓ G), then the morphism UD(δ̃) must be the identity idD on
D. It follows from Remark 2.10(b) that δ̃ is an isomorphism.

4. Applications

In this final section, we apply Theorem 3.4 in some specific examples and thereby give a
proof of Theorem 1.1 from the Introduction.

4.1. Example. Let C = Met be the category whose objects are all metric spaces and
whose morphisms are all continuous functions. This category has finite products, indeed,
the product of metric spaces (M,dM), (N, dN) is (M ×N, dM×N) where dM×N is given by

dM×N((x1, y1), (x2, y2)) = max{dM(x1, x2), dN(y1, y2)} .

Let D = CompMet be the full subcategory of Met consisting of all complete metric spaces.
Note that CompMet is closed under finite products in Met and write G : CompMet→ Met
for the inclusion functor. The functor G has a left adjoint, namely the functor F that maps
a metric space M to its completion F (M) = M̂ (i.e. CompMet is a reflective subcategory
of Met). It is not hard to see that F preserves finite products. The unit of the adjunction
is the canonical isometry ηM : M → M̂ whose image is dense in M̂ .

Theorem 3.4(a) applies to this setting and shows that every algebraic structure on a
metric space M ascends uniquely along ηM : M → M̂ , as asserted in Theorem 1.1(a).

4.2. Example. Let Top be the category of topological spaces and let D = CompHaus
be the full subcategory hereof whose objects are all compact Hausdorff spaces. We note
that CompHaus is closed under finite products in Top and write G : CompHaus→ Top for
the inclusion functor. The functor G has a left adjoint, namely the functor F that maps



A NOTE ON TRANSPORT OF ALGEBRAIC STRUCTURES 1129

a topological space X to its Stone-Čech compactification F (X) = βX. This is a classic
application of the Special Adjoint Functor Theorem; see [Mac Lane (1971), Chap. V§8].
However, the functor β does not preserve finite products, for example, β(R × R) is not
βR× βR; see [Walker (1974), 1.67].

Consider therefore the full subcategory C = PsLocComp of Top whose objects are
pseudocompact4 and locally compact5 spaces. A finite product of locally compact spaces
is locally compact. A product of two pseudocompact spaces need not be pseudocompact6

but if, in addition, one of the factors is locally compact, then the product is in fact
pseudocompact by [Glicksberg (1959), Thm. 3] or [Walker (1974), 8.21]. Hence C is
closed under finite products in Top. Every compact space is also pseudocompact, and
every compact Hausdorff space is locally compact. Thus there is an inclusion D ⊂ C.
Although this inclusion is “close” to being an equality, it is strict7. The point is now
that the restriction of F = β to C does preserve finite products; this is part of proof of
[Glicksberg (1959), Thm. 3]. In conclusion, Theorem 3.4(a) applies to the situation

C = PsLocComp
F=β

// CompHaus = D ,
G
oo

and shows that every algebraic structure on a pseudocompact and locally compact topo-
logical space X ascends uniquely along the canonical map ηX : X → βX (which is the
unit of the adjunction), as asserted in Theorem 1.1(b).

4.3. Example. It is proved in [Munkres (2000), Cor. 82.2] (or [May (1999), Chap. 3§8])
that a topological space has a universal covering space if and only if it is path connected,
locally path connected, and semi-locally simply connected8. Write D for the category
of all such spaces, and C = SConn for the subcategory of simply connected topological
spaces. Note that C and D are closed under finite products in Top; see e.g. [Chevalley
(1946), II§7 Prop. 1 and II§8 Prop. 4].

Let Top∗ be the category of pointed topological spaces and denote by C∗ and D∗ the
full subcategories of Top∗ whose objects are the ones in C and D, respectively. As noted
above, the inclusion functor F : C∗ → D∗ preserves finite products. Since we work with
pointed spaces, the universal covering space C∗ 3 X̃ → X of a space X ∈ D∗ has the
unique mapping property, see e.g. [Chevalley (1946), II§8 Prop. 1], in other words, F (X̃) =
X̃ → X is a universal arrow from the inclusion functor F to the object X. By [Mac Lane
(1971), IV§1 Thm. 2] this means that there is a well-defined functor G : D∗ → C∗, which

4 A topological space X is pseudocompact if every continuous function X → R is bounded.
5 A topological space is locally compact if every point has a local base consisting of compact neigh-

bourhoods.
6 [Gillman and Jerison (1960), 9.15] present an example, due to Novák and Terasaka, of a pseudocom-

pact space X for which X ×X is not pseudocompact.
7 For a pathological example of a topological space X which is both pseudocompact and locally com-

pact, but neither compact nor Hausdorff, let X be any countable set with the particular point topology.
8 As (path connected) ⇒ (connected) and since (connected) + (locally path connected) ⇒ (path con-

nected), the conditions (path connected) + (locally path connected) and (connected) + (locally path con-
nected) are the same.
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assigns to each X ∈ D∗ its universal covering space G(X) = X̃, and that this functor G
is right adjoint to F .

Thus Theorem 3.4(b) applies to this setting and shows that every algebraic structure
on a space X ∈ D∗ descends uniquely along the canonical map εX : X̃ → X (which is the
counit of the adjunction), as asserted in Theorem 1.1(c).

4.4. Example. Let D = Top be the category of all topological spaces and let C =
LocConn be the full subcategory hereof whose objects are all locally connected spaces. As
C is closed under finite products in D, the inclusion functor F : LocConn→ Top preserves
finite products. The main result in [Gleason (1963)] is that F has a right adjoint G, which
to every space X assigns its so-called universal locally connected refinement G(X) = X∗.

Theorem 3.4(b) applies to this setting and shows that every algebraic structure on a
space X descends uniquely along the map εX : X∗ → X, as asserted in Theorem 1.1(d).
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