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THE HEART OF A COMBINATORIAL MODEL CATEGORY

ZHEN LIN LOW

ABSTRACT. We show that every small model category that satisfies certain size con-
ditions can be completed to yield a combinatorial model category, and conversely, every
combinatorial model category arises in this way. We will also see that these constructions
preserve right properness and compatibility with simplicial enrichment. Along the way,
we establish some technical results on the index of accessibility of various constructions
on accessible categories, which may be of independent interest.

Introduction

Category-theoretic homotopy theory has seen a boom in recent decades. One development
was the introduction of the notion of ‘combinatorial model categories’ by Smith [1998].
These correspond to what Lurie [2009] calls ‘presentable co-categories’ and are therefore
a homotopy-theoretic generalisation of the locally presentable categories of Gabriel and
Ulmer [1971]. The classification of locally k-presentable categories says that each one
is equivalent to the free x-ind-completion of a k-cocomplete small category, and Lurie
proved the analogous proposition for presentable oo-categories, so it should at least seem
plausible that every combinatorial model category is generated by a small model category
in an appropriate sense.

Indeed, the work of Beke [2000] suggests that more should be true. As stated in the
abstract of op. cit.,

If a Quillen model category can be specified using a certain logical syntax
(intuitively, ‘is algebraic/combinatorial enough’), so that it can be defined in
any category of sheaves, then the satisfaction of Quillen’s axioms over any site
is a purely formal consequence of their being satisfied over the category of
sets.

In the same vein, we can show that the answer to the question of whether a set of
generating cofibrations and trivial cofibrations in a locally presentable category really
do generate a combinatorial model category depends only on an essentially small full
subcategory of small objects, which we may think of as an analogue of the Lowenheim—
Skolem theorem in logic. More precisely:
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THEOREM. Let M be a locally presentable category and let T and I' be subsets of mor M.
There is a reqular cardinal A such that the weak factorisation systems cofibrantly gen-
erated by T and ' underlie a model structure on M if and only if their restrictions to
K, (M) underlie a model structure on K, (M), where K, (M) is the full subcategory of
A-presentable objects in M.

The main difficulty is in choosing a definition of ‘weak equivalence in M’ for which
we can verify the model category axioms. As it turns out, what works is to define ‘weak
equivalence’ to be a morphism such that the right half of its (trivial cofibration, fibration)-
factorisation is a trivial fibration. This allows us to apply the theory of accessible categor-
ies: the key result needed is a special case of the well-known theorem of Makkai and Paré
[1989, §5.1] concerning weighted 2-limits of diagrams of accessible categories. Moreover,
by using good estimates for the index of accessibility of the categories obtained in this
way, we can establish a stronger result:

THEOREM. Let M be a locally presentable category and let T and Z' be subsets of mor M.
Suppose k and A are reqular cardinals that satisfy the following hypotheses:

e M s a locally k-presentable category, and k is sharply less than A.

o K,(M) is closed under finite limits in M.

e There are < X\ morphisms between any two k-presentable objects in M.
e 7 and I’ are A-small sets of morphisms between r-presentable objects.

Then the weak factorisation systems cofibrantly generated by T and I' underlie a model
structure on M if and only if their restrictions to K, (M) underlie a model structure on
K, (M).

This is essentially what theorem 5.9 states. Moreover, given M, Z, and Z’, we can
always find regular cardinals x and A satisfying the hypotheses above. Thus, if M is a
combinatorial model category, there is a regular cardinal A such that K, (M) not only
inherits a model structure from M but also determines M as a combinatorial model
category—the subcategory K, (M) might be called the ‘heart’ of M. (For details, see
proposition 5.12.) When we have explicit sets of generating cofibrations and generating
trivial cofibrations, we can also give explicit x and A for which this happens:

e [f M is the category of simplicial sets with the Kan—Quillen model structure, then
we can take k = Ny and A = Ny.

o [f M is the category of unbounded chain complexes of left R-modules, then we can
take kK = Ny and A to be the smallest uncountable regular cardinal such that R is
A-small (as a set).

e If M is the category of symmetric spectra of Hovey et al. [2000] with the stable
model structure, then we can take kK = R; and A to be the cardinal successor of 2%
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In the converse direction, we obtain a sufficient condition for an essentially small model
category K to arise in this fashion: see theorem 5.14.

The techniques used in the proof of the main theorem are easily generalised, allowing
us to make sense of a remark of Dugger [2001]:

[...] for a combinatorial model category the interesting part of the homotopy
theory is all concentrated within some small subcategory—Dbeyond sufficiently
large cardinals the homotopy theory is somehow “formal”.

For illustration, we will see how to validate the above heuristic in the cases of right
properness and axiom SMT.
The structure of this paper is as follows:

e §1 contains some technical results on presentable objects and filtered colimits thereof.
In particular, the definition of ‘sharply less than’ is recalled, in preparation for the
statement of the main result.

e §2is an analysis of some special cases of the theorem of Makkai and Paré on weighted
2-limits of accessible categories (see Theorem 5.1.6 in [Makkai and Paré, 1989],
or [Addmek and Rosicky, 1994, §2.H]), with a special emphasis on the index of
accessibility of the categories and functors involved.

The results appearing in this section are related to those appearing in a preprint
of Ulmer [1977] and probably well known to experts; nonetheless, for the sake of
completeness, full proofs are given.

e §3 introduces the notion of accessibly generated category, which is a size-restricted
analogue of the notion of accessible category.

e §4 collects together some results about cofibrantly generated weak factorisation
systems on locally presentable categories.

e §5 establishes the main result: that every combinatorial model category is generated
by a small model category, and conversely, that small model categories satisfying
certain size conditions generate combinatorial model categories.
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accessibility of all the various subcategories considered in the proof of the main result.
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streamlined exposition.
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1. Presentable objects
1.1. NotATION. Throughout this section, x is an arbitrary regular cardinal.

1.2. DEFINITION. Let C be a locally small category.

e Let A be a regular cardinal. A (k,\)-presentable object in C is an object A in
C such that the representable functor C(A, —) : C — Set preserves colimits of all
A-small k-filtered diagrams.

We write KX(C) for the full subcategory of C spanned by the (k,\)-presentable
objects.

e A k-presentable object in C is an object in C that is (k, A)-presentable for all
regular cardinals .

We write K, (C) for the full subcategory of C spanned by the k-presentable objects.

1.3. EXAMPLE. A set is k-small if and only if it is a k-presentable object in Set.

1.4. REMARK. Although every Rp-small (i.e. finite) category is Ro-presentable as an object
in Cat, not every Np-presentable object in Cat is Ng-small. The difference disappears for
uncountable regular cardinals.

1.5. LEMMA. Let C be a locally small category and let B : D — C be a k-small diagram.
If each Bd is a (k, \)-presentable object in C, then the colimit ligD B, if it exists, is also
a (K, \)-presentable object in C.

PROOF. This follows from the fact that lim [D°P,Set] — Set preserves colimits of
small x-filtered diagrams. [ |

1.6. LEMMA. Assume the following hypotheses:
e & is a locally small category with colimits of small k-filtered diagrams.

e XY : T — & are two small \-filtered diagrams whose vertices are \-presentable
objects in £, where k < .

e ¢: X =Y s anatural transformation.

Let 1o be an object in L. If li_n;lch : ligIX — LHEIY 1s an isomorphism in &, then there
is a chain I : k — T such that 1(0) = iy and hﬂ«;{ Cr(y) - lig’m{ XI(y) — li_n%“ YI(v)
s an isomorphism in &.
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ProoOF. Let C = 1i_n>nIX and D = ligIY, let ¢; : Xi — C and d; : Yi — D are the
components of the respective colimiting cocones and let e = ligI p. We will construct
I : kK — 7 by transfinite induction.

o Let I(O) = io.

e Given an ordinal a < k and an object I(«) in Z, choose an object I(c + 1) in Z and
a morphism I(a - a+1) : I(a) = I(a+1) in Z for which there is a morphism
YI(a) = XI(a+ 1) making the diagram in £ shown below commute:

XI(a—a+1) CI(a+1)
_—

XI(a) XI(a+1) —=, ¢

-
g"I(&)l w?z”/ l@ol(ohq) le

-

YI(a) o YIi(a+1) e D

Such a choice exists: since YI(«) is a A-presentable object in € and Z is A-filtered,
there is an object ¢’ in Z and a commutative diagram in £ of the form below,

CI(e)

X1 () > C
\\\ S H
\\)‘ . C'L/
PI(a) Xi —— C
Bt
///t/ Te_l
Y](a) dr s D

so there exist an object ¢ in Z and morphisms u : I(a) — " and v : ¢/ — " such
that the following diagram in £ commutes,

XI(a) Xu > X
x A
X

and similarly, there exist an object I(« 4 1) in Z and a morphism w : " — I(a + 1)
in Z such that the diagram in £ shown below commutes,

Xit X X 2 XT(a+1)

¢
/ lsmwrl)

YI(a) » Vi —— YI(a+1)

Yu

so we may take ¥, : YI(a) - XI(aw+1) to be the composite Xw o Xv ot and
Ila = a+1):I(a) = I(a+1) to be the composite w o .
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e Given a limit ordinal 8 < k, assuming I is defined on the ordinals a < 3, define
I(B) and I(av — ) (for a < ) by choosing a cocone over the given a-chain in Z.

The above yields a chain I : k — Z. By construction, for every ordinal o < k, the
following diagram in £ commutes,

XI(a) —— hﬂ«n X1(v)

801(04)\[ lhgwée P
YI(la) — hﬂ«n YI(7)

wal lﬁgw by

Xl(a+1l) — ligKHXI(V%—l)

where the horizontal arrows are the respective colimiting cocone components. The com-
posite of the left column is XI(a - a+1) : XI(a) — XI(a+1), so hqu ©Cr(y) -

liéani XI(y) — @KR YI(v) is a split monomorphism in £. Similarly, the diagram
below commutes,
Yi(la) — HEKN YI(v)

wal lﬁgw Uy

XI(a+1) —— lim__ XI(7)

%"I(a+1>l fi&”“ PI(v)
YIia+1) — @7</{ YI(vy+1)
SO ligrlKl€ Pr(y) hﬂ«n XI(vy) — hﬂ«n YI(7) is also a split epimorphism in €. Thus,
I : k — 7 is the desired chain. |
The following notion is due to Makkai and Paré [1989].

1.7. DEFINITION. Let x and A\ be regular cardinals. We write ‘s <1 A’ and we say ‘k is
sharply less than )\’ for the following condition:

e £ < A and, for all A-small sets X, there is a A-small cofinal subset of & (X), the
set of all k-small subsets of X (partially ordered by inclusion).

1.8. EXAMPLE. If )\ is an uncountable regular cardinal, then Ng <1 A: indeed, for any
A-small set X, the set Py, (X) itself is A-small.

1.9. ExAMPLE. If )\ is a strongly inaccessible cardinal and x < A, then x < A: indeed,
for any A-small set X, the set 2, (X) itself is A-small.
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1.10. EXAMPLE. Let k™ be the cardinal successor of k. Then x < kT: every kT -small
set can be mapped bijectively onto an initial segment « of k£ (but possibly all of ), and
it is clear that the subposet

{816 <a} € Pula)
is a kT-small cofinal subposet of &, («a): given any r-small subset X C «, we must have
sup X < a, and X C sup X by definition.

The following is a partial converse to lemma 1.5.

1.11. PROPOSITION. Let C be a k-accessible category. If X is a regular cardinal and
Kk <\, then the following are equivalent for an object C' in C:

(i) C is a A-presentable object in C.

(ii) There is a A\-small k-filtered diagram A : J — C such that each Aj is a k-presentable
object in C and C' = thA.

(i) There is a A-small k-directed diagram A : J — C such that each Aj is a k-
presentable object in C and C' is a retract of ligj A.

PROOF. (i) < (ii). See Proposition 2.3.11 in [Makkai and Paré, 1989].

(i) < (iii). See the proof of Theorem 2.3.10 in [Makkai and Paré, 1989] or Remark 2.15
in [Addmek and Rosicky, 1994]. O

1.12. LEMMA. Let C be a k-accessible category, let A be a k-presentable object in C, and
let B be a A-presentable object in C. If the hom-set C(A, A’) is u-small for all k-presentable
objects A’ in C and k < X\, then the hom-set C(A, B) has cardinality < max {\, u}.

PrOOF. By proposition 1.11, there is a A-small k-filtered diagram Y : J — C such
that each Yj is a k-presentable object in C and B is a retract of hg 7 Y. Since A is a
r-presentable object in C, we have

C(A,hgjy) ~ i C(A,Y)
and the RHS is a set of cardinality < max{\, u} by lemma 1.5; but C(A, B) is a retract
of the LHS, so we are done. [ |

2. Accessible constructions

2.1. NOTATION. Throughout this section, k is an arbitrary regular cardinal.

2.2. DEFINITION. A strongly k-accessible functor is a functor F' : C — D with the
following properties:

e Both C and D are k-accessible categories.
e [ preserves colimits of small x-filtered diagrams.

e [’ sends k-presentable objects in C to k-presentable objects in D.
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2.3. EXaMPLE. Given any functor F' : A — B, if A and B are essentially small categories,
then the induced functor Ind”(F’) : Ind"(A) — Ind"(B) is strongly x-accessible. If B is
also idempotent-complete, then every strongly k-accessible functor Ind”(A) — Ind"(B)
is of this form (up to isomorphism).

2.4. PROPOSITION. [Products of accessible categories| If (C;|i € I) is a k-small family
of k-accessible categories, then:

(i) The product C =[]

sc1 Ci 18 a K-accessible category.

(ii) Moreover, the projection functors C — C; are strongly k-accessible functors.

PRrROOF. It is clear that C has colimits of small x-filtered diagrams: indeed, they can be
computed componentwise. Since [] : Set! — Set preserves colimits of small s-filtered
diagrams, an object in C is k-presentable as soon as its components are k-presentable ob-
jects in their respective categories. The product of a k-small family of k-filtered categories
is a r-filtered category, and moreover, the projections are cofinal functors, so it follows
that C is generated under small k-filtered colimits by a small family of k-presentable ob-
jects, as required of a k-accessible category. [

2.5. LEMMA. Let C and D be accessible categories and let F : C — D be a k-accessible
functor.

(i) There is a reqular cardinal \ such that F' is a strongly A-accessible functor.

(ii) Moreover, if ju is a reqular cardinal such that k < p and X\ < p, then F also sends
p-presentable objects in C to p-presentable objects in D.

PROOF. (i). See Theorem 2.19 in [Addamek and Rosicky, 1994].
(ii). Apply lemma 1.5 and proposition 1.11. O

2.6. PROPOSITION. If C is a locally k-presentable category and D is any small category,
then the functor category [D,C] is also a locally k-presentable category.

PROOF. See Corollary 1.54 in [Adamek and Rosicky, 1994]. O

2.7. PROPOSITION. Let C be a locally small category and let D be a k-small category.

(i) If X\ is a regular cardinal > K such that C has colimits of small \-filtered diagrams
and A : D — C is a diagram whose vertices are A-presentable objects in C, then A
is a A-presentable object in [D,C].

(ii) If C is a A-accessible category and has products for k-small families of objects, then
every A-presentable object in [D,C] is componentwise \-presentable.

PROOF. See (the proof of) Proposition 2.23 in [Low, 2013]. O
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2.8. DEFINITION. Given a regular cardinal x, a k-accessible subcategory of a k-
accessible category C is a subcategory B C C such that B is a k-accessible category
and the inclusion B < C is a k-accessible functor.

2.9. PROPOSITION. Let C be a k-accessible category and let B be a replete and full k-
accessible subcategory of C.

(i) If A is a k-presentable object in C and A is in B, then A is also a k-presentable
object in B.

(i) If the inclusion B < C is strongly k-accessible, then K, (B) = BNK,(C).

PROOF. (i). This is clear, since hom-sets and colimits of small s-filtered diagrams in B
are computed as in C.

(ii). Given (i), it suffices to show that every k-presentable object in B is also k-presentable
in C, but this is precisely the hypothesis that the inclusion B < C is strongly x-accessible.
[ |

2.10. LEMMA. Let C be a k-accessible category and let B be a full subcategory of C.
Assuming B is closed in C under colimits of small k-filtered diagrams, the following are
equivalent:

(i) The inclusion B < C is a strongly k-accessible functor.

(ii) Given a morphism f: X — Y inC, if X is a k-presentable object in C and 'Y is an
object in B, then f: X — 'Y factors through an object in B that is k-presentable as
an object in C.

PRrROOF. (i) = (ii). Let f: X — Y be a morphism in C. The hypothesis implies that Y is
a colimit in C of a small s-filtered diagram in BNK, (C); but X is a k-presentable object
in C, so f: X — Y must factor through some component of the colimiting cocone.

(ii) = (i). In view of lemma 1.5 and proposition 2.9, it suffices to show that every object
in B is a colimit (in C) of an essentially small x-filtered diagram in BN K, (C).

Let Y be an object in B and let J be the full subcategory of the slice category
C/y spanned by the objects (X, f) where X is an object in B that is a k-presentable
object in C. Clearly, J is a full subcategory of (K, (C)]Y). On the other hand, the
evident projection U : (K, (C) ] Y) — C is an essentially small s-filtered diagram and the
tautological cocone U = AY is a colimiting cocone.! Moreover, the hypothesis implies
that J is a w-filtered category and a cofinal subcategory of (K, (C) ] Y). Thus, Y is also
a colimit of the diagram obtained by restricting along the inclusion J — (K, (C) |Y).
This completes the proof. [ |

1See Proposition 2.1.5 in [Makkai and Paré, 1989] or Proposition 2.8 in [Adamek and Rosicky, 1994].
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2.11. PROPOSITION. Let F' : C — D be a strongly k-accessible functor and let D' be the
full subcategory of D spanned by the image of F.

(i) Ewvery object in D' is a colimit in D of some small k-filtered diagram consisting of
objects in D' that are k-presentable as objects in D.

(ii) Ewvery k-presentable object in D' is also k-presentable as an object in D.

(i) If D' is closed under colimits of small k-filtered diagrams in D, then D' is a k-
accessible subcategory of D.

PROOF. (i). Let D be any object in D'. By definition, there is an object C' in C such
that D = F'C, and since C is a k-accessible category, there is a small x-filtered diagram
X ' J — C such that each X7 is a k-presentable object in C and C' = li_n}JX. Since
F : C — D is a strongly k-accessible functor, each F'Xj is a k-presentable object in D
and we have D §@JFX.

(ii). Moreover, if D is a k-presentable object in D', then D must be a retract of FXj for
some object 7 in J, and so D is also k-presentable as an object in D.

(iii). Any object in D’ that is k-presentable as an object in D must be k-presentable as an
object in D', because D’ is a full subcategory of D that is closed under colimits of small
r-filtered diagrams. Thus, by (i), D’ is a k-accessible subcategory of D. [

2.12. THEOREM. [Accessibility of comma categories| Let F': C — € and G : D — & be
k-accessible functors.

(i) The comma category (F | G) has colimits of small k-filtered diagrams, created by
the projection functor (F | G) — C x D.

(ii) Given an object (C,D,e) in (F | G), if C is a k-presentable object in C, D is a
k-presentable object in D, and FC is a k-presentable object in €, then (C, D, e) is
a k-presentable object in (F | G).

(iii) If both F' and G are strongly k-accessible functors, then (F | G) is a k-accessible
category, and the projection functors P : (FF | G) — C and Q : (F | G) — D are
strongly k-accessible.

PROOF. See (the proof of) Theorem 2.43 in [Adamek and Rosicky, 1994]. O

2.13. COROLLARY. If C is a k-accessible category, then so is the functor category [2,C].
Moreover, the k-presentable objects in [2,C] are precisely the morphisms between k-present-
able objects in C.

PRrROOF. The functor category [2,C] is isomorphic to the comma category (C | C), and id :
C — C is certainly a strongly x-accessible functor, so this is a special case of theorem 2.12.
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2.14. THEOREM. [Accessibility of inverters| Let R, S : B — £ be k-accessible functors,
let ¢ : R = S be a natural transformation, and let B’ be the full subcategory of B spanned
by those objects B in B such that ¢ : RB — SB is an isomorphism in .

(i) B is closed in B under colimits of small k-filtered diagrams.

(ii) If both R and S are strongly \-accessible functors and k < X, then the inclusion
B' — B is strongly A-accessible.

PROOF. (i). Straightforward.

(ii). By lemma 2.10, it suffices to verify that, for every morphism f : B — B’ in B, if
B is a A-presentable object in B and B’ is in B’, then f : B — B’ factors through some
A-presentable object in B that is also in B’.

Since B is a A-accessible category, we may choose a small A-filtered diagram X : Z — B
such that each Xi is a A-presentable object in B and li X = B’. Since B is a A
presentable object in B, there is an object iy in Z such that f : B — B’ factors as a
morphism B — Xig in B followed by the colimiting cocone component Xiqg — B’. Then,
by lemma 1.6, there is a chain I : k — Z such that I(0) = i and B = ligw_C X1(7) is

in B'. Moreover, since k < A, B is a A-presentable object in B (by lemma 1.5). We have
thus obtained the required factorisation of f : B — B’. |

The next theorem is a variation on Proposition 3.1 in [Chorny and Rosicky, 2012]
and appears as the “pseudopullback theorem” in [Raptis and Rosicky, 2015]. Recall that
the iso-comma category (F ! G) for functors F' : C — £ and G : D — & is the full
subcategory of the comma category (F'| G) spanned by those objects (C, D,e) where
e: FFC — GD is an isomorphism in &.

2.15. THEOREM. [Accessibility of iso-comma categories| Let C, D, and &€ be categories
with colimits of small k-filtered diagrams, and let F : C — & and G : D — &€ be functors
that preserve colimits of small k-filtered diagrams.

(i) The iso-comma category (F 1 G) has colimits of small k-filtered diagrams, created by
the projection functor (F1G) — C x D.

(ii) Given an object (C,D,e) in (FU1G), if C is a A-presentable object in C, D is a
A-presentable object in D, and FC is a A-presentable object in £, then (C, D, e) is
a A-presentable object in (F1G).

(iii) If F and G are strongly A-accessible functors and x < X, then the inclusion (F ! G)
is a A-accessible category, and the projection functors P : (F1G) — C and @ :
(F1G) — D are strongly A-accessible.
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PROOF. (i). This is a straightforward consequence of the hypothesis that both F': C — &
and G : D — & preserve colimits of small x-filtered diagrams.

(ii). Apply proposition 2.9 and theorem 2.12.

(iii). By theorem 2.14, the inclusion (F'?1 G) — (F' | G) is a strongly A-accessible functor.
Since the class of strongly A-accessible functors is closed under composition, it follows that
the projections P : (F1G) — C and @ : (F 1 G) — D are also strongly A-accessible. N

2.16. PROPOSITION. Let C and £ be categories with colimits of small k-filtered diagrams,
let D be a replete and full subcategory of € that is closed under colimits of small k-filtered
diagrams, let F': C — & be a functor that preserves colimits of small k-filtered diagrams,
and let B be the preimage of D under F', so that we have the following strict pullback
diagram.:

(i) B is a replete and full subcategory of D and is closed under colimits of small k-filtered
diagrams in D.

(ii) If F: C — & and the inclusion D — &£ are strongly A-accessible functors and k < \,
then B is a A-accessible subcategory of C, and moreover, the inclusion B — C is also
strongly A-accessible.

PROOF. (i). Straightforward.

(ii). Consider the iso-comma category (F'?D) and the induced comparison functor K :
B — (FD). It is clear that K is fully faithful; but since D is a replete subcategory of C,
for every object (C,D,e) in (F D), there is a canonical isomorphism KC — (C, D, e),
namely the one corresponding to the following commutative diagram in &:

FC 4 pC

al le

FCT>D

Thus, K : B — (F D) is (half of) an equivalence of categories. Theorem 2.15 says the
projection P : (F D) — C is a strongly A-accessible functor, so we may deduce that the
same is true for the inclusion B — C. [

2.17. LEMMA. Let C be a locally k-presentable category and let T = (T,n, u) be a monad
on C. If the forgetful functor U : C* — C is strongly k-accessible, then so is the functor
T:C—C.

PROOF. The free T-algebra functor F' : C — CT is strongly k-accessible if the forgetful
functor U : CT — C is k-accessible; but T'= UF, so T is strongly k-accessible when U
is. [
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The following appears as part of Proposition 4.13 in [Ulmer, 1977].

2.18. THEOREM. [The category of algebras for a strongly accessible monad| Let C be
a locally \-presentable category, let T = (T,n,u) be a monad on C where T : C — C
preserves colimits of small k-filtered diagrams, and let C* be the category of algebras for
T. If T : C — C is a strongly A-accessible functor and k < X, then:

(i) Given a coequaliser diagram in C* of the form below,
(A,Oé) R <B76> — (077>

if A and B are A-presentable objects in C, then so is C.

(ii) Given a A\-small family ((A;, ;) |i € I) of T-algebras, if each A; is a A-presentable
object in C, then so is the underlying object of the T-algebra coproduct ), ; (A;, o).

(iii) The forgetful functor U : CT — C is strongly \-accessible.

PROOF. (i). By referring to the explicit construction of coequalisers in CT given in the
proof of Proposition 4.3.6 in [Borceux, 1994] and applying lemma 1.5, we see that C' is
indeed a A-presentable object in C when A and B are, provided T' : C — C preserves
colimits of small k-filtered diagrams and is strongly A-accessible.

(ii). Let F': C — CT be a left adjoint for U : CT — C. In the proof of Proposition 4.3.4 in
[Borceux, 1994], we find that the T-algebra coproduct ., (4;, a;) may be computed by
a coequaliser diagram of the following form:

F(Ziel TAi) : F(Ziel Ai) — Zz’el (A, i)

Since T' : C — C is strongly A-accessible, the underlying objects of the T-algebras
F(>,c;T4;) and F(3,.; A;) are A-presentable objects in C. Thus, by (i), the underlying
object of Y. ; (A;, a;) must also be a A-presentable object in C.

(iii). It is shown in the proof of Theorem 5.5.9 in [Borceux, 1994] that the full subcategory
F of C* spanned by the image of K, (C) under F : C — C" is a dense subcategory. Let G
be the smallest replete full subcategory of CT that contains F and is closed under colimits
of A-small diagrams in C. Observe that (i) and (ii) imply that the underlying object
of every T-algebra that is in G must be a A-presentable object in C. To show that the
forgetful functor U : C¥ — C is strongly A-accessible, it is enough to verify that every
A-presentable object in CT is in G.

It is not hard to see that the comma category (G| (A,«)) is an essentially small
Mfiltered category for any T-algebra (A, «), and moreover, it can be shown that the
tautological cocone for the canonical diagram (G | (A4,a)) — CT is a colimiting cocone.
Thus, if (A4, ) is a A-presentable object in CT, it must be a retract of an object in G. But
G is closed under retracts, so (4, «) is indeed in G. [ |
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The following result on the existence of free algebras for a pointed endofunctor is a
special case of a general construction due to Kelly [1980].

2.19. THEOREM. [Free algebras for a pointed endofunctor] Let C be a category with joint
coequalisers for k-small families of parallel pairs and colimits of chains of length < Kk, let
(J,1) be a pointed endofunctor on C such that J : C — C preserves colimits of k-chains,
and let CY be the category of algebras for (J,1).

(i) The forgetful functor U : CY) — C has a left adjoint, say F : C — C/Y),

(ii) Let X be a regular cardinal. If J : C — C sends \-presentable objects to \-presentable
objects and k < A, then the functor UF : C — C has the same property.

PROOF. Let X be an object in C. We define an object X, for each ordinal o < k, a
morphism ¢, : JX, = Xa41 for each ordinal o < k, and a morphism s, g : X, — X3 for
each pair (o, 3) of ordinals such that o < 5 < k by transfinite recursion as follows:

e We define Xy = X and 5o = idx,.

e For each ordinal 8 < &, given X, for all @ < 3, g, for all a < 3, and s, for all
a < 3, we define gg : JX3 — X341 to be the joint coequaliser of the parallel pairs

Jsa,p
JX, T JX;s

tX5%Sa+1,8%a
for all @« < . (In particular, qo : JXo — X; is an isomorphism.) We define

Sgr1,p+1 = 1dx,. ., Spar1 = qp O Lx,, and Su 511 = Sg 41 0 Sa,p for all a < 3, so that
we obtain a chain X, : (8 +2) — C.

e For each limit ordinal v < &, given X, for all @ < v and s, for all & < 8 < 7,
we define X, 1&1 Xq and s, = idy, and, for a <, we define s, to be the

components of the cohmltlng cocone.

Let X = X,.. By construction, for all &« < 3 < &, the diagram in C shown below

commutes,

TXa 2 gX;

—

X1 557 Sa+1,541 Xp+1

and by hypothesis, the morphisms Js, . : JX, — JX, constitute a col{miting cocone for
the evident chain JX, : kK — C, so there is a unique morphism ¢ : JX — X such that
G0 JSar = Sat1,k © Qo for all @ < k. Moreover,

(67 © LXH> O Sax =4O JSak ©Lx, = Sat1k ©a©lXy = Satlk © Saatl = Sax

so qotg =idyg, i.e. ( ) (J,1)-algebra.
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Define ny : X — X to be sg.. We will now show that ()_(, q) is a free (J,)-algebra
with unit nx. Let (Y,r) be any (J, ¢)-algebra and let f: X — Y be any morphism in C.
We construct a morphism f, : X, — Y for each ordinal @ < k by transfinite recursion:

e We define fy = f.

e For each ordinal § < &, given f, for all a < 3 such that the following equations are
satisfied,

f508a8=Jfa for all « < 8
Jatr10qa =10 Jfo for all « <

we also have

(roJfs)o (LXg O Sa+1,8 © qa) =701y 0 f30 544180 qa
= f808a11,8° Ga
= fa+1° Ga
—roJf,
= (roJfs)oJsags for all @ <

so we may define fzi; to be the unique morphism Xz;; — Y in C such that
fa+10qs =roJfz. Then,

Jr108pp41 = fay10qsoix, =roJfgoix, =rowyo fzg=fs
so we have fgy1 054841 = fo foralla < g+ 1.

e For each limit ordinal v < &, we define f, to be the unique morphism X, — Y in
C such that f, 05, = fq for all a <.

By construction, for all ordinals a < k,

(TOJfH)OJSa,K:TOJfa :fa—i-lOQOc:fmoSoz—i-l,mOQaZ (anQ)OJSa,n

soroJf,=fcoq ie f.:X,—Yisa (J,)-algebra homomorphism (X,,q) — (Y,r).
Moreover, for any homomorphism f : (X, q) — (Y,r) and any ordinal a < &,

fOSa 1,k oQa:foquSan:TOJfojsaﬁ
+7 ) )

80 if f 0 San = fa, then fos,yi . = far1; and for any limit ordinal v < &, if fos,,. = fa
for all @ < 7, then fos,, = fy as well. In particular, if fonx = f, then f = f. by
transfinite induction. Thus, there is a unique homomorphism f : (X,,q) — (Y,r) such
that fony = f.

The above argument shows that the comma category (X | U) has an initial object,
and it is well known that U has a left adjoint if and only if each comma category (X | U)
has an initial object, so this completes the proof of (i). For (ii), we simply observe that
K, (C) is closed under colimits of A-small diagrams in C (by lemma 1.5), so the above
construction can be carried out entirely in K, (C). |
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2.20. THEOREM. [The category of algebras for a accessible pointed endofunctor]| Let
J :C — C be a functor, let v : ide = J be a natural transformation, and let C) be the
category of algebras for the pointed endofunctor (J,¢).

(i) If C has colimits of small k-filtered diagrams and J : C — C preserves them, then
the forgetful functor U : CYY — C creates colimits of small k-filtered diagrams; and
if C is complete, then U : CY"") — C also creates limits for all small diagrams.

(ii) If C is an accessible functor, then CY) is an accessible category.

(iii) IfC has joint coequalisers for k-small families of parallel pairs and colimits of chains
of length < k and J : C — C preserves colimits of k-chains, then U : CYY — C is a
monadic functor.

PROOF. (i). This is analogous to the well known fact about monads: cf. Propositions
4.3.1 and 4.3.2 in [Borceux, 1994].

(ii). We may construct C”*) using inserters and equifiers, as in the proof of Theorem 2.78
in [Adamek and Rosicky, 1994].

(iii). The hypotheses of theorem 2.19 are satisfied, so the forgetful functor U : C*) — C
has a left adjoint. It is not hard to check that the other hypotheses of Beck’s monadicity
theorem are satisfied, so U is indeed a monadic functor. 0

2.21. THEOREM. [The category of algebras for a strongly accessible pointed endofunctor]
Let C be a locally \-presentable category, let J : C — C be a functor that preserves
colimits of small k-filtered diagrams, let v : ide = J be a natural transformation, and let
T = (T,n, ) be the induced monad on C. If J : C — C is a strongly A-accessible functor
and k < A, then:

(i) The functor T : C — C preserves colimits of small k-filtered diagrams and is strongly
A-accessible.

(i) CYY is a locally \-presentable category.
(iii) The forgetful functor U : CYY — C is a strongly A-accessible functor.

PROOF. (i). By theorem 2.20, the forgetful functor U : C**) — C creates colimits of small
r-filtered diagrams when J : C — C preserves colimits of small k-filtered diagrams, so
T : C — C must also preserve these colimits. Moreover, theorem 2.19 implies T : C — C
is strongly A-accessible if J: C — C is.

(ii). It is not hard to check that the forgetful functor C**) — C is a monadic functor, so
the claim reduces to the fact that C* is a locally A-presentable category if T : C — C is a
A-accessible functor.?

(iii). Apply theorem 2.18. [ |

2See Theorem 2.78 and the following remark in [Addmek and Rosicky, 1994], or Theorem 5.5.9 in
[Borceux, 1994].
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3. Accessibly generated categories

3.1. NoTATION. Throughout this section, x and A are regular cardinals such that x < \.

3.2. DEFINITION. A (k, A)-accessibly generated category is an essentially small cat-
egory C that satisfies the following conditions:

e Every A-small x-filtered diagram in C has a colimit in C.

e Every object in C is (the object part of) a colimit of some A-small x-filtered diagram
of (k, \)-presentable objects in C.

REMARK. In the case where A is a strongly inaccessible cardinal with x < A, the concept
of (k, A)-accessibly generated categories is very closely related to the concept of class-r-
accessible categories (in the sense of Chorny and Rosicky [2012]) relative to the universe
of hereditarily A-small sets, though there are some technical differences. For our purposes,
we do not need to assume that A is a strongly inaccessible cardinal.

3.3. REMARK. Every rk-small x-filtered category has a cofinal idempotent, so every object
is automatically (k, k)-presentable. Thus, an essentially small category is (k, k)-accessibly
generated if and only if it is idempotent-complete, i.e. if and only if all idempotent endo-
morphisms in C split.

3.4. REMARK. In the definition of ‘(k, \)-accessibly generated category’, we can replace
‘essentially small category’ with ‘locally small category such that the full subcategory of
(K, A)-presentable objects is essentially small’.

3.5. PROPOSITION. Let C be a k-accessible category.

(i) K,.(C) is a (k, k)-accessibly generated category, and every object in K, (C) is (K, k)-
presentable.

(i) If k < A, then K, (C) is a (k,\)-accessibly generated category, and the (k,\)-
presentable objects in K, (C) are precisely the r-presentable objects in C.

Proor. Combine lemma 1.5, proposition 1.11, and remark 3.3. [

3.6. DEFINITION. Let p be a regular cardinal such that A < p. A (k, A, p)-accessibly
generated extension is a functor F': A — B with the following properties:

e Ais a (k,\)-accessibly generated category.

B is a (k, u)-accessibly generated category.

F: A — B preserves colimits of A\-small x-filtered diagrams.

F sends (k, \)-presentable objects in A to (k, t)-presentable objects in B.

The induced functor F : K} A) — K#(B) is fully faithful and essentially surjective
on objects.
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REMARK. The concept of accessibly generated extensions is essentially a generalisation
of the concept of accessible extensions, as defined in [Low, 2013].

3.7. REMARK. Let C be a (k, \)-accessibly generated category. Then, in view of re-
mark 3.3, the inclusion K}(C) < C is a (k, k, \)-accessibly generated extension.

3.8. LEMMA. Let F': A — B be a (k, A, pn)-accessibly generated extension and let G : B —
C be a (K, u,v)-accessibly generated extension. If X < u, then the composite GF : A — C
is a (K, \,v)-accessibly generated extension.

PROOF. Straightforward. ¢

3.9. LEMMA. Let F: A — B be a (k, k, \)-accessibly generated extension.

(i) There is a functor U : B — Ind"(A) equipped with a natural bijection of the form

below,
Ind"(A)(A,UB) = B(FA,B)

and it 1s unique up to unique isomorphism.

(ii) Moreover, the functor U : B — Ind"(A) is fully faithful and preserves colimits of
A-small k-filtered diagrams.

(i) In particular, F': A — B is a fully faithful functor.

(iv) If & < A, then the A-accessible functor U : Ind*(B) — Ind*(A) induced by U : B —
Ind"(A) is fully faithful and essentially surjective on objects.

(v) In particular, if & <1 X, then Ind*(B) is a k-accessible category.

PROOF. (i). Let B be an object in B. By hypothesis, there is a A-small x-filtered diagram
X : J — Asuch that B lim  FX. Then, for every object A in A,

B(FA,B) =lim B(FA FX)=lim A(A X)
so there is an object UB in Ind"(.A) such that
Ind"(A)(A,UB) = B(FA, B)

for all objects A in A, and an object with such a natural bijection is unique up to unique
isomorphism, because A — Ind”(A) is a dense functor. A similar argument can be used
to define Ug for morphisms ¢ : By — B; in B, and it is straightforward to check that this
indeed defines a functor U : B — Ind"(A).

(ii). Let Y : J — B be a A-small -filtered diagram in B. Then, for any object A in A,
B(FA,hgj Y) ~ iy B(FA,Y)
= Jing_ Ind*(A)(A, UY)
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~ K 3
>~ Ind"(A) (A, liny | Uy)

so U : B — Ind"(A) indeed preserves colimits of A-small s-filtered diagrams. A similar
argument can be used to show that U : B — Ind"(A) is fully faithful.

(iii). The composite UF : A — Ind"(A) is clearly fully faithful, so it follows from (ii)
that F': A — B is fully faithful.

(iv). Proposition 1.11 implies that U : B — Ind"(\A) is essentially surjective onto the full
subcategory of A-presentable objects in Ind"(.A). Moreover, since k < A, Ind"(.A) is also
a A-accessible category,® and it follows that the induced A-accessible functor Ind*(B) —
Ind"(A) is fully faithful and essentially surjective on objects.

(v). We know that Ind"(A) is a r-accessible category, so it follows from (iv) that Ind*(B)
is also a k-accessible category. [ |

3.10. PROPOSITION. Let F': A — B be a (k,\, u)-accessibly generated extension. As-
suming either kK =\ or k <1 A:

(i) There is a functor U : B — Ind*(A) equipped with a natural bijection of the form

below,
Ind*(A)(A,UB) = B(FA, B)

and it 1s unique up to unique isomorphism.

(ii) Moreover, the functor U : B — Ind*(A) is fully faithful and preserves colimits of
pu-small \-filtered diagrams.

(iii) In particular, F': A — B is a fully faithful functor.

(iv) If X < p, then the p-accessible functor U : Ind*(B) — Ind*(A) induced by U : B —
Ind’\(A) 18 fully faithful and essentially surjective on objects.

(v) In particular, if X < u, then Ind"(B) is a k-accessible category.

PROOF. Remark 3.7 says the inclusion K}(A) < A is a (s, k, A)-accessibly generated
extension, so by lemma 3.8, the composite K}(A) < A — B is a (k, k, u)-accessible
generated extension. Moreover, x <1 i, so the claims follow, by (two applications of)
lemma 3.9. |

3See Theorem 2.3.10 in [Makkai and Paré, 1989] or Theorem 2.11 in [Addmek and Rosicky, 1994].
4See Proposition 2.3.2 in [Makkai and Paré, 1989).
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3.11. THEOREM. If either k = X or Kk < A, then the following are equivalent for a
tdempotent-complete category C:

(i) C is a (K, \)-accessibly generated category.
(ii) Ind*(C) is a K-accessible category.
(ili) C is equivalent to K, (D) for some r-accessible category D.

PROOF. (i) = (ii). Apply lemma 3.9 to remark 3.7.

(ii) = (iii). It is not hard to check that every A-presentable object in Ind*(C) is a retract of
some object in the image of the canonical embedding C — Ind*(C). But C is idempotent-
complete, so the canonical embedding is fully faithful and essentially surjective onto the
full subcategory of A\-presentable objects in Ind’\(C ).

(iii) = (i). See proposition 3.5. [
3.12. COROLLARY. If C is a (k, \)-accessibly generated category, then so is [2,C].

ProoFr. Combine corollary 2.13 and theorem 3.11. [ |

4. Accessible factorisation systems

4.1. NOTATION. Throughout this section, x is an arbitrary regular cardinal.

4.2. LEMMA. Let C be a category with colimits of small k-filtered diagrams, let T be a
subset of mor C, and let Z? be the class of morphisms in C with the right lifting property
with respect to Z. If the domains and codomains of the members of I are k-presentable
objects in C, then % (regarded as a full subcategory of [2,C]) is closed under colimits of
small k-filtered diagrams in [2,C].

PROOF. By proposition 2.7, any element of Z is k-presentable as an object in [2,C]. Thus,
given any morphism ¢ : e — lim _ f in [2,C] where e isin Z and f: J — [2,C] is a small
k-filtered diagram with each vertex in Z%, ¢ must factor through fj — hﬂ 7 f for some
j in J (by considering limy [2,C](e, f)) and so we can construct the required lift. |

4.3. LEMMA. Let C be a k-accessible category and let R be a k-accessible full subcategory
of [2,C]. If g : Z — W is a morphism in C where both Z and W are k-presentable objects
in C, then:

(i) Given a morphism f : X — Y in C that is in R, any morphism g — f in [2,C]
admits a factorisation of the form g — f' — f where f is in K_(R).

(ii) The morphism g : Z — W has the left lifting property with respect to R if and only
if it has the left lifting property with respect to K, _(R).
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PROOF. (i). Proposition 2.7 says that g is a k-presentable object in [2,C]; but every
object in R is the colimit of a small x-filtered diagram of x-presentable objects in R, and
the inclusion R < [2,C] is k-accessible, so any morphism g — f must factor through
some k-presentable object in R.

(ii). If g has the left lifting property with respect to R, then it certainly has the left
lifting property with respect to K, (R). Conversely, by factorising morphisms g — f as
in (i), we see that g has the left lifting property with respect to R as soon as it has the
left lifting property with respect to K,_(R). [ |

4.4. THEOREM. [Quillen’s small object argument] Let k be a reqular cardinal, let C be a
locally k-presentable category, and let Z be a small subset of mor C.

(i) There exists a functorial weak factorisation system (L, R) on C whose right class is
Z9: in particular, there is a weak factorisation system on C cofibrantly generated by

7.

(ii) If the morphisms that are in L are k-presentable as objects in [2,C], then (L, R) can
be chosen so that the functors L, R : [2,C] — [2,C] are k-accessible.

(iii) In addition, if X is a reqular cardinal such that every hom-set of K _(C) is A-small, T
is A-small, and k < A, then (L, R) can be chosen so that the functors L, R : [2,C] —
[2,C] preserve A-presentable objects.

PROOF. (i). See e.g. Proposition 10.5.16 in [Hirschhorn, 2003].

(ii) and (iii). These claims can be verified by tracing the construction of L and R and
applying lemmas 1.5 and 1.12. U

4.5. REMARK. The algebraically free natural weak factorisation system produced by
Garner’s small object argument [Garner, 2009] satisfy claims (i) and (iii) of the above
theorem (under the same hypotheses). The proof is somewhat more straightforward, be-
cause the right half of the resulting algebraic factorisation system can be described in
terms of a certain density comonad.

4.6. PROPOSITION. Let C be a locally presentable category, let (L, R) be a functorial
weak factorisation system on C, and let X : idpe) = R be the natural transformation
whose component at an object f in [2,C| corresponds to the following commutative square
mn C:

Lf

C

Let R be the full subcategory of [2,C] spanned by the morphisms in C that are in the right
class of the induced weak factorisation system.
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(i) R is also the full subcategory of [2,C] spanned by the image of the forgetful func-
tor [2,C]"Y = [2,C], where [2,C]TY s the category of algebras for the pointed
endofunctor (R, \).

(ii) If R:[2,C] — [2,C] is an accessible functor, then [2,C)™ is a locally presentable
category, and the forgetful functor [Z,C](R“\) — [2,C] is monadic.

(iii) If R : [2,C] — [2,C] is strongly m-accessible and preserves colimits of k-filtered
diagrams, where k < m, and R s closed under colimits of small w-filtered diagrams
in [2,C], then R is a w-accessible subcategory of [2,C].

PRrROOF. (i). This is essentially the retract argument. See also Theorem 2.4 in [Rosicky
and Tholen, 2002].

(ii). Apply theorem 2.20.

(iii). By theorem 2.21, [Z,C](R”\) is a locally m-presentable category, and the forgetful
functor [2,C] (B _, [2,C] is moreover strongly m-accessible. Thus, we may apply propos-
ition 2.11 to (i) and deduce that R is a m-accessible subcategory. |

4.7. PROPOSITION. Let C be a locally presentable category, and let L be a subset of morC.
Then Z2, considered as a full subcategory of [2,C]|, is an accessible subcategory.

ProOOF. Combine theorem 4.4 and proposition 4.6. [

5. Strongly combinatorial model categories

To apply the results of the previous section to the theory of combinatorial model categor-
ies, it is useful to collect some convenient hypotheses together as a definition:

5.1. DEFINITION. Let x and A be regular cardinals. A strongly (k, \)-combinatorial
model category is a combinatorial model category M that satisfies these axioms:

e M is a locally k-presentable category, and x <1 A.
e K, (M) is closed under finite limits in M.
e Each hom-set in K, (M) is A-small.

e There exist A-small sets of morphisms in K, (M) that cofibrantly generate the model
structure of M.

5.2. REMARK. Let M be a strongly (k, A)-combinatorial model category and let A < p.
Then k <1 ju, so by lemma 2.5, K ,(M) is also closed under finite limits. Hence, M is also
a strongly (k, pt)-combinatorial model category.

5.3. EXAMPLE. Let sSet be the category of simplicial sets. sSet, equipped with the
Kan—Quillen model structure, is a strongly (N, N;)-combinatorial model category.
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5.4. EXAMPLE. Let R be aring, let Ch(R) be the category of unbounded chain complexes
of left R-modules, and let A be an uncountable regular cardinal such that R is A-small
(as a set).

It is not hard to verify that Ch(R) is a locally Ng-presentable category where the
No-presentable objects are the bounded chain complexes of finitely presented left
R-modules.

The A-presentable objects in Ch(R) are precisely the chain complexes M, such that
Y nezl M| < A, so the full subcategory of A-presentable objects is closed under finite
limits.

By considering matrices over R, we deduce that the set of chain maps between any
two Ng-presentable objects in Ch(R) is A-small.

The cofibrations in the projective model structure on Ch(R) are generated by a
countable set of chain maps between Ng-presentable chain complexes, as are the
trivial cofibrations.

Thus, Ch(R) is a strongly (Rg, A)-combinatorial model category.

5.5. EXAMPLE. Let Sp™ be the category of symmetric spectra of Hovey et al. [2000] and
let A be a regular cardinal such that ®; < A and 2% < . (Such a cardinal exists: for
instance, we may take A to be the cardinal successor of 22%; or, assuming the continuum
hypothesis, we may take A = N,.)

The category of pointed simplicial sets, sSet,, is locally Ny-presentable; hence, so
is the category [X,sSet.| of symmetric sequences of pointed simplicial sets, by
proposition 2.6. There is a symmetric monoidal closed structure on [, sSet.,| such
that Sp¥ is equivalent to the category of S-modules, where S is (the underlying
symmetric sequence of) the symmetric sphere spectrum defined in Example 1.2.4 in
op. cit.; thus, Sp¥ is the category of algebras for an Ry-accessible monad, hence is
itself is a locally Ny-presentable category.

Since (the underlying symmetric sequence of) S is an Wj-presentable object in
[X, sSet.], we can apply proposition 2.7 and theorem 2.18 to deduce that the N;-
presentable objects in Sp> are precisely the ones whose underlying symmetric se-
quence consists of countable simplicial sets. Hence, Ky, (sz) is closed under finite
limits, and the same is true for K, (Sp*) because X; <1 \.

It is clear that there are < 2% morphisms between two N;-presentable symmet-
ric sequences; in particular, there are < A morphisms between two N;-presentable
symmetric spectra.

The functor (—),, : Sp> — sSet that sends a symmetric spectrum X to the simpli-
cial set X,, preserves filtered colimits, so its left adjoint F,, : sSet — Sp> preserves
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No-presentability. Thus, the set of generating cofibrations for the stable model struc-
ture on Sp> given by Proposition 3.4.2 in op. cit. is a countable set of morphisms
between Ny-presentable symmetric spectra.

Using the fact that the mapping cylinder of a morphism between two N;-presentable
symmetric spectra is also an Nj-presentable symmetric spectrum, we deduce that
the set of generating trivial cofibrations given in Definition 3.4.9 in op. cit. is a
countable set of morphisms between N;-presentable symmetric spectra.

We therefore conclude that Sp*™ is a strongly (R;, \)-combinatorial model category.

5.6. PROPOSITION. For any combinatorial model category M, there exist reqular cardin-
als k and X such that M is a strongly (k, \)-combinatorial model category.

PROOF. In view of lemma 2.5, this reduces to the fact that there are arbitrarily large A
such that kK < \.° [ |

5.7. PROPOSITION. Let M be a strongly (k, \)-combinatorial model category.

(i) There exist (trivial cofibration, fibration)- and (cofibration, trivial fibration)-factor-
1sation functors that are k-accessible and strongly \-accessible.

(ii) Let F (resp. F') be the full subcategory of [2, M| spanned by the fibrations (resp.
trivial fibrations). Then F and F' are closed under colimits of small k-filtered
diagrams in (2, M].

PROOF. (i). Since the weak factorisation systems on M are cofibrantly generated by
A-small sets of morphisms in K, (M) and the hom-sets of K, (M) are all A\-small, we may
apply theorem 4.4 to obtain the required functorial weak factorisation systems.

(ii). This is a special case of lemma 4.2. [

5.8. LEMMA. Let M be a category with limits and colimits of finite diagrams and let
(C',F) and (C,F') be weak factorisation systems on M. Assume W is a class of morph-
isms in C with the following property:

WC{gojljeC qeF'}
The following are equivalent:
(i) (C,W,F) is a model structure on M.
(ii) W has the 2-out-of-3 property in M, C'=CNW, and F' =W N F.
(iii) W has the 2-out-of-8 property in M, C' CW, and F' = WNF.

®See Corollary 2.3.6 in [Makkai and Paré, 1989], or Example 2.13(6) in [Addmek and Rosicky, 1994],
or Corollary 5.4.8 in [Borceux, 1994].
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PROOF. (i) = (ii). Use the retract argument.
(i) = (iii). Immediate.

(iii) = (ii). Suppose i : X — Z is in C N W; then there must be j : X — Y in C’ and
q:Y — Z in F' such that i = ¢ o j, and so we have the commutative diagram shown
below:

Since i 4 ¢, ¢ must be a retract of j; hence, ¢ is in C’, and therefore CNW C C'.
(ii) = (i). See Lemma 14.2.5 in [May and Ponto, 2012]. |

5.9. THEOREM. Let (L', R) and (L, R’) be functorial weak factorisation systems on a
locally presentable category M and let F and F' be the full subcategories of [2, M| spanned
by the morphisms in the right class of the weak factorisation systems induced by (L', R)
and (L, R), respectively. Suppose k and X are reqular cardinals satisfying the following
hypotheses:

o M is a locally k-presentable category, and Kk < \.
e F and F' are closed under colimits of small k-filtered diagrams in [2, M].
e R R :[2,M] — [2, M] are both k-accessible and strongly A-accessible.

Let C' be the full subcategory of (2, M] spanned by the morphisms in the left class of the
weak factorisation system induced by (L', R) and let W be the preimage of F' under the
functor R : [2, M] — [2, M]. Then:

(i) The functorial weak factorisation systems (L', R) and (L, R') restrict to functorial
weak factorisation systems on K, (M).

(ii) The inclusions F < [2, M] and F' — [2, M| are strongly \-accessible functors.

(iii) W is closed under colimits of small k-filtered diagrams in [2, M], and the inclusion
W — [2, M] is a strongly \-accessible functor.

(iv) C" C W if and only if the same holds in K, (M).
(v) F'=WnNF if and only if the same holds in K,(M).

(vi) W (regarded as a class of morphisms in M) has the 2-out-of-3 property in M if
and only if the same is true in K, (M).

(vii) The weak factorisation systems induced by (L', R) and (L, R') underlie a model
structure on M if and only if their restrictions to K, (M) underlie a model structure

on K,(M).
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PROOF. (i). It is clear that we can restrict (L', R) and (L, R') to obtain functorial fac-

torisation systems on K, (M), and these are functorial weak factorisation systems by
Theorem 2.4 in [Rosicky and Tholen, 2002].

(ii). Since R, R’ : [2, M] — [2, M] are both k-accessible and strongly A-accessible, we
may use proposition 4.6 to deduce that the inclusions F — [2, M] and F' < [2, M| are
strongly A-accessible.

(iii). Since F’ is a replete full subcategory of [2, M], we may use proposition 2.16 to
deduce that W is closed under colimits of small x-filtered diagrams in [2, M] and that
the inclusion W — [2, M] is a strongly A-accessible functor.

(iv). The endofunctor L' : [2, M] — [2, M] is strongly A-accessible, and W is closed
under colimits of small M-filtered diagrams, so (recalling propositions 2.6 and 2.7) if L/
sends the subcategory [2,K,(M)] to W, then the entirety of the image of L' must be
contained in W. The retract argument implies that every object in C’ is a retract of an
object in the image of L', and (iii) implies W is closed under retracts, so we may deduce
that C' C W if and only if C'N[2, K,(M)] CW N [2,K,(M)].

(v). Claims (ii) and (iii) and proposition 2.16 imply the inclusion W N F — [2, M] is
strongly A-accessible; but by propositions 2.7 and 2.9,

K,(F)=Fn[2,K,(M)] K WnF)=WnF)n[2,K,(M)]

so F'=WnNZFif and only if 7/ N[2,K,(M)]=WnNF)n[2,K,(M)].

(vi). Consider the three full subcategories A?(W) (where i € {0,1,2}) of [3, M] spanned
(respectively) by the diagrams of the form below:

By proposition 2.4, each inclusion A?(W) < [3, M] is the pullback of a strongly A-
accessible inclusion of a full subcategory of |2, M]XS along the evident projection functor
3, M] — [2, M]"®; thus, each inclusion A2(W) — [3, M] is a strongly A-accessible
functor. We may then use proposition 2.9 as above to prove the claim.

(vii). Apply lemma 5.8. |

5.10. COROLLARY. Let M be a strongly (k, \)-combinatorial model category. Then the
full subcategory W of [2, M| spanned by the weak equivalences is closed under colimits
of small k-filtered diagrams in (2, M], and the inclusion W — [2, M] is a strongly \-
accessible functor.

ProoOF. Combine proposition 5.7 and theorem 5.9. |
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Theorem 5.9 suggests that free A-ind-completions of suitable small model categories
are combinatorial model categories. More precisely:

5.11. DEFINITION. Let x and A be regular cardinals. A (k,\)-miniature model cat-
egory is a model category M that satisfies these axioms:

e M is a (k, \)-accessible generated category, and k£ <1 A.

e M has limits for finite diagrams and colimits of A-small diagrams.
e Each hom-set in K}(M) is A-small.

e There exist A-small sets of morphisms in K2 (M) that cofibrantly generate the model
structure of M.

5.12. PROPOSITION. If M is a strongly (k, X)-combinatorial model category, then K, (M)
is a (K, \)-miniature model category (with the weak equivalences, cofibrations, and fibra-
tions inherited from M ).

PROOF. By theorem 3.11, K, (M) is a (k, A)-accessible generated category, and lemma 1.5
implies it is closed under colimits of A-small diagrams in M. Now, choose a pair of
functorial factorisation systems as in proposition 5.7, and recall that a morphism is in the
left (resp. right) class of a functorial weak factorisation system if and only if it is a retract
of the left (resp. right) half of its functorial factorisation. Since we chose factorisation
functors that are strongly A-accessible, it follows that the weak factorisation systems on
M restricts to weak factorisation systems on K, (M). It is then clear that K, (M) inherits
a model structure from M, and lemma 4.3 implies the model structure on K, (M) can
be cofibrantly generated by A-small sets of morphisms in K, (M). The remaining axioms
for a A-miniature model category are easily verified. [

5.13. REMARK. The subcategory K, (M) inherits much of the homotopy-theoretic struc-
ture of M. For instance, K, (M) has simplicial and cosimplicial resolutions and the inclu-
sion K, (M) — M preserves them, so HoK, (M) — Ho M is a fully faithful (HosSet)-
enriched functor, where the (Ho sSet)-enrichment is defined as in [Hovey, 1999, Ch. 5]. In
particular, the induced functor between the ordinary homotopy categories is fully faithful.

5.14. THEOREM. Let K be a (k,\)-miniature model category, let M be the free A-ind-
completion Ind)‘(lC), and let v : IC — M be the canonical embedding.

(i) There is a unique way of making M into a strongly (k,\)-combinatorial model
category such that v : IC — M preserves and reflects the model structure.

(ii) Moreover, for any model category N* with colimits of all small diagrams, restriction
along v : K — M induces a functor
e from the full subcategory of [M,N] spanned by the left Quillen functors

e to the full subcategory of [IC, N'] spanned by the functors that preserve cofibra-
tions, trivial cofibrations, and colimits of A-small diagrams.
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PROOF. (i). We will identify I with the image of v : K — M. Note that M is a locally
k-presentable category, by theorem 3.11. Let Z (resp. Z') be a A-small set of morphisms
in K)(K) that generate the cofibrations (resp. trivial cofibrations) in K. Let (L', R)
and (L, R') be functorial weak factorisation systems cofibrantly generated by Z' and Z
respectively; by theorem 4.4, we may assume R, R’ : [2, M| — [2, M] preserve colimits of
small k-filtered diagrams and are strongly A-accessible functors.

Let F and F’ be the full subcategories of [2, M] spanned by the right class of the
weak factorisation systems induced by (L', R) and (L, R'), respectively. It is not hard to
see that any morphism in K is an object in F (resp. F') if and only if it is a fibration
(resp. trivial fibration) in . Lemma 4.2 says F and F’ are closed under colimits of small
r-filtered diagrams in [2, M], so we may now apply theorem 5.9 to deduce that F and F’
induce a model structure on M. It is clear that M equipped with this model structure
is then a strongly (k, A)-combinatorial model category in a way that is compatible with
the canonical embedding I — M.

Finally, to see that the above construction is the unique way of making M into a
strongly (k, A)-combinatorial model category satisfying the given conditions, we simply
have to observe that the model structure of a strongly (&, A)-combinatorial model category

is necessarily cofibrantly generated by the cofibrations and trivial cofibrations in (a small
skeleton of ) K, (M) (independently of the choice of Z and 7).

(ii). Clearly, every left Quillen functor F' : M — N restricts to a functor Fy : L — A that
preserves cofibrations, trivial cofibrations, and colimits of A\-small diagrams. Conversely,
given any such functor F’ : K — A/, we may apply the universal property of M = Ind*(K)
to obtain a A-accessible functor F' : M — N such that Fy = F’. Since cofibrations and
trivial cofibrations in M are generated under colimits of A-filtered diagrams by cofibrations
and trivial cofibrations in K, the functor F : M — N preserves cofibrations and trivial
cofibrations if F’ : K — N does. A similar argument (using proposition 2.6) shows that
F : M — N preserves colimits of A-small diagrams. Thus, F' : M — N preserves
colimits of all small diagrams,’ so it has a right adjoint (by e.g. the special adjoint functor
theorem) and is indeed a left Quillen functor. |

5.15. REMARK. Let U and U™ be universes, with U € U™, let M be a strongly (k, \)-
combinatorial model U-category, and let M < M™ be a (k, U, UT)-extension in the
sense of [Low, 2013]. By combining proposition 5.12 and theorem 5.14, we may deduce
that there is a unique way of making M™ into a strongly (x, \)-combinatorial model U*-
category such that the embedding M — M™ preserves and reflects the model structure.
In view of proposition 5.6, it follows that every combinatorial model U-category can be
canonically extended to a combinatorial model UT-category; moreover, by Theorem 3.11
in op. cit., the extension does not depend on (&, \).

The techniques used in the proof of theorem 5.9 are easily generalised to combinatorial
model categories with desirable properties.

6See Lemma 2.25 in [Low, 2013].
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5.16. THEOREM. Let M be a strongly (k, \)-combinatorial model category. The following
are equivalent:

(i) M is a right proper model category.
(ii) K, (M) is a right proper model category.

PROOF. (i) = (ii). Immediate, because the model structure on K, (M) is the restriction
of the model structure on M and K, (M) is closed under finite limits in M.

(ii) = (i). Let D = {® — o <— @}, i.c. the category freely generated by a cospan. Since D is
a finite category and M is a locally k-presentable category, proposition 2.6 says [D, M| is
also a locally k-presentable category, and proposition 2.7 implies the x-presentable objects
in [D, M] are precisely the componentwise k-presentable objects. Thus, the functor A :
M — [D, M] is strongly k-accessible, so its right adjoint @D . [D,M] — M is k-
accessible; moreover, it is strongly A-accessible because K,(M) is closed under finite
limits in M.

Consider the full subcategory P C [D, M] spanned by those diagrams in M of the
form below,

where p is a fibration and w is a weak equivalence. Propositions 2.16 and 5.7, theorem 5.9,
and corollary 5.10 together imply that P is closed under colimits of small k-filtered dia-
grams in [D, M] and that the inclusion P — [D, M| is a strongly A-accessible functor.
Since lim_ [D, M] — M is strongly A-accessible and the class of weak equivalences in
M is C%SGd under M-filtered colimits in [2, M], it follows that M is right proper if K, (M)
is. [

5.17. REMARK. It is tempting to say that the analogous proposition for left properness
follows by duality; unfortunately, the opposite of a combinatorial model category is almost
never a combinatorial model category! Nonetheless, the main idea in the proof above can
be made to work under the assumption that the category of coalgebras for the left half
of the functorial (cofibration, trivial fibration)-factorisation system is generated under
colimits of small Mfiltered diagrams of coalgebras whose underlying object in [2, M] is a
cofibration in K, (M). It is not clear whether this hypothesis is always satisfied if we only
assume that M is a strongly (k, A)-combinatorial model category, but it is certainly true
if A\ is sufficiently large, because the category of coalgebras for an accessible copointed
endofunctor is always accessible (by an analogue of theorem 2.21) and any accessible
functor is strongly A-accessible for large enough A (by lemma 2.5).

5.18. THEOREM. Let M be a locally small simplicially enriched category where the un-
derlying ordinary category M is equipped with a model structure making it a strongly
(K, A)-combinatorial model category. Assuming the simplicially enriched full subcategory
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K, (M) C M determined by K, (M) is closed under cotensor products with finite simpli-
cial sets in M, the following are equivalent:

(i) M is a simplicial model category.
(ii) The model structure of K, (M) satisfies axiom SM7.

PROOF. (i) = (ii). Immediate, because the model structure of K, (M) is the restriction
of the model structure of M.

(ii) = (i). Recalling the fact that sSet is a strongly (Ng, X;)-combinatorial model category,
this is a consequence of proposition 5.7. [

5.19. REMARK. In view of the above theorem, it should seem very likely that the free
A-ind-completion of a suitable small simplicial model category will again be a simplicial
model category. To prove this, we require the technology of enriched accessibility intro-
duced by Kelly [1982] and Borceux and Quinteriro [1996]; in fact, the only thing we need
is to show that the free A-ind-completion of a A-cocomplete sSet-enriched category is a
cocomplete sSet-enriched category, and this can be done by mimicking the proof for the
case of ordinary categories. The details are left to the reader.
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