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THE LOCAL JOYAL MODEL STRUCTURE

NICHOLAS J. MEADOWS

Abstract. The Joyal model structure on simplicial sets is extended to a model struc-
ture on the simplicial presheaves on a small site, in which the cofibrations are monomor-
phisms and the weak equivalences are local (or stalkwise) Joyal equivalences. The model
structure is shown to be left proper.

Introduction

The purpose of this paper is develop an analog of the Jardine model structure on simplicial
presheaves in which, rather than having the weak equivalences be ’local Kan equivalences’,
the weak equivalences are ’local Joyal equivalences’. This model structure is called the
local Joyal model structure.

The motivation for the creation of this model structure was to develop a tool for the
study of higher-dimensional automata. Higher-dimensional automata are finite cubical
sets K that model concurrent processes; each k-cell of a cubical complex represents k pro-
cesses acting simultaneously, the vertices represent system states, and morphisms in the
path category P (K)(x, y) represent execution paths between states x and y. Computing
the path category for a cubical set specializes to computing the path category of a sim-
plicial set via the triangulation functor (see [5] ). The path category object is naturally
understood in terms of the Joyal model structure; Joyal equivalences induce equivalences
of path categories, but path categories are not a standard homotopy invariant. The hope
is that this model structure will provide a framework to apply homotopy theoretic tech-
niques such as descent theory to get a local to global analysis of the behavior of cellular
automata.

Section 1 reviews some facts about quasi-categories and the Joyal model structure that
will be used to prove the main theorem of the text. In particular, the path category and
core of quasi-category are described. Joyal equivalences are characterized in a manner
compatible with Boolean localization (Lemma 1.10).

Section 2 is devoted to reviewing the technique of Boolean localization, which is es-
sential to proving the existence of the Jardine model structure for simplicial presheaves
(as well as the model structure of this paper). Boolean localization states that every
Grothendieck topos has a surjective morphism to the topos of sheaves on a complete
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Boolean algebra. This theorem is proven in [9]. The article [2] of Jardine gives a proof
of the existence of the Jardine model structure based on the technique of Boolean local-
ization. However, Jardine’s recent book, [4], is a more recent and complete exposition of
various model structures on simplicial presheaves and their construction.

Section 3 is devoted to proving the existence of the Joyal model structure. Section 4
describes the corresponding model structure for simplicial sheaves. It also gives a concrete
description of the local Joyal model structure on the simplicial sheaves on a Boolean site.

Notational Conventions

Write B(C) for the nerve of a small category C. Write sSet for the category of simplicial
sets and Cat for the category of small categories. Given simplicial setsK,Y , let hom(K,Y )
denote the set of morphisms between them. Write hom(K,Y ) for the simplicial set whose
n-simplices are maps ∆n × K → Y . Write P : sSet → Cat for the left adjoint of B; if
X is a simplicial set P (X) is called the path category of X. In [7], the notation τ1 is
used for the left adjoint of B and τ1(X) is called the fundamental category of X. The
notation P was chosen due to the theoretical computer science motivations behind this
paper (see the introduction to [5]). Write π(X) = P (X)[P (X)]−1 for the fundamental
groupoid of a simplicial set. Finally, τ0(K,X) will denote Joyal’s set, which is defined
to be the isomorphism classes in P (hom(K,X)).

Denote by sPre(C ) the simplicial presheaves on a Grothendieck site C . Denote by
sSh(C ) the simplicial sheaves on C . Write L2 : sPre(C )→ sSh(C ) for the sheafification
functor (see [2], [4]). Local weak equivalences are defined to be weak equivalence in
the Jardine model structure on simplicial presheaves, as described in [4, pg. 63-64]. A
sectionwise weak equivalence f : X → Y of simplicial presheaves on a site C is a map of
simplicial presheaves so that X(U)→ Y (U) is a weak equivalence for all U ∈ C ,

1. Preliminaries on Quasi-Categories

1.1. Definition. An inner fibration is a map of simplicial sets which has the right
lifting property with respect to all inner horn inclusions Λn

i ⊂ ∆n, 0 < i < n. Say that a
simplicial set X is a quasi-category if the map X → ∗ is an inner fibration.

The existence of the Joyal model structure on simplicial sets is asserted in [8, Theorem
2.2.5.1] and [7, Theorem 6.12]. The fibrant object of this model structure are the quasi-
categories. The cofibrations are monomorphisms. The weak equivalences of this model
structure are called Joyal equivalences. They are defined to be maps f : A → B, so
that for each quasi-category X, the map

τ0(B,X)→ τ0(A,X)

is a bijection. The fibrations of this model structure are called quasi-fibrations. The
trivial fibrations are the trivial Kan fibrations.
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1.2. Lemma. The functor P is left adjoint to the nerve functor B. Moreover, P preserves
finite products.

1.3. Lemma. A Joyal equivalence induces an equivalence of path categories.

Proof. Let f : X → Y be a Joyal equivalence of quasi-categories. Then X × I is a
cylinder object for X in the Joyal model structure. Then there exists a map g : Y → X
and homotopies f ◦ g ∼ idY , g ◦ f ∼ idX . Since P (I) = π(∆1) and P preserves finite
products, P (f) is an equivalence of categories.

If f : X → Y is a Joyal equivalence, form the diagram

X
iX
//

f

��

L(X)

L(f)

��
Y

iY
// L(Y )

where the horizontal maps are the natural fibrant replacements for the Joyal model struc-
ture (i.e. constructed by taking transfinite composites of pushouts of inner horn inclu-
sions). By [7, Lemma 1.6] the maps P (Λn

i )→ P (∆n) induced by inner horn inclusions are
isomorphism. Thus, since P commutes with products P (iX) and P (iY ) are isomorphisms.
Thus, the first paragraph implies that P (X) → P (Y ) is an equivalence of categories, as
required.

1.4. Definition. Suppose that X is a quasi-category. Say that 1-simplices α, β : x → y
of X are right homotopic, written by α ⇒R β , if and only if there exists a 2-simplex
with boundary

y

s0(y)

��
x

α

GG

β
// y

Similarly, say that β, α are left homotopic (written β ⇒L α) if and only if there exists
a 2-simplex with boundary:

x

α

��
x

s0(x)

GG

β
// y

1.5. Lemma. If α and β are 1-simplices, then

α⇒R β (i) ⇐⇒ β ⇒R α (ii) ⇐⇒ α⇒L β (iii) ⇐⇒ β ⇒L α (iv)

If any of the preceding relations are true then say that α and β are homotopic. Moreover,
homotopy in this sense is an equivalence relation.
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1.6. Example. [see [8, pg. 29-32]] In the case X is a quasi-category, P (X) = ho(X),
where ho(X) has following description. It is the category which has objects the vertices of
X, and morphisms the homotopy classes of 1-simplices [α] : x → y in X. Composition is
defined for classes [α] : x→ y, [β] : y → z, by [d1(σ)] = [β] ◦ [α], where σ is the 2-simplex
depicted in the following diagram

Λ2
1

(β, ,α) //

��

X

∆2

σ

>>

In this category, s0(x) = idx.

1.7. Lemma. Let I = Bπ(∆1), and X be a quasi-category. A 1-simplex f is invertible in
P (X) if and only if there exists a lift in the diagram

∆1 f //

��

X

sk2(I)

<<

Proof. It suffices to produce 2-simplices with boundaries.

1
s0(1) //

g

��

1 0
s0(0) //

f

��

0

0

f

HH

1

g

HH

By symmetry, it suffices to produce a 2-simplex with boundary as depicted on the left.
Necessity follows from 1.6. Suppose that f has a left inverse in P (X), g, so that f ◦ g

is right-homotopic to the identity. Consider a map σ : Λ3
2 → X, so that σ012 expresses

f ◦ g as a composite of f, g and σ123, σ023 respectively are the 2-simplices with boundaries
depicted as follows

1
g //

g

��

0 0
s0(0) //

f◦g
��

0

0

s0(0)

HH

0

s0(0)

HH

Note that σ023 expresses the right homotopy between f ◦ g and s0(0). Extending σ to a
3-simplex σ′, d2(σ′) gives the required 2-simplex.

The main result of [6] is as follows:

1.8. Theorem. A quasi-category X is a Kan complex if and only if its path category
P (X) is a groupoid.
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1.9. Definition. There is a functor J : Quasi→ Kan where Quasi and Kan are, respec-
tively, the full subcategories of sSet of quasi-categories and Kan complexes.

The functoriality of J follows from the fact that the simplices of J(X) are precisely
the simplices of X whose edges are invertible in P (X).

1.10. Lemma. A map f : X → Y is a Joyal equivalence of quasi-categories if and only if

π(Jhom(K,X))→ π(Jhom(K,Y ))

is an equivalence of categories for all finite simplicial sets K.

Proof. Note that f is a Joyal equivalence if and only if [K,X] → [K,Y ] is a bijection
for each finite simplicial set K. By [8, Poroposition 2.2.5.7], [K,X] can be identified with
τ0(K,X) which is in bijective correspondence with π0(Jhom(K,X)) by Theorem 1.8. It
follows that f is a Joyal equivalence if and only if

π0(Jhom(K,X))→ π0(Jhom(K,Y ))

is a bijection for each finite simplicial set K.
By [7, Proposition 4.26], J sends Joyal equivalences of quasi-categories to Joyal equiva-

lences. Thus, since hom(K,−) preserves Joyal equivalences, Jhom(K,X)→ Jhom(K,Y )
is a Joyal equivalence for all finite simplicial sets K. By Lemma 1.3,

π(Jhom(K,X))→ π(Jhom(K,Y ))

is an equivalence of categories for finite simplicial sets K. Combining this with the
statement proven in the first paragraph of the proof, the result follows.

2. Preliminaries on Boolean Localization

Given a finite simplicial set K and a simplicial presheaf X, write hom(K,X) for the
simplicial presheaf U 7→ hom(K,X(U)). Write hom(K,X) for the simplicial presheaf
U 7→ hom(K,X(U)).

2.1. Definition. Let L ,M be Grothendieck topoi. A geometric morphism p : L →
M is a pair of functors p∗ : M → L , p∗ : L →M so that p∗ preserves finite limits and
is left adjoint to p∗. Call a geometric morphism surjective if and only if it satisfies the
following equivalent properties:

1. p∗ is faithful

2. p∗ reflects isomorphisms

3. p∗ reflects monomorphisms

4. p∗ reflects epimorphisms

The following theorem is proven in [9, pg. 515], as well as in [4, Section 3.5]:
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2.2. Theorem. [Barr] Let L be any Grothendieck topos. Then there exists a surjective
geometric morphism p = (p∗, p∗) : Sh(B)→ L , so that B is a complete Boolean algebra.

Such a surjective geometric morphism (from Sh(B)) is called a Boolean localization
of L .

2.3. Definition. Suppose that i : K ⊆ L is an inclusion of finite simplicial sets, and
f : X → Y is a map of simplicial presheaves. Say that f has the local right lifting
property with respect to i if for every commutative diagram

K //

��

X(U)

��
L // Y (U)

there is some covering sieve R ⊆ hom(−, U), U ∈ Ob(E ), such that the lift exists in the
diagram

K //

��

X(U)
X(φ) // X(V )

��
L //

55

Y (U)
Y (φ)

// Y (V )

for each φ ∈ R. Similarly, say that f has the sectionwise right lifting property with respect
to i if and only if there exists a lifting

K //

��

X(U)

��
L //

<<

Y (U)

for each U ∈ Ob(E ).

2.4. Definition. Say that a map of simplicial presheaves is a local inner fibration
(respectively local Kan fibration) if and only if it has the local right lifting property with
respect to the inner horn inclusions Λn

i → ∆n, 0 < i < n (respectively the horn inclusions
Λn
i → ∆n, 0 ≤ i ≤ n). Local trivial fibrations are defined in a similar manner. If

X is a simplicial presheaf so that the map to the terminal sheaf X → ∗ has the right
lifting property with respect to Λn

i → ∆n, 0 < i < n, say that X is local Joyal fibrant.
Similarly, there is a notion of locally Kan fibrant simplicial presheaves. Note that
X → ∗ has the sectionwise right lifting property with respect to Λn

i → ∆n, 0 < i < n
(respectively Λn

i → ∆n, 0 ≤ i ≤ n) if and only if X is a presheaf of quasi-categories
(respectively a presheaf of Kan complexes).

Call a map f : X → Y of simplicial presheaves a sectionwise Kan fibration if
and only for each U ∈ Ob(C ), X(U) → Y (U) is a Kan fibration. There are analogous
definitions of sectionwise trivial fibrations and sectionwise quasi-fibrations.
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2.5. Lemma. ([4, Lemma 4.8]) A map of simplicial presheaves f : X → Y has the local
right lifting property with respect to a finite inclusion of simplicial sets i : K → L if and

only if hom(L,X)
(i∗,f∗)−−−→ hom(K,X)×hom(K,Y ) hom(L, Y ) is a local epimorphism.

Throughout the rest of the article fix a Grothendieck site C , and a Boolean localization
p : sSh(B)→ sSh(C ). It is important to note that the Boolean localization is chosen for
simplicial sheaves, rather than simplicial presheaves, since a Boolean localization must be
a geometric morphism of topoi.

2.6. Lemma. Let K be a finite simplicial set, and X a simplicial presheaf. Then there
are natural isomorphisms

1. p∗hom(K,L2(X)) ∼= hom(K, p∗L2(X))

2. p∗hom(K,L2(X)) ∼= hom(K, p∗L2(X))

3. L2hom(K,X) ∼= hom(K,L2(X))

4. L2hom(K,X) ∼= hom(K,L2(X))

Proof. 1 and 3 are immediate from the fact that p∗, L2 preserves finite limits and a
simplicial set is a colimit of its non-degenerate simplices. The implications 1 =⇒ 2, 3
=⇒ 4 are obvious.

2.7. Lemma. Let f : X → Y be a map of simplicial sheaves on a Boolean algebra. Then
f has the local right lifting property with respect to inclusion i : L→ K of finite simplicial
sets if and only if it has the sectionwise lifting property with respect to i.

Proof. Follows from the axiom of choice for sSh(B) ([4, Lemma 3.30]) and Lemma 2.5
and Lemma 2.6.

2.8. Lemma. ([4, Lemma 4.11 and Corollary 4.12.2]) The functors p∗, L2 both reflect and
preserve the property of having the local right lifting property with respect to an inclusion
of finite simplicial sets.

Proof. Follows from Lemma 2.5 and Lemma 2.6.

2.9. Definition. A map f of simplicial presheaves is a local weak equivalence if and
only if L2Ex∞p∗L2(f) is a sectionwise weak equivalence.

The intuition behind Boolean localization is that it can be regarded as giving a ’fat’
point for a site (for more details see [2, Section 1]). Thus the definition of local weak
equivalence generalizes the idea of stalkwise weak equivalence in the case of a topos with
enough points. This definition of weak equivalence is independent of the choice of Boolean
localization.
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2.10. Remark. It is clear from the definition of local weak equivalence that X → L2(X)
is a local weak equivalence. The fact that weak equivalence is independent of the choice of
Boolean localization means that if C is a Boolean site, the choice of Boolean localization
can be taken to be the identity. It follows that p∗ preserves and reflects local weak
equivalences.

2.11. Lemma. ([4, Corollary 4.28]; also [10, Corollary 10.9]) Let f : X → Y be a map
of presheaves of Kan complexes. Then f is a local weak equivalence if and only if it is a
sectionwise weak equivalence.

2.12. Definition. A map of simplicial presheaves f : X → Y is said to be a local equiv-
alence of fundamental groupoids if and only if Bπ(f) is a local weak equivalence.
There is an analogous notion of sectionwise weak equivalences of fundamental
groupoids.

2.13. Lemma. A map f : X → Y of simplicial presheaves of Kan complexes is a lo-
cal equivalence of fundamental groupoids if and only if Bπp∗L2(f) is a sectionwise weak
equivalence.

Proof. By Lemma 2.11, p∗L2(Bπ(f)) is a sectionwise weak equivalence if and only if
Bπ(f) is a local weak equivalence. The result follows from the sequence of natural equiv-
alences

p∗L2Bπ(X) ∼= p∗BL2π(X) ' p∗BL2π(L2X) ∼= BL2πp∗L2X.

2.14. Remark. Note that if f : X → Y is map of Kan complexes then Bπ(f) is a weak
equivalence if and only if π(X)→ π(Y ) is an equivalence of categories. Thus, Lemma 2.13
implies that a map f of presheaves of Kan complexes is a local weak equivalence of
fundamental groupoids if and only if π(p∗L2(X))(b) → π(p∗L2(Y ))(b) is an equivalence
of categories for each b ∈ B.

2.15. Definition. Let
L : sPre(C )→ sPre(C )

be the functor which applies the usual fibrant replacement functor (i.e. constructed via the
small object argument with respect to inner horn inclusions) for the Joyal model structure
sectionwise to a simplicial presheaf. If sPre(C )Quasi, sPre(C )Kan are the full subcategories
of sPre(C ) consisting of presheaves of quasi-category and presheaves of Kan complexes,
respectively, then sectionwise application of J (as in Definition 1.9) defines a functor
J : sPre(C )Quasi → sPre(C )Kan.

2.16. Definition. For a simplicial set X, the cardinality of X is defined to be |X| =
sup
n∈N

(|Xn|). For each simplicial presheaf X, and infinite cardinal α, say that X is α-bounded

if
sup

U∈Ob(E )

(|X(U)|) < α
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Say that a monomorphism A→ B is α-bounded if B is α-bounded.

2.17. Lemma. There exists an uncountable cardinal i > |Mor(C )|, so that the following
are true:

1. L preserves filtered colimits.

2. L preserves cofibrations.

3. Suppose that γ is a cardinal so that γ > i. For a simplicial presheaf X, let Fγ(X)
denote the filtered system of subobjects of X which has cardinality < γ. The natural
map

lim
−→

Y ∈Fγ(X)

L(Y )→ L(X)

is an isomorphism.

4. if |X| ≤ 2λ, where λ ≥ i, then |L(X)| ≤ 2λ.

5. L preserves pullbacks.

Proof. By arguing sectionwise, this is the same argument as [3, Theorem 4.8].

3. Existence of the Model Structure

3.1. Definition. Define a map f : X → Y of simplicial presheaves on C to be a sec-
tionwise Joyal equivalence if and only if X(U) → Y (U) is a Joyal equivalence for
each U ∈ Ob(C ). Define f to be a local Joyal equivalence if and only if L2Lp∗L2(f)
is a sectionwise Joyal equivalence. Note that local Joyal equivalences automatically satisfy
the 2 out of 3 property. A quasi-injective fibration is a map that has the right lifting
property with respect to maps which are both monomorphisms and local Joyal equivalences.

3.2. Corollary. The map X → L2(X) is a local Joyal equivalence.

The following theorem is the main theorem of this paper; the remainder of Section 3
is devoted to its proof.

3.3. Theorem. There exists a left proper model structure on sPre(C ), so that the weak
equivalences are the local Joyal equivalences, the cofibrations are monomorphisms, and the
fibrations are the quasi-injective fibrations.

3.4. Lemma. Let Γ∗ : sSet→ sSh(C ) be the composite of the constant simplicial presheaf
functor and sheafification. The functors

p∗(−× Γ∗(C)), p∗(−)× Γ∗(C) : sSh(C )→ sSh(B)

are naturally isomorphic for arbitrary simplicial set C.

Proof. Follows easily by adjunction
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3.5. Lemma. There is a natural isomorphism p∗L2L ∼= L2Lp∗L2. In particular, f is a
local Joyal equivalence if and only if p∗L2L(f) is a sectionwise Joyal equivalence.

Proof. Since p∗, L2 commute with colimits, by the construction of L, it suffices to show
that p∗L2E1(X) ∼= L2E1p

∗L2(X) naturally, where E1 the pushout of presheaves∐
Λnk⊂∆n(hom(Λn

k , X)× Λn
k) ev //

��

X

��∐
Λnk⊂∆n(hom(Λn

k , X)×∆n) // E1

where the coproducts are indexed over the set of all inner horn inclusions Λn
k ⊂ ∆n,

and ev is the evaluation map. Thus, by Lemma 2.6 and Lemma 3.4 and the fact that
sheafification commutes with finite limits, p∗L2(E1) is naturally isomorphic to the sheaf
pushout ∐

Λnk⊂∆n(hom(Λn
k , p
∗L2X)× Γ∗(Λn

k)) ev //

��

p∗L2X

��∐
Λnk⊂∆n(hom(C, p∗L2X)× Γ∗(∆n)) // S

which is naturally isomorphic to L2E1p
∗L2(X), as required.

3.6. Lemma. Let X be a presheaf of quasi-categories.

1. If X is a sheaf of quasi-categories on B, then the natural map J(X)→ L2J(X) is
an isomorphism.

2. For n ∈ N, let En denote the set of edges ∆1 → ∆n. For each e ∈ En form the
pullback:

P e
n

��

φe // hom(∆n, X)

e∗

��
hom(sk2(I), X)

i∗
// hom(∆1, X)

where e∗, i∗ are induced by inclusion. The n-simplices of J(X) are equal to the

presheaf-theoretic image of
⋂
e∈En(P e

n)
φ−→ hom(∆n, X) induced by the φe’s.

3. The J functor commutes with p∗L2 for presheaves of quasi-categories.

Proof. First, suppose that X is a sheaf on a Boolean site. Then L2J(X) is a locally
Kan simplicial presheaf, and hence is sectionwise Kan by Lemma 2.7. Furthermore,
sheafification preserves injections, so there is a diagram

J(X) // //

��

X

L2J(X) // // L2(X)
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Thus J(X) → L2J(X) is an inclusion of sub-presheaves of X. But J(X) is the maximal
sectionwise Kan subcomplex of X, so that J(X) = L2(J(X)).

Statement 2 follows immediately from Lemma 1.7 and Theorem 1.8.
For the final statement, it is clear that the P e

n’s are preserved under p∗L2, since this
composite preserves finite limits. Thus, p∗L2(J(X))n is isomorphic to the sheaf theoretic
image of ⋂

e∈En

P e
n

φ−→ hom(∆n, p∗L2(X))

which is L2J(p∗L2(X))n by 2. But there is an isomorphism L2J(p∗L2(X))n ∼= Jp∗L2(X)n
by 1.

3.7. Theorem. A map X
φ−→ Y is a local Joyal equivalence if and only if the map

Jhom(K,L(X))→ Jhom(K,L(Y ))

induces a local equivalence of fundamental groupoids for each finite simplicial set K.

Proof. Lemma 2.6 and Lemma 3.6 imply that for each finite simplicial set K there are
isomorphisms:

p∗L2(Jhom(K,L(X))) ∼= Jp∗L2(hom(K,L(X))) ∼= Jhom(K, p∗L2L(X))

so that by Remark 2.14, the assertion that the map φ is a local equivalence of fundamental
groupoids is equivalent to

π(Jhom(K, p∗L2L(X))(b))→ π(Jhom(K, p∗L2L(Y ))(b))

being an equivalence of groupoids for all b ∈ Ob(B). But since p∗L2L(X) and p∗L2L(Y )
are sheaves of quasi-categories, this condition is equivalent to p∗L2L(φ) being a sectionwise
Joyal equivalence, by Lemma 1.10.

3.8. Remark. The preceding theorem shows that the definition of local Joyal equivalence
is independent of the Boolean localization chosen. To see this, note that local equivalence
of fundamental groupoids can be phrased in terms of isomorphisms of sheaves of homotopy
groups (c.f. [4, pg.63-64]). In particular the Boolean localization can be taken to be the
identity if C is a Boolean site. Thus, Lemma 3.4 implies that p∗ and L2 both preserve
and reflect local Joyal equivalences.

3.9. Corollary. A sectionwise Joyal equivalence X → Y of simplicial presheaves is a
local Joyal equivalence.

3.10. Corollary. A local Joyal equivalence between sheaves of quasi-categories on a
Boolean site is a sectionwise Joyal equivalence.

3.11. Corollary. A map f : X → Y of presheaves of quasi-categories is a local Joyal
equivalence if and only if p∗L2(f) is a sectionwise Joyal equivalence.
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Proof. Suppose that f is a local Joyal equivalence. The map p∗L2(X)→ Lp∗L2(X)→
L2Lp∗L2(X) is a local Joyal equivalence in sPre(B) by Corollary 3.2 and Corollary 3.9.
Furthermore, L2Lp∗L2(f) is a sectionwise, and hence local Joyal equivalence. Thus, the
commutative diagram

p∗L2(X) //

��

L2Lp∗L2(X)

L2Lp∗L2(f)
��

p∗L2(Y ) // L2Lp∗L2(Y )

and the 2 out of 3 property imply that p∗L2(f) is a local Joyal equivalence in sPre(B).
But a local Joyal equivalence between sheaves of quasi-categories on B is a sectionwise
Joyal equivalence.

The converse is similar, but easier.

3.12. Corollary. A map f of simplicial presheaves is a local Joyal equivalence if and
only if L(f) is a local Joyal equivalence.

3.13. Corollary. Let Xα → Yα be natural transformations consisting of local Joyal
equivalences of presheaves of quasi-categories which is indexed by some filtered category
J . Then the induced map

lim
−→
α∈J

Xα → lim
−→
α∈J

Yα

is a local Joyal equivalence.

3.14. Lemma. A map f : X → Y of quasi-categories is a quasi-fibration if and only if it
is an inner fibration and there exists a lift in each diagram of the form

∆0 //

d0

��

J(X)

��
∆1 //

<<

J(Y )

Furthermore, p∗L2 preserves the property of being a sectionwise quasi-fibration of pre-
sheaves of quasi-categories.

Proof. The first statement is immediate from [8, Corollary 2.4.6.5]; see also [7, Defini-
tion 4.2]. The second statement follows from the first and Lemma 2.7, Lemma 2.8 and
Lemma 3.6.

3.15. Lemma. A local trivial fibration f : X → Y is a local Joyal equivalence. Suppose
that f : X → Y is a sectionwise quasi-fibration of presheaves of quasi-categories. Then f
is a local Joyal equivalence if and only if it is a locally trivial fibration.
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Proof. First note that if f is any local trivial fibration, then p∗L2(f) is a sectionwise
trivial fibration by Lemma 2.7 and Lemma 2.8. Thus it is a sectionwise and hence local
Joyal equivalence.

Now, suppose that f is a local Joyal equivalence of presheaves of quasi-categories
and a sectionwise quasi-fibration. By Lemma 3.14, p∗L2(X) → p∗L2(Y ) is a sectionwise
quasi-fibration. By Corollary 3.11, it is also sectionwise Joyal equivalence so p∗L2(X)→
p∗L2(Y ) is a sectionwise, and hence locally, trivial fibration. The result follows from
Lemma 2.8.

3.16. Example. This example gives the construction of the quasi-fibration replacement
for a map f : X → Y of presheaves of quasi-categories. Form the diagram of simplicial
presheaves

X ×Y hom(I, Y )

d0∗
��

f∗ // hom(I, Y )
d1 //

d0
��

Y

X
f

//

sf
55

Y

Since hom(I, Y ) is a path object for the Joyal model structure and Y is a presheaf of
quasi-categories, and d0 is a sectionwise trivial fibration, so that d0∗ is a sectionwise trivial
fibration. The section s of d0 induces a section s∗ of d0∗, and

(d1f∗)s∗ = d1sf = f

Finally, there is a pullback diagram of presheaves

X ×Y hom(I, Y )
f∗ //

(d0∗,d1f∗)
��

hom(I, Y )

(d0,d1)

��
X × Y

f×1
// Y × Y

and the projection map prR : X × Y → Y is a sectionwise quasi-fibration, since X is a
presheaf of quasi-categories. Thus, prR(d0∗, d1f∗) = d1f∗ is a sectionwise quasi-fibration.
Write Zf = X ×Y Y I , and π = d1f∗. Then π is a functorial replacement of f by a
quasi-fibration, and there is a diagram

X
s∗ //

f   

Zf

π

��

(d0)∗ // X

Y

where (d0)∗ is a trivial fibration and (d0)∗ ◦ s∗ = idX .
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3.17. Remark. An analogous construction to that of Example 3.16 produces the sec-
tionwise Kan fibration replacement of a map of presheaves of Kan complexes. Taking
pullbacks gives a functorial Kan fibration replacement for all simplicial presheaf maps.
However, this technique does not work for the local Joyal model structure, since the Joyal
model structure is not right proper.

3.18. Lemma. Let α be a regular cardinal so that α > |Mor(E )| and let C ⊆ A be
an inclusion of simplicial presheaves, so that C is α-bounded and A is a presheaf of
quasi-categories. Then there exists an α-bounded presheaf of quasi-categories B so that
C ⊆ B ⊆ A.

Proof. The set of lifting problems

Λn
i

//

��

C(U)

∆n

;;

for U ∈ Ob(E ) is α-bounded and can be solved over A. Furthermore, since A is a colimit
of its α-bounded subobjects there is a subobject B1 of A so that C ⊆ B1, all of the
preceding lifting problems can be solved over B1, and B1 is α-bounded. Repeating this
procedure countably many times produces an ascending sequence

B1 ⊆ B2 ⊆ · · · ⊆ Bn ⊆ · · ·

Set B = ∪∞i=1Bi.

3.19. Lemma. (see [4, Theorem 5.2]) Suppose that α is a regular cardinal, so that α >
|Mor(C )|. Suppose that there is a diagram of monomorphisms of simplicial presheaves of
quasi-categories

X

��
A // Y

where A is α-bounded, and X → Y is a local Joyal equivalence. Then there exists an
α-bounded presheaf of quasi-categories B, so that A ⊆ B ⊆ Y and B ∩X → B is a local
Joyal equivalence.

Proof. If B is a presheaf of quasi-categories, write πB : ZB → B for the natural quasi-
fibration replacement of B ∩ X → B (as explained in Example 3.16). By Lemma 3.15
B ∩X → B is a local Joyal equivalence if and only if πB is a local trivial fibration. Now,
suppose there is a lifting problem

∂∆n //

��

ZA(U)

��
∆n //

;;

A(U)
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Then this lifting problem can be solved locally over some covering {Ui → U} having at
most α elements. There is an identification

lim
−→
|B|<α

ZB = ZY

Thus, it follows from the regularity assumption on α there is an α-bounded A′ ⊆ Y ,
A ⊆ A′, that can solve the preceding lifting problem. The set of all such lifting problems
is α-bounded. Thus, there is a α-bounded presheaf of quasi-categories B1 ⊆ Y such that
each lifting problem can be solved over B1 by Lemma 3.18. Repeating this procedure
countably many times produces an ascending sequence of presheaves of quasi-categories

B1 ⊆ B2 · · · ⊆ Bn · · ·

such that all lifting problems
∂∆n //

��

ZBi(U)

��
∆n //

::

Bi(U)

can be solved locally over Bi+1. Put B = ∪Bi. Then B is α-bounded by the regularity
of α. Furthermore B is a presheaf of quasi-categories. Since the construction of ZB
commutes with filtered colimits, ZB → B is a local trivial fibration, as required.

3.20. Lemma. Let β > 2i, where i is as in Lemma 2.17. Also, put α = 2β + 1, so
that α is a regular cardinal since it is a successor. Suppose that there is a diagram of
monomorphisms of simplicial presheaves

X

��
A // Y

where A is α-bounded, and X → Y is a local Joyal equivalence. Then there exist α-bounded
simplicial presheaves A′, B′, so that

1. L(A) ⊆ A′ ⊆ L(Y ), L(X) ∩ A′ → A′ is a local Joyal equivalence.

2. A ⊆ B′, A′ ⊆ L(B′)

Proof. Since L preserves monomorphisms, Lemma 2.17 implies that there is a diagram
of α-bounded monomorphisms:

L(X)

��
L(A) // L(Y )
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Hence there is an A′ with the desired properties by Lemma 3.19. Now, note that by
Lemma 2.17:

lim
−→

Y ∈Fα(X)

L(Y ) ∼= L(X)

Furthermore, the set of elements:

{(x, U) : x ∈ A′(U)− L(A)(U), U ∈ Ob(E )}

is α-bounded, so there exists an α-bounded object B′ with the desired properties.

3.21. Theorem. Let α be as in Lemma 3.20. Suppose that there is diagram of monomor-
phisms of simplicial presheaves

X

��
A // Y

where A is α-bounded, and X → Y is a local Joyal equivalence. Then there exists an
α-bounded subobject B,A ⊆ B ⊆ Y , so that B ∩X → B is a local Joyal equivalence.

Proof. For each n ∈ N, define α-bounded objectsAn, Bn inductively, so that the following
properties hold:

1. L(Bn′) ⊆ An ⊆ L(Y ) for all n′ < n, L(X) ∩ An → An is a local Joyal equivalence

2. A ⊆ Bn ⊆ Y An ⊆ L(Bn)

Start the induction by setting A0 = B0 = A. In general, having defined An′ , Bn′ for n′ < n
apply Lemma 3.20 to the diagram

X

��
Bn−1

// Y

to produce An, Bn. Let
B = lim

−→
n∈N

Bn

B is α-bounded by the regularity of α. Now, note that by Lemma 2.17, for X ′ a subobject
of Y, there are natural isomorphisms:

L(B ∩X ′) ∼= lim
−→
n∈N

L(Bn ∩X ′) ∼= lim
−→
n∈N

L(Bn) ∩ L(X ′) ∼= lim
−→
n∈N

(An ∩ L(X ′))

so that L(B ∩X)→ L(B) is a local Joyal equivalence by Corollary 3.13. Thus, the map
B ∩X → X is a local Joyal equivalence by Corollary 3.12, as required.
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3.22. Lemma. Let α be a cardinal as in Lemma 3.20 and Theorem 3.21. There a map f
has the right lifting property with respect to all maps which are cofibrations (respectively
local Joyal equivalences and cofibrations) if and only it has the right lifting property with
respect to all α-bounded cofibrations (respectively α-bounded local Joyal equivalences and
cofibrations).

Proof. For cofibrations, this is just [4, Theorem 5.6]. For cofibrations that are local
Joyal equivalences, use Theorem 3.21 and the method of [4, Lemma 5.4].

3.23. Lemma. A map f : X → Y of simplicial presheaves which has the right lifting
property with respect to all cofibrations is a local Joyal equivalence and a quasi-injective-
fibration.

Proof. The map f is a quasi-injective fibration by definition. f is also a sectionwise trivial
Kan fibration, and hence a local trivial Kan fibration. Conclude using Lemma 3.15.

3.24. Lemma. Consider a pushout diagram of simplicial presheaves

A α //

β
��

B

β′

��
C

α′
// B ∪A C

where α is a cofibration. Then β′ is a local Joyal equivalence if β is.

Proof. In the case that A.B and C are sheaves of quasi-categories on the Boolean algebra
B, this is immediate from the left properness of the Joyal model structure, Remark 3.8
and Corollary 3.11.

Now, suppose A, B, C, D are arbitrary simplicial presheaves. In the following diagram
each of the vertical maps are sectionwise Joyal equivalences

B

��

Aoo //

��

C

��
L(B) L(A)oo // L(C)

The gluing lemma ([1, Lemma I.8.8]) implies that the induced map B∪AC → L(B)∪L(A)

L(C) is a sectionwise and hence local Joyal equivalence. Thus the diagram

A α //

β
��

B

β′

��
C

α′
// B ∪A C
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is local Joyal equivalent to:

L(A)
L(α) //

L(β)

��

L(B)

s

��
L(C)

s′
// L(B) ∪L(A) L(C)

Since p∗L2 preserves pushouts and cofibrations, the case of sheaves of quasi-categories
on B implies that p∗L2(s) is a local Joyal equivalence. Thus, so is s′, since local Joyal
equivalences are reflected by Boolean localization (Remark 3.8).

3.25. Lemma. Let f : X → Y be a map of simplicial presheaves. Then it can be factored
as

Z
p

  
X

i

>>

q   

f // Y

W
j

>>

where

1. i is a local Joyal equivalence and a cofibration and p is a quasi-injective fibration.

2. j is a cofibration and q is a quasi-injective fibration and local Joyal equivalence.

Proof. For the first factorization choose a cardinal λ > 2α, where α is chosen as in
Lemma 3.22 to solve all lifting problems

A //

i
��

X

f
��

B //

>>

Y

where i is an α-bounded trivial cofibration. The result follows from the fact that local
Joyal equivalences are preserved under pushout, which is Lemma 3.24.

The second statement is proven in a similar manner, using Lemma 3.23.

Proof (of Theorem 3.3). CM1, CM2 are trivial to verify. CM3 follows from the
definition of local Joyal equivalences. CM5 is Lemma 3.25.

Let f : X → Y be a map which is a local Joyal equivalence and a quasi-injective
fibration. The next paragraph will show that f has the right lifting property with respect
to cofibrations. By Lemma 3.25, the map has a factorization

X
g //

f   

W

h
��
Y
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where h has the right lifting property with respect to all cofibrations, and is therefore a
local Joyal equivalence , and g is a cofibration. Hence by the 2 out of 3 property, g is a
local Joyal equivalence and a cofibration. Thus there is a lifting in the diagram

X
id //

g
��

X

f
��

W
h
//

n

>>

Y

Finally, the diagram

X
g //

f
��

W

h
��

n // X

f
��

Y
id
// Y

id
// Y

shows that f is a retract of h and hence f has the right lifting property with respect to
all cofibrations (since right lifting property is preserved under retracts), as required. (The
argument is standard; for instance, see [4, Theorem 5.8])

4. The Model Structure on Simplicial Sheaves, and an Example

4.1. Theorem. The category sSh(C ) along with the class of local Joyal equivalences,
monomorphisms, and quasi-injective fibration forms a left proper model structure. Fur-
thermore, there is a Quillen adjunction

L2 : sPre(C ) � sSh(C ) : i

where i is the inclusion of sheaves into presheaves and L2 is sheafification.

Proof. The associated sheaf functor preserves and reflects local Joyal equivalences, by
3.8, and it also preserves cofibrations. Hence, the inclusion functor preserves quasi-
injective fibrations. Thus the functors form a Quillen pair. The unit map of the adjunction
X → L2(X) is a local Joyal equivalence, and the counit map is the identity. Thus, the
second statement follows from the first, and it suffices to prove the first statement.

Axiom CM1 follows from completeness and cocompleteness of the sheaf category. Ax-
ioms CM2-CM4 follow from the corresponding statements for simplicial presheaves. Let
α be a cardinal as in Lemma 3.22. Then choose a regular cardinal β so that L2(f) is β
bounded for each α-bounded trivial cofibration. Then a map f is a quasi-injective fibra-
tion if and only if it has the right lifting property with respect to all β-bounded trivial
cofibration. Doing a small object argument of size 2β as in Lemma 3.25 gives one half of
CM5. The other half has an analogous proof.

Left properness comes from the corresponding statement for simplicial presheaves, as
well as the fact that X → L2(X) is a local Joyal equivalence.
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It is asserted in [10, Theorem 10.6] that for the Jardine model structure on sSh(B),
the injective fibrations are precisely the sectionwise Kan fibrations and the trivial injective
fibrations are the sectionwise trivial fibrations. The following analogue of this theorem is
true for the local Joyal model structure.

4.2. Theorem. The local Joyal model structure on sSh(B) has the following description

1. The cofibrations are monomorphisms.

2. The fibrations are sectionwise quasi-fibrations.

3. The weak equivalences are local Joyal equivalences.

4.3. Lemma. A map f of sSh(B) which is a sectionwise quasi-fibration and a local Joyal
equivalence is a sectionwise trivial fibration.

Proof. Suppose that X → Y is a map with the properties stated. Let L(X) → X ′ →
L(Y ) be the functorial factorization of Example 3.16 and consider the pullback

P

��

// X ′

��
Y // L(Y )

The right vertical map is a sectionwise trivial Kan fibration by Lemmas 2.7 and 3.15.
Hence the left vertical map is as well. Thus by two out of three, all of the maps in the
preceding commutative square are sectionwise Joyal equivalences.

Consider the diagram
X

φ
  ((

��

P //

��

X ′

��
Y // L(Y )

where φ is the induced map. By two out of three X → P , and hence X → Y are
sectionwise Joyal equivalence. But then X → Y is a sectionwise Joyal equivalence and a
sectionwise quasi-fibration, from which the result follows.

4.4. Lemma. Let D denote a set of generating trivial cofibrations for the Joyal model
structure. Denote by C the set of maps that are retracts of transfinite composites of
pushouts of maps of the form y(b)×φ, where φ ∈ D. Here y denotes the yoneda embedding.

1. A map f : X → Y of simplicial sheaves on B admits a factorization as an element
of C followed by a sectionwise quasi-fibration.

2. The elements of C are precisely maps which are trivial cofibrations for the local Joyal
model structure on sSh(B).
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Proof. For the first statement of the lemma, choose a cardinal λ > |B|, so that λ > |B|
for each φ : A → B in D. Do a small object argument of size 2λ + 1 to solve all lifting
problems

y(b)× A //

idy(b)×φ
��

X

��
y(b)×B //

;;

Y

where b ∈ B. This gives the required factorization.
The fact that each member of C is a local trivial cofibration follows from the left

properness of the local Joyal model structure and the fact that local Joyal equivalences
are preserved by filtered colimits.

For the converse, let f be a trivial cofibration for the local Joyal model structure.
Factor f = g ◦ h where g is a sectionwise quasi-fibration and h ∈ C. The map g is a
sectionwise trivial fibration by Lemma 4.3. Thus [10, Lemma 10.14] (i.e. CM5 for the
model structure of [10, Theorem 10.6]), can be used to show that f is a retract of h, so
that f ∈ C.

Proof (of Theorem 4.2). Once it is proven that the preceding description gives a
model structure on sSh(B), is immediate that it coincides with the local Joyal model
structure.

CM1-CM3 are trivial. The factorization of a map as a trivial cofibration followed by
a sectionwise quasi-fibration follows from Lemma 4.4 and CM5 for the local Joyal model
structure. The factorization of a map as a cofibration followed by a trivial fibration follows
from CM5 for the model structure of [10, Theorem 10.6], and Lemma 3.15. One half of
CM4 follows from Lemma 4.4. The other half follows from CM4 for the model structure
of [10, Theorem 10.6] and Lemma 4.3.
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