
Theory and Applications of Categories, Vol. 32, No. 16, 2017, pp. 547�619.

ALGEBRAIC DATABASES

PATRICK SCHULTZ, DAVID I. SPIVAK, CHRISTINA VASILAKOPOULOU,
AND RYAN WISNESKY

Abstract. Databases have been studied category-theoretically for decades. While
mathematically elegant, previous categorical models have typically struggled with rep-
resenting concrete data such as integers or strings.

In the present work, we propose an extension of the earlier set-valued functor model,
making use of multi-sorted algebraic theories (a.k.a. Lawvere theories) to incorporate
concrete data in a principled way. This approach easily handles missing information
(null values), and also allows constraints and queries to make use of operations on data,
such as multiplication or comparison of numbers, helping to bridge the gap between
traditional databases and programming languages.

We also show how all of the components of our model� including schemas, instances,
change-of-schema functors, and queries��t into a single double categorical structure
called a proarrow equipment (a.k.a. framed bicategory).

Contents

1 Introduction 548
2 Profunctors and proarrow equipments 551
3 Algebraic theories 565
4 Presentations and syntax 567
5 Algebraic database schemas 577
6 Algebraic database instances 582
7 The fundamental data migration functors 587
8 The double category Data 593
9 Queries and uber-queries 608
10 Implementation 612
A Componentwise composition and exponentiation in Data 615

Schultz, Spivak, and Vasilakopoulou were supported by AFOSR grant FA9550�14�1�0031, ONR
grant N000141310260, and NASA grant NNL14AA05C. Wisnesky was supported by NIST SBIR grant
70NANB15H290.

Received by the editors 2016-02-10 and, in �nal form, 2017-04-24.
Transmitted by Richard Blute. Published on 2017-04-27.
2010 Mathematics Subject Classi�cation: 18C10, 18D05, 68P15.
Key words and phrases: Databases, algebraic theories, proarrow equipments, collage construction,

data migration.
c© Patrick Schultz, David I. Spivak, Christina Vasilakopoulou, and Ryan Wisnesky, 2017. Permis-

sion to copy for private use granted.

547

548 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

1. Introduction

Category-theoretic models of databases have been present for some time. For example
in [RW92; FGR03; JR02] databases schemas are formalized as sketches of various sorts
(e.g. EA sketches = �nite limits + coproducts). The data itself (called an instance) is
represented by a model of the sketch. In this language, queries can be understood as
limit cones in such a sketch. While di�erent from the traditional relational foundations
of database theory [AHV95], this is in general a very natural and appealing idea.

In [Spi12], Spivak puts emphasis on the ability to move data from one format, or
database schema, to another. To enable that, he proposes de�ning schemas to be mere
categories�or in other words trivial sketches (with no (co)limit cones). A schema mor-
phism is just a functor. Unlike the case for non-trivial sketches, a schema morphism
induces three adjoint functors, the pullback and its Kan extensions. These functors can
be called data migration functors because they transfer data from one schema to another.
In this formalism, queries can be recovered as speci�c kinds of data migration.

Both of the above approaches give some secondary consideration to attributes, e.g. the
name or salary of an employee, taking values in some data type, such as strings, integers,
or booleans. Rosebrugh et al. formalized attributes in terms of in�nite coproducts of
a chosen terminal object, whereas Spivak formalized them by slicing the category of
copresheaves over a �xed object. However, neither approach seemed to work convincingly
in implementations [SW15].

1.1. The approach of this paper. In the present paper, the goal of providing a
principled and workable formalization of attributes is a central concern. We consider
attribute values as living in an algebra over a multi-sorted algebraic theory, capturing
operations such as comparing integers or concatenating strings. A database schema is
formalized as what we call an algebraic profunctor, which is a profunctor from a category
to an algebraic theory that preserves the products of the theory. Each element of the
profunctor represents an observation of a given type (string, integer, boolean) that can
be made on a certain entity (employee, department). For example, if an entity has an
observable for length and width, and if the theory has a multiplication, then the entity
has an observable for area.

We also focus on providing syntax for algebraic databases. We can present a schema,
or an instance on it, using a set of generators and relations. The generators act like the
�labelled nulls� used in modern relational databases, easily handling unknown information,
while the relations are able to record constraints on missing data. In this sense, our
approach can be related to knowledge bases or ontologies [MS08]. One can express that
Pablo is an employee whose salary is between 65 and 75, and deduce various facts; for
example, if the schema expresses that each employee's salary is at most that of his or her
manager, one can deduce that Pablo's manager makes at least 65.

Mathematically, this paper develops the theory of algebraic profunctors. An algebraic
profunctor can be regarded as a diagram of models for an algebraic theoryT, e.g. a presheaf
of rings or modules on a space. Algebraic profunctors to a �xed T form the objects in a

ALGEBRAIC DATABASES 549

proarrow equipment�a double category satisfying a certain �brancy condition�which
we call Data. This double category includes database schemas and schema morphisms,
and we show that the horizontal morphisms (which we call bimodules between schemas)
generalize both instances and conjunctive queries.

We make heavy use of collages of profunctors and bimodules. Collages are a kind
of double-categorical colimit which have been studied in various guises under various
names� [GS15] gives a good general treatment. We propose exactness properties which
the collage construction satis�es in some examples; we say that an equipment has extensive
collages when these properties hold. This �ts in with the work started in [Sch15], and
may be of interest independent of the applications in this paper. Although the present
work only makes use of the properties of extensive collages in the equipment Prof of
categories, functors, and profunctors, we found more direct proofs of these properties in
this case to be no easier and less illuminating.

To connect the theory with practice, it is necessary to have a concrete syntax for
presenting the various categorical structures of interest. While it is mostly standard,
we provide a self-contained account of a type-theoretic syntax for categories, functors,
profunctors, algebraic theories, algebras over those theories, and algebraic profunctors.
We use this syntax to consistently ground the theoretical development with concrete
examples in the context of databases, though the reader need not have any background
in that subject.

1.2. Implementation. The mathematical framework developed in this paper is im-
plemented in an open-source software system we call OPL, available for download at
http://categoricaldata.net/fql.html. All examples from this paper are included as
built-in demonstrations in the OPL tool. We defer a detailed discussion of OPL until the
end of the paper (Section 10), but two high-level introductory remarks are in order.

First, we note that most constructions on �nitely-presented categories require solving
word problems in categories and hence are not computable [FGR03]. Given a category
presented by generators G and relations (equations) E, the word problem asks if two terms
(words) in G are equal under E. Although not decidable in general, many approaches to
this problem have been proposed; we discuss our particular approach in Section 10. If we
can solve the word problem for a particular category presentation, then we can use that
decision procedure to implement query evaluation, construct collages, and perform other
tasks.

Second, we note that there are many connections between the mathematical frame-
work presented here and various non-categorical frameworks. When restricted to a dis-
crete algebraic theory, the query language we discuss in Section 9 corresponds exactly
to relational algebra's unions of conjunctive queries under bag semantics [SW15]. This
correspondence allows fragments of our framework to be e�ciently implemented using
existing relational systems (MySQL, Oracle, etc), and our software has indeed been used
on various real-world examples [Wis+15].

http://categoricaldata.net/fql.html

550 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

1.3. Outline. In Section 2 we review profunctors and use them to motivate the de�nition
of double categories and proarrow equipments. We also review, as well as re�ne, the notion
of collages, which exist in all of the equipments of interest in this paper. In Section 3
we review multisorted algebraic theories, and we discuss profunctors� from categories to
algebraic theories� that preserve products in the appropriate way; we call these algebraic
profunctors. We save relevant database-style examples until Section 4, where we provide
type-theoretic syntax for presenting theories, categories and (algebraic) profunctors. This
section serves as a foundation for the syntax used throughout the paper, especially in
examples, though it can be skipped by those who only want to understand the category
theoretic concepts.

We get to the heart of the new material in Section 5 and Section 6, where we de�ne
schemas and instances for algebraic databases and give examples. Morphisms between
schemas induce three adjoint functors�called data migration functors�between their
instance categories, and we discuss this in Section 7.

In Section 8 we wrap all of this into a double category (in fact a proarrow equipment)
Data, in which schemas are objects, schema morphisms are vertical morphisms, and
schema bimodules�de�ned in this section�are horizontal morphisms. Instances are
shown to be bimodules of a special sort, and the data migration functors from the previous
section are shown to be obtained by composition and exponentiation of instance bimodules
with representable bimodules. In this way, we see that Data nicely packages all of the
structures and operations of interest.

Finally, in Section 9 we discuss the well-known "Select-From-Where" queries of stan-
dard database languages and show that they form a very special case of our data migration
setup. We conclude with a discussion of the implementation of our mathematical frame-
work in Section 10.

1.4. Notation. In this paper we will adhere to the following notation. For named cate-
gories, such as the category Set of sets, we use bold roman. For category variables� for
instance "Let C be a category"�we use math script.

Named bicategories or 2-categories, such as the 2-category Cat of small categories,
will be denoted similarly to named 1-categories except with calligraphic �rst letter. We
use the same notation for a variable bicategory B.

Double categories, such as the double category Prof of categories, functors, and pro-
functors, will be denoted like 1-categories except with blackboard bold �rst letter. We
use the same notation for a variable double category D.

If C and D are categories, we sometimes denote the functor category Cat(C,D) by
[C,D] or DC.

1.5. Acknowledgements. The authors thank the anonymous referee for many helpful
and questions and comments.

ALGEBRAIC DATABASES 551

2. Profunctors and proarrow equipments

We begin with a review of profunctors, which are sometimes called correspondences or
distributors; standard references include [Bor94a] and [Bén00]. Together with categories
and functors, these �t into a proarrow equipment in the sense of Wood [Woo82; Woo85],
though we follow the formulation in terms of double categories called framed bicategories
(or �brant double categories), due to Shulman [Shu08; Shu10]. Eventually, in Section 8,
we will produce an equipment Data that encompasses database schemas, morphisms,
instances, and queries.

2.1. Profunctors. Perhaps the most important example of an equipment is that of
categories, functors, and profunctors. We review profunctors here, as they will be a
central player in our story.

Let C and D be categories. Recall that a profunctor M from C to D, written
M : C D, is de�ned to be a functor M : Cop × D→ Set.

2.2. Profunctors as matrices. It can be helpful to think of profunctors as something
like matrices. Given �nite sets X and Y , there is an equivalence between
• X × Y -matrices A (i.e. functions X × Y → R),
• functions A : X → RY ,
• functions A : Y → RX ,
• linear maps LA : RX → RY ,
• linear maps L′A : RY → RX .

Similarly, there is an equivalence between
• profunctors M : C D,
• functors M : Cop → SetD,
• functors M : D→ SetCop

,
• colimit-preserving functors ΛM : SetC → SetD,
• colimit-preserving functors Λ′M : SetDop → SetCop

.
The �rst three correspondences are straightforward by the cartesian monoidal closed struc-
ture of Cat. The last two follow from the fact that, just as RY is the free real vector
space on the set Y , the category SetDop

is the free completion of D under colimits, and
similarly for SetC. By the equivalence between colimit-preserving functors SetC → E and
functors Cop → E for any cocomplete category E, the functor ΛM is obtained by taking
the left Kan extension of M : Cop → SetD along the Yoneda embedding y : Cop → SetC.
Using the pointwise formula for Kan extensions, this means that given any I : C→ Set,
the functor ΛM(I) : D→ Set is given by the coend formula

(ΛMI)(d) =

∫ c∈C

I(c)×M(c, d). (1)

This is analogous to the matrix formula (LAv)y =
∑

x∈X vxAx,y.

Alternatively, since colimits in SetD are computed pointwise, we can express ΛMI

552 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

itself as a coend in SetD

ΛMI =

∫ c∈C

I(c) ·M(c) (2)

where we think of M as a functor Cop → SetD. The symbol · represents the set-
theoretic copower (see [Kel05]), i.e. I(c) ·M(c) is an I(c)-fold coproduct of copies ofM(c).
Formula (2) is analogous to the matrix formula LAv =

∑
x∈X A(x)vx, where we think

of A as a function X → RY and A(x)vx denotes scalar multiplication by vx ∈ R. The
construction of Λ′M is very similar.

2.3. Profunctors as bimodules. One can also think of a profunctor as a sort of
graded bimodule: for each pair of objects c ∈ C and d ∈ D there is a set M(c, d) of
elements in the bimodule, and given an element m ∈M(c, d) and morphisms f : c′ → c in
C and g : d→ d′ in D, there are elements g ·m ∈M(c, d′) and m · f ∈M(c′, d), such that
the equations (g ·m) · f = g · (m · f), g′ · (g ·m) = (g′ ◦ g) ·m, and (m · f) · f ′ = m · (f ◦ f ′)
hold whenever they make sense.

2.4. Representable profunctors. Profunctors also act as generalized functors, just
like relations R ⊆ A × B act as generalized functions A → B. Any functor F : C →
D induces profunctors D(F,−) : C D and D(−, F) : D C, called the profunctors
represented by F . These profunctors are de�ned by

D(F,−)(c, d) := D(Fc, d) D(−, F)(d, c) := D(d, Fc). (3)

2.5. Tensor product of profunctors. Given two profunctors

C D EM N

there is a tensor product M �N : C E, given by the coend formula

(M �N)(c, e) =

∫ d∈D

M(c, d)×N(d, e). (4)

Following Section 2.2, this is analogous to matrix multiplication: (AB)i,k =
∑

j Ai,jBj,k.
Equivalently, (M �N)(c, e) is the coequalizer of the diagram∐

d1,d2∈D

M(c, d1)× D(d1, d2)×N(d2, e)
∐
d∈D

M(c, d)×N(d, e) (5)

where the two maps are given by the right action of D on M and by the left action of D
on N . In the notation of Section 2.3, we can write elements of (M � N)(c, e) as tensors
m⊗ n, where m ∈M(c, d) and n ∈ N(d, e) for some d ∈ D. The coequalizer then implies
that (m · f)⊗ n = m⊗ (f · n) whenever the equation makes sense. Notice the similarity
to the tensor product of bimodules over rings.

ALGEBRAIC DATABASES 553

Alternatively, we can de�ne the tensor product by the composition

M �N = Cop M−−→ SetD ΛN−−→ SetE,

or by the composition Λ′N ◦M : C→ SetEop

. This is clearly equivalent to (4), using (1).
For any category C, there is a profunctor HomC : Cop × C → Set, which we will

often write as C = HomC when unambiguous. For any functors F : C → Set and
G : Cop → Set, there are natural isomorphisms∫ c∈C

F (c)× C(c, c′) ∼= F (c′)

∫ c∈C

C(c′, c)×G(c) ∼= G(c′), (6)

a result sometimes referred to as the coYoneda lemma [Kel05, (3.71)]. Continuing with the
analogy from Section 2.2, HomC acts like an identity matrix:

∑
i δi,jvi = vj. That is, these

hom profunctors act as units for the tensor product, since (6) shows that HomC�M ∼=
M ∼= M � HomD. Following Section 2.3, one can think of HomC as the regular (C, C)-
bimodule, i.e. as C acting on itself on both sides [Mat89].

2.6. Profunctor morphisms. A morphism φ : M ⇒ N between two profunctors

C D,
M

N

is de�ned to be a natural transformation between the set-valued functors. In other words,
for each c ∈ C and d ∈ D there is a component function φc,d : M(c, d) → N(c, d) such
that the equation φ(f ·m · g) = f · φ(m) · g holds whenever it makes sense.

Categories, profunctors, and profunctor morphisms form a bicategory Prof . To ex-
plain how functors �t in, we need to discuss proarrow equipments.

2.7. Proarrow equipments. Before going into more properties of profunctors, it will
be useful to put them in a more general and abstract framework. A double category is a
2-category-like structure involving two types of 1-cell�horizontal and vertical�as well
as 2-cells. A proarrow equipment (which we typically abbreviate to just equipment) is
a double category satisfying a certain �brancy condition. An excellent reference is the
paper [Shu08], where they are called framed bicategories.

We will see in Example 2.12 that there is an equipment Prof whose objects are
categories, whose vertical 1-cells are functors, and whose horizontal 1-cells are profunctors.
This is the motivating example to keep in mind for equipments. In Section 8 we will de�ne
Data, the other main proarrow equipment of the paper, whose objects are database
schemas.

2.8. Definition. A double category D consists of the following data:
• A category D0, which we refer to as the vertical category of D. For any two objects
A,B ∈ D0, we will write D0(A,B) for the set of vertical arrows from A to B. We
refer to objects of D0 as objects of D.

554 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

• A category D1, equipped with two functors L,R : D1 → D0, called the left frame
and right frame functors. Given an object M ∈ ObD1 with A = L(M) and B =
R(M), we say that M is a proarrow (or horizontal arrow) from A to B and write
M : A B. A morphism φ : M → N in D1 is called a 2-cell, and is drawn as
follows, where f = L(φ) and g = R(φ):

A B

C D

M

f g

N

⇓φ (7)

• A unit functor U : D0 → D1, which is a section of both L and R, i.e. L◦U = idD0 =
R ◦U. We will often write UA or even A for the unit proarrow, U(A) : A A, and
similarly Uf of just f for U(f).
• A functor � : D1×D0D1 → D1, called horizontal composition, that is weakly asso-
ciative and weakly unital in the sense that there are coherent unitor and associator
isomorphisms. See [Shu08] for details.

Given a double category D, we will sometimes write Vert(D) for the vertical category
D0. There is also a horizontal bicategory, denoted H(D), whose objects and 1-cells are
the objects and horizontal 1-cells of D, and whose 2-cells are the 2-cells of D of the form
(7) such that f = idA and g = idB.

Given f, g,M,N as in (7), we write fDg(M,N) for the set of 2-cells from M to N
with frames f and g, and write H(D)(M,N) for the case where f and g are identity
morphisms. If A and B are objects, then D(A,B) will always mean the set of vertical
arrows from A to B, where H(D)(A,B) is used when we want the category of proarrows.

We follow the convention of writing horizontal composition serially, i.e. the horizontal
composite of proarrows M : A B and N : B C, is M �N : A C.

2.9. Definition. A double category D is right closed [resp. left closed] when its horizon-
tal bicategory is, i.e. when composing a proarrow N [resp. M] with an arbitrary proarrow,
(−�N), [resp. (M �−)] has a left adjoint. Following [Shu08], we denote this left adjoint
by (N B−) [resp. by (−CM)]; hence there are bijections

H(D)(X �N,P) ∼= H(D)(X,N B P)

H(D)(M �X,P) ∼= H(D)(X,P CM)

natural in X and P . D is biclosed when both adjoints exist.

Recall from [Bor94b] the de�nitions of cartesian morphisms and �brations of cate-
gories.

2.10. Definition. A proarrow equipment (or just equipment) is a double category D in
which the frame functor

(L,R) : D1 → D0 ×D0

ALGEBRAIC DATABASES 555

is a �bration. If f : A → C and g : B → D are vertical morphisms and N : C D is a
proarrow, a cartesian morphism M → N in D1 over (f, g) is a 2-cell

A B

C D

M

f g

N

⇓cart

which we call a cartesian 2-cell. We refer to M as the restriction of N along f and g,
written M = N(f, g).

Equivalently, an equipment is a double category in which every vertical arrow f : A→
B has a companion f̂ : A B and a conjoint f̂ : B A, together with 2-cells satisfy-
ing certain equations (see [Shu08]). In this view, the canonical cartesian lifting of some

proarrow N along (f, g) is given by N(f, g) ∼= f̂ �N � ĝ.

2.11. Adjunction between representable proarrows. Any vertical morphism in

an equipment D induces an adjunction f̂ a f̂ in the horizontal bicategory H(D), with
unit denoted ηf and counit denoted εf . Moreover, the following bijective correspondences
hold for any vertical morphisms f : A → B, g : C → D, and proarrows M : A B,
N : C D:

fDg(M,N) ∼= H(D)(M, f̂ �N � ĝ)

∼= H(D)(M � ĝ, f̂ �N)

∼= H(D)(f̂ �M,N � ĝ)

∼= H(D)(f̂ �M � ĝ, N).

(8)

The last bijection shows that in an equipment, the frame functor (L,R) : D1 → D0 ×D0

turns out to also be an op�bration.
We record some notation for (8). Given a 2-cell φ ∈ fDg(M,N), we write φ̂ ∈

H(D)(M � ĝ, f̂ � N) and φ̂ ∈ H(D)(f̂ � M,N � ĝ) for its image under the above
bijections,

A B

C D

M

f g

N

⇓φ

A B D

A C D

M ĝ

f̂ N

⇓φ̂

C A B

C D B

f̂ M

N ĝ

⇓φ̂

2.12. Example. There is a double category Prof de�ned as follows. The vertical cat-
egory is Prof0 = Cat the category of small categories and functors. Given objects
C,D ∈ Prof , a horizontal arrow between them is a profunctor M : C D, as described
in Section 2.1. A 2-cell φ ∈ FProfG(M,N), as to the left of (9), denotes a natural

556 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

transformation, as to the right of (9), with components φc,d : M(c, d)→ N(Fc,Gd):

C D

E F

M

F G

N

⇓φ

Cop × D Eop ×F

Set

M

F op×G

φ⇒
N

(9)

The horizontal composite of profunctorsM�N is de�ned by the coend (4), or equivalently
by the coequalizer (5), and the horizontal unit is UC = HomC : C C. This gives Prof
the structure of a double category, such that H(Prof) is the bicategory Prof de�ned in
Section 2.6.

Moreover, the double category Prof is biclosed (see De�nition 2.9): given proarrows
M : C D, N : D E, and P : C E, one de�nes left and right exponentiation using
ends

(N B P)(c, d) =

∫
e∈E

P (c, e)N(d,e) = [E,Set](N(d,−), P (c,−))

(P CM)(d, e) =

∫
c∈C

P (c, e)M(c,d) = [Cop,Set](M(−, d), P (−, e))

which evidently inherit left and right actions from the respective categories when viewed
as bimodules.

Finally, Prof is an equipment because for any F,G,N as in (9), there is a cartesian
2-cell whose domain is precisely the profunctor N(F,G) := N ◦ (F op × G) obtained by
composition. The companion and conjoint of any functor F : C→ D are the representable
profunctors (3)

F̂ = D(F,−) and F̂ = D(−, F).

Thus we can also represent the cartesian lifting as N(F,G) = F̂ �N � Ĝ.

2.13. Definition. Let I be a small category. We say that a double category D has local
colimits of shape I if, for each pair of objects A,B ∈ D, the hom-category H(D)(A,B)
has colimits of shape I and these are preserved by horizontal composition on both sides,

L� (colimi∈IMi) ∼= colimi∈I(L�Mi)

(colimi∈IMi)�N ∼= colimi∈I(Mi �N).

We say that D has local colimits if it has local colimits of shape I for all small I.

2.14. Example. The equipment Prof has local colimits. Indeed, each horizontal bi-
category is a category of set-valued functors. Colimits exist, and they are preserved by
horizontal composition because composition is de�ned by coends, which are themselves
colimits.

ALGEBRAIC DATABASES 557

2.15. Collage of a proarrow. In some equipmentsD, a proarrow can be represented
in a certain sense by an object in D, called its collage. For example, it is well known
that a profunctor can be represented by a category, as we review in Example 2.19. In
this section we collect some useful properties of the collage construction, in an arbitrary
equipment.

We note brie�y that the collage construction was also studied in [Woo85], in a slightly
di�erent setting. The de�nition we give below of an equipment with extensive collages is
somewhat more general than the set of axioms considered in [Woo85], as we don't require
the existence of Kleisli objects for (horizontal) monads.

2.16. Definition. Let M : A B be a proarrow in an equipment D. Its collage is an
object M̃ equipped with vertical arrows iA : A→ M̃ ← B : iB, called the collage inclusions,
together with a 2-cell

A B

M̃ M̃,

M

iA iB

M̃

⇓µ (10)

that is universal in the sense that any diagram as to the left below (a cocone under M)
factors uniquely as to the right:

A B

X X

M

fA fB

X

⇓f =

A B

M̃ M̃

X X

M

iA iB

M̃
f̄ f̄

X

⇓µ

⇓f̄

(11)

2.17. Remark. The existence of a 2-cell µ with the above universal property amounts

to the existence of a left adjoint (̃−) : D1 → D0 to the unit functor U from De�nition 2.8,

since it establishes a bijection D0(M̃,X) ∼= D1(M,UX). From this perspective, the
universal 2-cell µ : M ⇒ UM̃ , as in (10), is the unit of the adjunction.

2.18. Definition. An equipment D is said to have collages if every proarrow in D has
a collage as in (11). By Remark 2.17, D has collages if and only if there exists a left

adjoint (̃−) : D1 → D0 to the unit functor U.
We say D has normal collages if additionally the unit of the adjunction µ is cartesian.

558 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

2.19. Example. The proarrow equipment Prof has normal collages. The collage M̃ of
a profunctor M : Cop × D→ Set is a category where Ob(M̃) := Ob(C) tOb(D), and

M̃(x, y) =

C(x, y) if x ∈ C and y ∈ C

M(x, y) if x ∈ C and y ∈ D

∅ if x ∈ D and y ∈ C

D(x, y) if x ∈ D and y ∈ D

(12)

Composition in M̃ is de�ned using composition in C and D and the functoriality of M .
There are evident functors iC : C → M̃ and iD : D → M̃ , and the 2-cell µ : M ⇒ UM̃
sends an element m ∈M(c, d) to m ∈ M̃(iC(c), iD(d)) = M(c, d). It is easy to see that µ
is cartesian, so Prof has normal collages.

This construction satis�es the universal property (11). Suppose we are given fC : C→
X, fD : D →X, and a 2-cell f as in (11). It is easy to see that the unique f̄ : M̃ →X
(and so Uf̄ : UM̃ ⇒ UX) that works is de�ned by cases, using fC on objects and morphisms
in C, using fD on objects and morphisms in D, and using f on morphisms with domain
in C and codomain in D.

Note also that for any profunctor M as above, there is an induced functor M̃ → 2,
where 2 = {0→ 1}, sometimes called the free arrow category, is the collage of the terminal
profunctor {∗} {∗}. In fact, if Cat/2 denotes the slice category, it is not hard to check
that the collage construction provides an equivalence of categories

Prof1 ' Cat/2 (13)

In particular, from a functor F : A → 2 we obtain a profunctor between the pullbacks of
F along 0, 1: {∗} → 2 respectively.

2.20. Proarrows between collages; simplices. We now want to consider general
proarrows M̃ Ñ between collages in D, by de�ning a category of simplices. Although
we will only need this in the case D = Prof , we found the proofs simpler in the general
case.

For intuition, consider two profunctorsM : C0 C1 and N : D0 D1. A profunctor
X : M̃ Ñ must assign a set X(c, d) in four di�erent cases: c is an object in either C0 or
C1, and likewise for d. We could try splitting X into four profunctors Xi,j : Ci Dj, but
this would not encode all of the functorial actions needed to recoverX. For instance, given
objects c ∈ C0, c

′ ∈ C1, and d ∈ D0, and given an element x ∈ X1,0(c′, d) and a morphism

m : c → c′ in M̃ (i.e. an element m ∈ M(c, c′)), there is an element m · x ∈ X0,0(c, d).
The idea behind the following construction is to encode all of the data of a profunctor X
between collage objects by four profunctors, together with four 2-cells which capture all
of those functorial actions.

ALGEBRAIC DATABASES 559

2.21. Definition. Let M : A0 A1 and N : B0 B1 be proarrows in D. We de�ne
an (M,N)-simplex X to be a collection of proarrows {X0,0, X0,1, X1,0, X1,1}

A1 B0

A0 B1

X1,0

X1,1
N

X0,0

X0,1

M

together with four 2-cells X0,∗, X1,∗, X∗,0, X∗,1 as in

A1

Bk

A0

X1,k

M

X0,k

⇓X∗,k

B0

Aj

B1

N

Xj,0

Xj,1

⇓Xj,∗

such that the following equation holds:

A1 B0

A0 B1

X1,0

NX0,0

X0,1

M
⇓X∗,0

⇓X0,∗

=

A1 B0

A0 B1

X1,0

X1,1
N

X0,1

M
⇓X1,∗

⇓X∗,1

A morphism α : X → Y between two (M,N)-simplices consists of component 2-cells
α = (α0,0, α0,1, α1,0, α1,1), where αj,k : Xj,k → Yj,k satisfy four evident equations. We have
thus de�ned the category of (M,N)-simplices, denoted MSimpN .

Suppose that the equipment D has local initial objects; see De�nition 2.13. Then for
any proarrow M : A0 A1, there is an (M,M)-simplex given by the proarrows

A1 A0

A0 A1

0

A1
MA0

M

M (14)

together with the evident 2-cells; we call this the unit simplex on M and denote it by
1M ∈ MSimpM .

2.22. The functor MResN . There is a functor MResN : H(D)(M̃, Ñ) → MSimpN
de�ned as follows. On some P : M̃ Ñ , the four proarrows are given by the restrictions

along the collage inclusions iAj : Aj → M̃ and iBk : Bk → Ñ , namely Xj,k = îAj �P � îBk ,
and the 2-cells are given by horizontal composition with the universal µM , µN .

The following proposition follows directly from de�nitions.

560 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

2.23. Proposition. Suppose that D has local initial objects and collages. The four 2-
cells

A A

M̃ M̃

A

iA iA

M̃

⇓iA

A B

M̃ M̃

M

iA iB

M̃

⇓µ

B A

M̃ M̃

0

iB iA

M̃

⇓!

B B

M̃ M̃

B

iB iB

M̃

⇓iB (15)

induce a morphism uM : 1M → MResM(UM̃) in MSimpM by unique factorization through
cartesian 2-cells. The following are equivalent

1. uM is an isomorphism in MSimpM .
2. each of the four squares in (15) is cartesian.
3. the four induced 2-cells are isomorphisms:

ηiA : UA ∼−→ îA � îA, µ : M ∼−→ îA � îB, ! : 0 ∼−→ îB � îA, ηiB : UB ∼−→ îB � îB.
(16)

Note that ifD satis�es the equivalent conditions in Proposition 2.23 then, in particular,
it has normal collages.

2.24. Definition. Let D be an equipment. We will say that D has extensive collages if
it satis�es the following conditions:

1. D has collages and local initial objects,
2. any of the equivalent conditions from Proposition 2.23 are satis�ed,
3. for every pair of proarrowsM and N , the functor MResN : H(D)(M̃, Ñ)→ MSimpN

is an equivalence of categories.

Extensive collages are best behaved in the presence of local �nite colimits. The fol-
lowing proposition provides a condition which is equivalent to condition 3 above in this
case, but which is often easier to verify. The proof provides an explicit construction of
the inverse of MResN using colimits in the horizontal bicategories.

2.25. Proposition. Suppose that D is an equipment with collages, that it satis�es con-
dition 2 in De�nition 2.24, and that D has local �nite colimits (so it also satis�es condi-
tion 1). Then condition 3 is equivalent to the following condition:

3'. for any proarrow M : A B, the following square is a pushout in H(D)(M̃, M̃):

îA � îA � îB � îB îB � îB

îA � îA UM̃

εiA�îB�îB

îA�îA�εiB εiB

εiA

p

(17)

ALGEBRAIC DATABASES 561

Proof. Suppose D has local �nite colimits and satis�es condition 2. First assuming
condition 3 we will show that (17) is a pushout. It su�ces that its image under the
equivalence MResN (Section 2.22) is a pushout, i.e. each of the four restriction functors,

îA � �� îA : H(D)(M̃, M̃)→H(D)(A,A),

as well as îA � �� îB, îB � �� îA, and îB � �� îB, take the diagram (17) to a pushout
square. This follows easily from condition 2, in particular the four isomorphisms of (16).

Conversely, assuming condition 3', we will show that MResN is an equivalence of
categories for any pair of proarrows M : A0 A1, N : B0 B1. To de�ne the inverse
functor, let X ∈ MSimpN be a simplex, and consider the diagram

A1 B0

M̃ Ñ

A0 B1

X1,0

X1,1

N

îB0
îA1

îA0

X0,0

X0,1

M

îB1

which also contains six 2-cells:

X∗,k : M �X1,k → X0,k, Xj,∗ : Xj,0 �N → Xj,1,

µ̂M : îA0 �M → îA1 , µ̂N : N � îB1 → îB0

where the µ's are universal 2-cells and µ̂ and µ̂ are as in Section 2.11.
The inverse to MResN , which we denote (X 7→ X̃) : MSimpN → H(D)(M̃, Ñ), is

given by sending the simplex X to the colimit in H(D)(M̃, Ñ) of the 3× 3 square: 1

îA0X0,0̂iB0 îA0MX1,0̂iB0 îA1X1,0̂iB0 P îB0 îB0

îA0X0,0NîB1 îA0MX1,0NîB1 îA1X1,0NîB1 P îB0NîB1

îA0X0,1̂iB1 îA0MX1,1̂iB1 îA1X1,1̂iB1 P îB1 îB1

îA0 îA0P îA0MîA1P îA1 îA1P P

X∗,0 µ̂M

µ̂N

X0,∗

µ̂N

X1,∗

X∗,0 µ̂M

µ̂N

X1,∗

µ̂N

µ̂N

X∗,1 µ̂M

µ̂M µ̂M

(18)

Note that this colimit can be formed by �rst taking the pushout of each row, and then
taking the pushout of the resulting span, or by taking column-wise pushouts �rst. For
the time being, ignore the separated right-hand column and bottom row of (18).

1We suppress the � symbol in the objects to reduce the required space.

562 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

We now show that MResN and X 7→ X̃ are inverse equivalences. Suppose P : M̃ Ñ
is a proarrow and letX = MResN(P); we want to show that there is a natural isomorphism

P ∼= X̃. Performing the substitution Xj,k = îAjP îBk and using the isomorphisms from

(16), e.g. M ∼= îA0 îA1 , each row (resp. each column) can be seen as a composition of
some proarrow�namely the one in the right-hand column (resp. bottom row)�with
the diagram (17). Since local colimits commute with proarrow composition, the right-
hand column (resp. bottom row) proarrows are indeed the pushouts. In the same way,
one checks that P is the colimit of both the right-hand column and the bottom row.

In the other direction, if X ∈ MSimpN is any simplex and X̃ is the colimit of the

square in (18), we want to show that MResN(X̃) ∼= X. It is straightforward to check that

îAj � X̃ � îBk ∼= Xj,k by composing the square with îAj on the left and îBk on the right
and applying the equations of (16). It is moreover easy to see that these isomorphisms

form the components of an isomorphism of simplices MResN(X̃) ∼= X. Thus MResN is an
equivalence of categories.

2.26. Remark. It is likely possible to characterize equipments with extensive collages
(assuming local �nite colimits) in terms of an adjunction of double categories. We won't
pursue this further here, but for the interested reader we provide a rough sketch as a
starting point for further investigation.

If D is an equipment with local �nite colimits, one can de�ne an equipment Simp(D)
whose vertical category is D1 and whose horizontal 1-cells are simplices. The composition
in Simp(D) is given by (51). There is a double functor U : D → Simp(D) sending each
object A ∈ D to the unit proarrow UA and each proarrowM : A B to the unit simplex
1M de�ned in (14).

If D has extensive collages, then U has a left adjoint Col sending each proarrow
M ∈ Simp(D) to its collage Col(M) and acting on simplices by the pushout (18).
Looking at the de�nition De�nition 2.24, it seems that condition 1 is related to the
existence of a left adjoint to U, condition 2 is related to the property that the 2-cell
components of the unit of this double-adjunction are cartesian, and condition 3' is related
to the property that the right adjoint Col is normal (preserves unit proarrows). Perhaps
this observation can be worked into an equivalent characterization of equipments with
extensive collages, but we leave it to the motivated reader to investigate further.

2.27. Example. The equipment Prof has extensive collages. Indeed, Prof has local
colimits by Example 2.14 and normal collages by Example 2.19. Moreover, we will verify
that Prof satis�es condition 3' of Proposition 2.25.

If M : C D is a profunctor, then we need to show that (17) is a pushout in the

category [M̃op × M̃,Set]. It su�ces to show that it is a pointwise pushout. For any

objects x, y ∈ M̃ , it is not hard to see that (17) becomes one of the following pushout

ALGEBRAIC DATABASES 563

squares in Set:

0 0 M(x, y) M(x, y)

C(x, y) C(x, y) M(x, y) M(x, y)

0 0 0 D(x, y)

0 0 0 D(x, y)

y ∈ C y ∈ D

x ∈ C p p

x ∈ D p p

2.28. Collages as lax (co)limits.When an equipment D has extensive collages and
local �nite colimits (like Prof), there is another universal property involving collages,
which can be expressed entirely in terms of the horizontal bicategory H(D).

2.29. Definition. Let B be a bicategory, let F : A → B be a 1-cell in B, and let X be
an object in B. De�ne a category of lax cocones from F to X, written FCoconeX , as
follows: an object of FCoconeX is a diagram

B

X

A

PB

F

PA

⇓π

and a morphism α : (PA, PB, π) → (QA, QB, χ) is a pair of 2-cells αA : PA → QA and
αB : PB → QB making an evident diagram commute.

Any cocone (PA, PB, π) ∈ FCoconeX induces a functor B(X, Y) → FCoconeY by
composition. If this functor is an equivalence of categories, then we say that X is a lax
colimit of the arrow F (see for example [Kel89]). Dually, there is a category XConeF of
lax cones from X to F , employed in the de�nition of lax limits of arrows.

2.30. Proposition. Let D be an equipment with extensive collages and local �nite col-
imits, and let M : A B be a proarrow with collage iA : A→ M̃ ← B : iB. The triangle
on the left exhibits M̃ as a lax colimit of the 1-cell M in H(D), and the triangle on the

right exhibits M̃ as a lax limit of M .

B

M̃

A

îB

M

îA

⇓µ̂

A

M̃

B

M

îA

îB

⇓µ̂

564 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

Proof. The 2-cells µ̂, µ̂ correspond to the cartesian µ as in Section 2.11. We will show
that the triangle on the left is a lax colimit cocone, i.e. that composing with µ̂ induces an
equivalence of categories H(D)(M̃, Y) → MCoconeY for any Y . We de�ne the inverse

functor to send a cocone (PA, PB, π) to the proarrow P : M̃ Y de�ned by a pushout in

H(D)(M̃, Y):

îA �M � PB îB � PB

îA � PA P

µ̂�PB

îA�π

p

(19)

Suppose we start with an arbitrary proarrow Q : M̃ Y , and compose with µ̂ to get
the cocone π = µ̂ � Q : M � îB � Q → îA � Q. We can see that the pushout (19) is
just (17) composed by Q on the right, showing P ∼= Q. On the other hand, if we start
with an arbitrary cocone π, take the pushout P as in (19), then compose on the left with
µ̂ : M � îB → îA, it is easy to check that we get π back.

Thus the pushout (19) does de�ne an inverse functor MCoconeY → H(D)(M̃, Y),
showing that the triangle on the left is a lax colimit cocone. The lax limit cone follows
by a dual argument.

2.31. Remark. A converse to Proposition 2.30 holds: if D has local �nite colimits such
that the conclusion to Proposition 2.30 holds for all proarrows M : A B in D, then D
has extensive collages. We won't need this converse, and so do not prove it. The proof is
straightforward, regarding a simplex as a �lax cocone of lax cones� (or visa-versa).

2.32. Remark. For convenience, we will break down the universal property of M̃ as the
lax limit of M . Suppose D has extensive collages.

Given any PA : X A, PB : X B, and 2-cell π : PA�M → PB, there is a proarrow
P : X M̃ (which is unique up to isomorphism by the 2-dimensional part of the universal
property of Proposition 2.30) such that π ∼= P � µ̂. Namely cartesian 2-cells exist, by

PA ∼= P � îA, PB ∼= P � îB, satisfying the equation (where µ is also cartesian)

X A B

X M̃ M̃

PA M

iA iB

P M̃

cart ⇓µ =

A

X B

X M̃

MPA

PB iB

P

⇓π

cart

(20)

The 2-dimensional part of the universal property says that, given αA : pA → qA and
αB : pB → qB such that αB ◦ p = q ◦ αA, there is a unique α : P → Q making the evident
diagrams commute.

The universal property for the lax colimit is dual.

ALGEBRAIC DATABASES 565

3. Algebraic theories

In this section, we recall some basic aspects of the well-known work on algebraic theories
and their algebras [ARV11] relevant to our purposes. In particular, algebraic theories
are often used to de�ne data types within various programming languages [Mit96], and
as stated in the introduction, our main goal is to connect databases and programming
languages.

3.1. Definition. A (multisorted) algebraic theory is a cartesian strict monoidal cat-
egory T together with a set ST, elements of which are called base sorts, such that the
monoid of objects of T is free on ST. The terminal object in T is denoted 1.

The category ATh has algebraic theories as objects, and morphismsT→T ′ are product
preserving functors F which send base sorts to base sorts: for any s ∈ ST, F (s) ∈ ST′.

3.2. Remark. Throughout this paper we will discuss algebraic theories�categories with
�nite products and functors that preserve them�which are closely related to the notion
of �nite product sketches; see [BW85]. However, aside from issues of syntax and compu-
tation, everything we say in this paper would also hold if algebraic theories were replaced
by essentially algebraic theories�categories with �nite limits and functors that preserve
them�which are analogous to �nite limit sketches.

3.3. Definition. Let T be an algebraic theory. An algebra (sometimes called a model)
of T is a �nite product-preserving functor T→ Set. The category T-Alg of T-algebras is
the full subcategory of [T,Set] spanned by the �nite product-preserving functors.

3.4. Example. If T is an algebraic theory, and t ∈T is an object, then the representable
functor T(t,−) preserves �nite products. Thus the Yoneda embedding y : Top → [T,Set]
factors through T-Alg.

In particular, y(1) = T(1,−) is the initial T-algebra for any algebraic theory, called
the algebra of constants and denoted by κ := y(1).

We state the following theorem for future reference; proofs can be found in [AR94].

3.5. Theorem. Let T be any algebraic theory.
• The Yoneda embedding y : Top → T-Alg is dense. (By de�nition, T-Alg is a full
subcategory of [T,Set].)
• T-Alg is closed in [T,Set] under sifted colimits. ([AR94, Prop. 2.5].)
• T-Alg has all colimits. ([AR94, Thm. 4.5].)

3.6. Warning. Note that the forgetful functor T-Alg → [T,Set] in general does not
preserve colimits; i.e. colimits inT-Alg are not taken pointwise. However, see Remark 6.9.

3.7. Remark. For convenience, we will recall the notion of a dense functor, though we
only use it in the case of the inclusion of a full subcategory. A functor F : A → C is
dense if one of the following equivalent conditions holds:
• for any object C ∈ C, the canonical cocone from the canonical diagram (F ↓ C)→

C to C is a colimit cocone,

566 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

• the identity functor idC is the pointwise left Kan extension of F along itself,
• the representable functor C(F,−) : C→ [Aop,Set] is fully faithful,
• (assuming C is cocomplete) for any object C ∈ C, the canonical morphism∫ A∈A

C(F (A), C) · F (A)→ C is an isomorphism.

3.8. Algebraic profunctors. In the previous section, we recalled the basic elements
of the theory of profunctors (see Sections 2.1 to 2.6). At this point, we wish to characterize
those profunctors between a category and an algebraic theoryM : C T, which interact
nicely with the products in T.

The following equivalences are easy to establish, by translating a product-preserving
condition for M : Cop × T → Set under (−× A) a (−)A, and by (12) for the collage
construction in Prof .

3.9. Lemma. Let C be a category and T an algebraic theory. For any profunctor
M : C T, the following are equivalent:
• for each c ∈ C, the functor M(c, �) : T→ Set preserves �nite products,
• M : T→ SetCop

preserves �nite products,
• M : Cop → SetT factors through the full subcategory T-Alg,
• the inclusion iT: T→ M̃ into the collage of M preserves �nite products.

3.10. Definition.We refer to a profunctorM satisfying any of the equivalent conditions
of Lemma 3.9 as an algebraic profunctor, or we say that it preserves products on the right.
We denote a profunctorM : C Twhich is algebraic, using a di�erently-decorated arrow

M : C T.

We de�ne the category Prof× to be the full subcategory of the pullback

Prof× · Prof1

Cat×ATh Cat×Cat

y
(L,R)

spanned by the algebraic profunctors. Here, L and R are the frame functors (De�ni-
tion 2.8).

Suppose given a pair of composable profunctors C
M

D
N

T in which the latter is
algebraic. We want to compose them in such a way that the composition is also algebraic.
It is not hard to see that ordinary profunctor composition M � N does not generally
satisfy this property; however, we can de�ne a composition which does. In De�nition 3.11

ALGEBRAIC DATABASES 567

we will formalize this as a left action ⊗ of Prof on Prof×:

Cat Prof× ATh

Prof1 ·

Cat Prof×

L R

R

L
⊗

p

L

R (21)

We thus aim to de�ne a functor ⊗ (dotted line) from the category of composable profunc-
tor pairs where the second is algebraic, such that the above diagram commutes.

Let D be a category, T an algebraic theory, and N : D T an algebraic profunctor.
By Lemma 3.9, we can consider N to be a functor N : Dop → T-Alg. De�ne the functor
Λ×N : SetD →T-Alg by the coend formula

Λ×N(J) =

∫ d∈D

J(d) ·N(d)

taken in the category T-Alg. This coend exists because T-Alg is cocomplete, and the
formula coincides with (2), except there the coend is taken in SetT, thus is pointwise.

3.11. Definition. Let M ∈ Prof1(C,D) be a profunctor, and let N ∈ Prof×(D,T) be
an algebraic profunctor. The left tensor of M on N , denoted M ⊗ N ∈ Prof×(C,T) is
de�ned by the composition Λ×N ◦M : Cop →T-Alg.

This left tensor can evidently be extended to a functor ⊗ as in (21). It is also simple
to check that it de�nes a left action of Prof on Prof×, in the sense that ⊗ respects units
and composition in Prof .

4. Presentations and syntax

In this section we will introduce syntax for algebraic theories, as well as for categories
and (co)presheaves. In general, a presentation of a given mathematical object consists
of generators and relations in a speci�ed form. The object itself is then obtained by
recursively generating terms according to a syntax, and then quotienting by the relations.

The material in this section is relatively standard (see, e.g. [Jac99] or [Mit96]). We go
through it carefully in order to �x the notation we will use in examples.

4.1. Presentations of algebraic theories.The presentation of an algebraic theory,
as de�ned in De�nition 3.1, does not explicitly mention products. Instead, it relies on
multi-arity function symbols on the base sorts. A signature simply lays out these sorts
and function symbols.

568 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

4.2. Definition. An algebraic signature is a pair Σ = (SΣ,ΦΣ), where SΣ is a set of
base sorts and ΦΣ is a set of function symbols. Each function symbol f ∈ Φ is assigned
a (possibly empty, ordered) list of sorts dom(f) and a single sort cod(f). We use the
notation f : (s1, . . . , sn) → s′ to mean that dom(f) = (s1, . . . , sn) and cod(f) = s′. We
call n the arity of f ; if n = 0, we say it is 0-ary and write it f : ()→ s′.

4.3. Definition. Let ASig denote the category of algebraic signatures. A morphism
F : Σ → Σ′ between signatures is a pair of functions FS : SΣ → SΣ′ and FΦ : ΦΣ →
ΦΣ′, such that for any function symbol f ∈ ΦΣ with f : (s1, . . . , sn) → s′, dom(FΦf) =
(FS(s1), . . . , FS(sn)) and cod(FΦf) = FS(s′).

4.4. Example. Consider the signature Σ for the algebraic theory of monoid actions on
a set. There are two sorts, S = {m, s}, and three function symbols, η : () → m for the
unit, µ : (m,m)→ m for the multiplication, and α : (m, s)→ s for the action. If Σ′ is the
signature for the theory of monoids, there is an evident inclusion morphism Σ′ → Σ.

4.5. Example. Every algebraic theoryThas an underlying algebraic signature ΣT, whose
base sorts are those of T, and whose function symbols f : (s1, . . . , sn) → s′ are the mor-
phisms f ∈T(s1 × · · · × sn, s′). This de�nes a functor U : ATh→ ASig.

We will see in Remark 4.14 that U has a left adjoint, giving the free algebraic theory
generated by a signature. We construct this left adjoint syntactically, and we will make
use of this syntax throughout the paper.

4.6. Definition. Fix an algebraic signature Σ. A context Γ over Σ is formally a set
Γv together with a function Γs : Γv → SΣ. In other words, a context is an object of
the slice category Set/SΣ

, or equivalently the functor category SetSΣ, regarding SΣ as a
discrete category. When the set Γv is �nite, we will encode both Γv and Γs as a list
Γ = (x1 : s1, . . . , xn : sn), and refer to Γ as a �nite context.

If Γ = (x1 : s1, . . . , xn : sn) and Γ′ = (x′1 : s′1, . . . , x
′
m : s′m) are two contexts, we will

write Γ,Γ′ = (x1 : s1, . . . , xn : sn, x
′
1 : s′1, . . . , x

′
m : s′m) for their concatenation, equivalently

given by the induced function Γv t Γ′v → SΣ. In practice, when concatenating contexts,
we implicitly assume that variables are renamed as necessary to avoid name clashes. We
denote the empty context by ∅.

4.7. Remark. Intuitively, a context (x1 : s1, . . . , xn : sn) represents the declaration that
symbol xi �belongs to the sort� si. We treat the parentheses around a context as optional,
and use them only as an aid to readability.

The primary role of contexts is to explicitly list the �free variables� which are allowed
to be used inside an expression. Thus a context (x : Int, y : A) roughly corresponds to the
English �let x be an integer and let y be an element of A�. The next de�nition makes this
intuition precise.

ALGEBRAIC DATABASES 569

4.8. Definition. Fix an algebraic signature Σ and a context Γ. A term in context Γ is
an expression built out of the variables in Γ and function symbols in Σ. Every term has
an associated sort. We use the notation Γ ` t : s to denote that t is a term in context Γ
and that t has sort s.

Terms in context Γ are de�ned recursively as follows:
• if (x : s) ∈ Γ, then Γ ` x : s,
• if f : (s1, . . . , sn)→ s′ is a function symbol in Σ and Γ ` ti : si for each 1 ≤ i ≤ n,
then Γ ` f(t1, . . . , tn) : s′.

We will sometimes refer to terms ∅ ` t in the empty context as ground terms. A
ground term t must not contain any variables, and so must be constructed entirely out of
function symbols in Σ (which includes 0-ary function symbols). Note that there can be
terms in non-empty contexts which contain no variables, but we will not call these ground
terms.

4.9. Example. In Example 4.4 we gave the signature Σ for monoid actions. An example
term is x1 : m, x2 : m, p : s ` α(µ(x1, x2), p) : s. An example ground term is ∅ `
µ(η, µ(η, η)) : m.

One can think of a variable x which appears in a term t as a placeholder which can
be replaced by other expressions. For instance, in x3− 2x, the variable x can be replaced
by any number, or even another polynomial. To make this precise, the operation of
substitution is de�ned recursively.

4.10. Definition. Let Θ, Γ, and Ψ be contexts. If (Θ, x : s, Ψ) ` t : s′ and Γ ` u : s are
terms, then Θ,Γ,Ψ ` t[x := u] : s′ denotes the term obtained by replacing all occurrences
of x in t with u. This substitution operation is de�ned formally by recursion:
• x[x := u] = u,
• x′[x := u] = x′ if x′ 6= x,
• f(t1, . . . , tn)[x := u] = f(t1[x := u], . . . , tn[x := u]).
If (Θ, x1 : s1, . . . , xn : sn, Ψ) ` t : s′ and Γ ` ui : si for all 1 ≤ i ≤ n, let Θ,Γ,Ψ `

t[x1 := u1, . . . , xn := un] : s′ denote the term obtained by simultaneous substitution, also
written t[xi := ui] or t[~x := ~u] for compactness when this is clear.

4.11. Definition. Let Γ and Θ be contexts over an algebraic signature Σ, where Θ =
(x1 : s1, . . . , xn : sn) is �nite. A context morphism Γ → Θ is a tuple of terms Γ ` ti : si
for 1 ≤ i ≤ n, written [x1 := t1, . . . , xn := tn] : Γ → Θ, or [xi := ti] or [~x := ~t] for
compactness.

If Ψ = (y1 : s′1, . . . , ym : s′m) is another �nite context, and [~y := ~u] : Θ → Ψ a context
morphism, the composition [~y := ~u] ◦ [~x := ~t] is de�ned to be [yi := ui[~x := ~t]] : Γ→ Ψ.

4.12. Example. Continuing with Examples 4.4 and 4.9, consider contexts Γ = (x1 :
m, x2 : m, p : s) and Θ = (y : m, q : s). There is a context morphism Γ→ Θ given by[

y := x1, q := α
(
µ(x1, x2), p

)]
.

570 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

4.13. Definition. Let Σ be an algebraic signature. De�ne the category of contexts over
Σ, denoted CxtΣ, to be the category of �nite contexts over Σ and context morphisms. We
de�ne the category of possibly in�nite contexts over Σ, denoted CxtΣ, to be the obvious
extension.

4.14. Remark. It is not hard to see that CxtΣ has �nite products, given by concate-
nation of contexts, and that the objects of CxtΣ are freely generated under products
by the base sorts (i.e. the singleton contexts). Thus this construction de�nes a functor
Cxt : ASig → ATh. In fact, the functor Cxt is left adjoint to the underlying signature
functor U : ATh→ ASig from Example 4.5. Hence we will also refer to CxtΣ as the free
algebraic theory on the signature Σ.

The category ASig is for many purposes too rigid: a morphism in ASig is required
to send function symbols to function symbols, whereas one often wants to send function
symbols to a more complex expression. We now de�ne this more �exible category of
signatures.

4.15. Definition. De�ne ASig∗ to be the Kleisli category of the monad induced by the
adjunction Cxt a U of Remark 4.14 on the category ASig.2 Concretely, ASig∗ is de�ned
just like ASig in De�nition 4.3, but where a morphism F : Σ → Σ′ between signatures
is allowed to send a function symbol f : (s1, . . . , sn) → s′ in ΦΣ to an arbitrary term(
x1 : FS(s1), . . . , xn : FS(sn)

)
` FΦ(f) : FS(s′) over Σ′. Composition of these signature

morphisms is de�ned by substitution.

We are now ready to discuss presentations of algebraic theories. We begin with a
careful consideration of equations.

4.16. Definition. Let Σ be an algebraic signature. An equation over Σ is a pair of
terms (t, t′), where t and t′ are in the same �nite context Γ and have the same sort s. We
denote such a pair by the equation Γ ` (t = t′) : s, or simply by Γ ` t = t′ if no confusion
should arise.

Let E be a set of equations over Σ. De�ne ≈E to be the smallest equivalence relation
on terms over Σ such that

1. if Γ ` t = t′ is an equation of E, then Γ ` t ≈E t′,
2. if f : (s1, . . . , sn)→ s′ is a function symbol and Γ ` (ti ≈E t′i) : si for all 1 ≤ i ≤ n,

then Γ `
(
f(t1, . . . , tn) ≈ f(t′1, . . . , t

′
n)
)

: s′,
3. if Θ ` (t ≈E t′) : s, and [~x := ~u] : Γ → Θ is a context morphism, then Γ `

(
t[~x :=

~u] ≈E t′[~x := ~u]
)

: s.

4.17. Remark. Condition 3 of De�nition 4.16 is equivalent to the following two condi-
tions:

3a. if (Θ,Ψ) ` (t ≈E t′) : s′, then (Θ, x : s,Ψ) ` (t ≈E t′) : s′ for any sort s′,
3b. if (Θ, x : s,Ψ) ` (t ≈E t′) : s′, and Γ ` u : s is a term, then we have (Θ,Γ,Ψ) `(

t[x := u] ≈E t′[x := u]
)

: s′.

2 We use the symbol ` between contexts and terms; we use the symbol a for adjunctions. Both are
standard notation and no confusion should arise.

ALGEBRAIC DATABASES 571

4.18. Definition. Let Σ be an algebraic signature, and E a set of equations over Σ.
The algebraic theory CxtΣ/E is the quotient of CxtΣ by the equivalence relation ≈E. In
other words, the objects of CxtΣ/E are �nite contexts over Σ, and the morphisms are
≈E-equivalence classes of context morphisms. This quotient is well de�ned because ≈E is
by de�nition preserved under substitution.

We call the pair (Σ, E) a presentation of the algebraic theory T if there is an isomor-
phism T∼= CxtΣ/E. We call it a �nite presentation if both Σ and E are �nite.

We now conclude our running example of monoid actions.

4.19. Example. In Example 4.4, we gave the signature for monoid actions on sets, with
sorts m, s and function symbols η, µ, α. To present the algebraic theory of monoid actions
on sets, we add the following four equations:

x : m ` µ(x, η) = x x, y, z : m ` µ
(
x, µ(y, z)

)
= µ

(
µ(x, y), z

)
x : m ` µ(η, x) = x x : m, y : m, p : s ` α

(
x, α(y, p)

)
= α

(
µ(x, y), p

)
4.20. Definition. De�ne the category of algebraic presentations APr as follows: the
objects of APr are pairs (Σ, E), where Σ is an algebraic signature and E is a set of
equations over Σ. A morphism F : (Σ, E) → (Σ′, E ′) is a morphism F : Σ → Σ′ in the
Kleisli category ASig∗ such that F (t) ≈E′ F (t′) for each equation t = t′ of E.

Let Cxt also denote the functor APr→ ATh sending a pair (Σ, E) to CxtΣ/E.

4.21. Remark. Any algebraic theory T has a canonical presentation (ΣT, ET), where ΣT

is the underlying signature from Example 4.5, and ET is de�ned such that an equation
x1 : s1, . . . , xn : sn ` (t = t′) : s is in ET if and only if the morphisms corresponding to t
and t′ in the hom-set T(s1 × · · · × sn, s) are equal.

It is not hard to see that CxtΣT
/ET
∼= T for any algebraic theory T. It is also straight-

forward to check that Cxt : APr → ATh is fully faithful, and hence an equivalence of
categories.

The following easy proposition establishes the fundamental connection between a pre-
sentation for an algebraic theory T and algebras on T.

4.22. Proposition. Let Σ be an algebraic signature and E be a set of equations, and
consider an assignment of a set Fs to each sort s ∈ SΣ and a function Ff : Fs1×· · ·×Fsn →
Fs′ to each function symbol f : (s1, . . . , sn)→ s′ in ΦΣ. This assignment uniquely extends
to a CxtΣ-algebra F . In particular, given any term (x1 : s1, . . . , xn : sn) ` t : s′, there is
a function Ft : Fs1 × · · · × Fsn → Fs′.

The assignment uniquely extends to a CxtΣ/E-algebra if and only if it satis�es the
equations E, i.e. for each equation Γ ` t1 = t2 of E, the functions Ft1 and Ft2 are equal.

4.23. Example. Consider the presentation (Σ, E), where SΣ = {Int} is the only sort, ΦΣ

consists of the �ve function symbols 0, 1: ()→ Int, (−) : (Int)→ Int, and +,× : (Int, Int)→
Int, and E is the set of equations shown in Fig. 1. The algebraic theory T = CxtΣ/E
generated by this presentation is a category with objects the contexts over Σ, such as

572 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

x, y, z : Int ` (x+ y) + z = x+ (y + z)
x : Int ` x+ 0 = x

x, y : Int ` x+ y = y + x
x : Int ` x+ (−x) = 0

x, y, z : Int ` (x× y)× z = x× (y × z)
x : Int ` x× 1 = x

x, y : Int ` x× y = y × x
x, y, z : Int ` x× (y + z) = (x× y) + (x× z)

Figure 1: Equations for the algebraic theory of commutative rings.

(a : Int) or (x, y, z : Int). Some example context morphisms (x, y, z : Int) → (a : Int) are
[a := (x+ y)× (x+ z)] and [a := ((x× x) + (x× z)) + ((y× x) + (y× z))]. These context
morphisms are equivalent under ≈E, so determine the same morphism in T.

It is possible to show that the category T-Alg is equivalent to the category CRing of
commutative rings. In particular, a product preserving functor F : T→ Set must send the
context (a : Int) to some set R, the context morphism [a := x+ y] : (x, y : Int)→ (a : Int)
to a function R×R→ R, etc.

We name the single sort `Int' to �t with the practice in type theory, in which the
�elements� of a type τ are considered to be the ground terms of type τ . That the ground
terms of sort `Int' are precisely the integers is equivalent to the fact that Z is the initial
commutative ring.

We will use the following algebraic theory throughout the paper in our database ex-
amples.

4.24. Example. Consider the multi-sorted algebraic theory Type generated by the �nite
theory presentation with base sorts, function symbols and equations as de�ned in Fig. 2,
page 573. It may be helpful to recall that implication can be written as (a⇒ b) = ¬a∨ b.
We use an axiomatization of Boolean algebras which is proven complete in [Hun04].

Clearly this algebraic theory includes the one from Example 4.23 as a sub-theory.
Similarly to viewing ground terms of type `Int' as the integers, those of type `Str' are
strings of letters, presented as the free monoid on 52 generators (upper and lower case
letters). For example, when we later write ‘Admin′ : Str we actually mean the term
∅ ` ‘A′.‘d′.‘m′.‘i′.‘n′ : Str.3 It can be shown that the ground terms of type `Bool' are
{True,False}.

4.25. Presentations of algebras. We now turn to presentations of algebras. Fix a
presentation (Σ, E), and letT = CxtΣ/E be the presented algebraic theory. Recall by Def-
inition 4.6 how we can think of objects in Set/SΣ

, the category of SΣ-indexed sets, as (pos-
sibly in�nite) contexts over Σ. There is an evident forgetful functor U : T-Alg→ Set/SΣ

,
which sends an algebra A : T→ Set to the indexed set {(UA)s}s∈SΣ

where (UA)s = A(s).

3Similarly, we may use the shorthand x− y to denote what is really x+ (−y).

ALGEBRAIC DATABASES 573

SΣ : Int, Bool, Str
ΦΣ : 0, 1 : ()→ Int

(−) : (Int)→ Int
+,× : (Int, Int)→ Int
≤ : (Int, Int)→ Bool

>,⊥ : ()→ Bool
¬ : (Bool)→ Bool
∧ : (Bool,Bool)→ Bool
∨ : (Bool,Bool)→ Bool

ε, ‘a′, . . . , ‘Z′ : ()→ Str
(.) : (Str, Str)→ Str
eq : (Str, Str)→ Bool

E : boolean algebra:

α : Bool ` α ∨ ⊥ = α α : Bool ` α ∧ > = α
α, β : Bool ` α ∨ β = β ∨ α α, β : Bool ` α ∧ β = β ∧ α
α : Bool ` α ∨ ¬α = > α : Bool ` α ∧ ¬α = ⊥

α, β, γ : Bool ` α ∨ (β ∧ γ) = (α ∨ β) ∧ (α ∨ γ) α, β, γ : Bool ` α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ)
commutative ring: all equations from Fig. 1

totally pre-ordered ring:

x, y, z : Int ` ¬((x ≤ y) ∧ (y ≤ z)) ∨ (x ≤ z) = >
x, y : Int ` (x ≤ y) ∨ (y ≤ x) = >

x, y, z, w : Int ` ¬((x ≤ y) ∧ (z ≤ w)) ∨ (x+ z ≤ y + w) = >
x, y, z : Int ` ¬((x ≤ y) ∧ (0 ≤ z)) ∨ (x× z ≤ y × z) = >
x, y, z : Int ` ¬((x× z ≤ y × z) ∧ (0 ≤ z)) ∨ (x ≤ y) = >

∅ ` (1 ≤ 0) = ¬>
monoid:

s : Str ` s.ε = s s, t, u : Str ` (s.t).u = s.(t.u)
s : Str ` ε.s = s

congruence:

s : Str ` (s eq s) = >
s, t : Str ` (s eq t) = (t eq s)

s, t, u : Str ` ¬((s eq t) ∧ (t eq u)) ∨ (s eq u) = >
s, t, u, v : Str ` ¬((s eq t) ∧ (u eq v)) ∨ (s.u eq t.v) = >

decidable equality:

s, t, u : Str ` (s.u eq t.u) = (s eq t)
s, t, u : Str ` (s.t eq s.u) = (t eq u)
s, t : Str ` (s.‘a′ eq t.‘b′) = ¬> . . . s, t : Str ` (s.‘y′ eq t.‘z′) = ¬>
s, t : Str ` (‘a′.s eq ‘b′.t) = ¬> . . . s, t : Str ` (‘y′.s eq ‘z′.t) = ¬>
s : Str ` (s.‘a′ eq ε) = ¬> . . . s : Str ` (s.‘z′ eq ε) = ¬>
s : Str ` (‘a′.s eq ε) = ¬> . . . s : Str ` (‘z′.s eq ε) = ¬>

Figure 2: Presentation of Type, our running example of an algebraic theory.

574 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

4.26. Definition. Let Γ ∈ SetSΣ
be an SΣ-indexed set, thought of as a context, and let

T = CxtΣ/E be a presented algebraic theory. De�ne the free T-algebra on Γ, denoted
κ[Γ] : T→ Set, to be the algebra for which κ[Γ](Θ) is the set of ≈E-equivalence classes of
context morphisms Γ→ Θ, with functoriality given by composition of context morphisms.

4.27. Remark. With notation as in De�nition 4.26, the elements of κ[Γ] of sort s
are just the ≈E-equivalence classes of terms Γ ` t : s, and for any function symbol
f : (s1, . . . , sn) → s′ the induced function sends a tuple of terms Γ ` ti : si to the term
Γ ` f(t1, . . . , tn) : s′. By Proposition 4.22, this completely de�nes the algebra κ[Γ], whose
standard name is the term algebra over Γ. There is an adjunction

κ[�] : SetSΣ
� (CxtΣ/E)-Alg :U (22)

For this reason, we may refer to κ[Γ] as the free algebra on the generating context Γ.

4.28. Example. Let T be any algebraic theory. The algebra generated by the empty
context is the algebra of constants κ[∅] = κ = y(1); see Example 3.4. Note that any term
in κ is necessarily a ground term (De�nition 4.8). If X is any other T-algebra, we refer
to terms in the image of the unique map κ→ X as constants in X.

4.29. Example. Let T be the algebraic theory from Example 4.23. The elements of
κ[x, y : Int] of the unique base sort `Int' are ≈E-equivalence classes of terms x, y : Int `
t : Int, such as x, y : Int ` (x + y) × x. But these are just polynomials in the variables
x and y, hence the commutative ring κ[x, y : Int] ∈ T-Alg is the polynomial ring Z[x, y],
the free commutative ring on the set {x, y}.

4.30. Remark. Note that the Kleisli category for the adjunction (22) is precisely the
opposite of the category CxtΣ/E of possibly in�nite contexts (De�nition 4.13), and the
restriction of this Kleisli category to those objects X → SΣ of Set/SΣ

for which X is
�nite is the category (CxtΣ/E)op. Another way to say this is that the algebraic theory
CxtΣ/E is isomorphic to the opposite of the category of �nitely generated free algebras
over CxtΣ/E, a fact which is true for any algebraic theory; see [ARV11, � 8].

4.31. Definition. Let Σ be an algebraic signature, Γ a context over Σ, and e an equation
over Σ. Say that e is an equation in Γ if it is between terms in context Γ. A set E ′ of
equations over Σ is said to be in Γ if each element e ∈ E ′ is.

4.32. Definition. Let (Σ, E) be a presentation for an algebraic theory T. A T-algebra
presentation is a pair (Γ, E ′), where Γ is a context over Σ, and E ′ is a set of equations
in Γ. De�ne κ[Γ]/E ′ to be the quotient of the free T-algebra κ[Γ] (De�nition 4.26) by the
equations E ′. Concretely, (κ[Γ]/E ′)(Θ) is the set of ≈E∪E′-equivalence classes of context
morphisms Γ→ Θ.

A morphism of T-algebra presentations (cf. De�nition 4.20) (Γ′, E ′) → (Γ′′, E ′′) is
simply a context morphism [~x := ~t] : Γ′′ → Γ′ (note the direction!) such that for each
equation Γ′ ` u = v in E ′, it follows that Γ′′ ` u[~x := ~t] ≈E∪E′′ v[~x := ~t].

ALGEBRAIC DATABASES 575

4.33. Example. Let (Σ, E) be the theory of commutative rings as in Example 4.23, and
let Γ = (x, y : Int). Then κ[Γ] is the polynomial ring Z[x, y] (Example 4.29). If e is the
equation x3 = y2 then (κ[Γ]/{e}) is the ring Z[x, y]/(x3 − y2).

4.34. Remark. Recall that by Remark 4.21, every algebraic theory has a canonical pre-
sentation and the functor APr→ ATh from presentations to theories is an equivalence.
For algebras the same turns out to be true. First, everyT-algebra A ∈ (CxtΣ/E)-Alg has
a canonical presentation (Γ, E ′), where Γ is the underlying SΣ-indexed set UA, and E ′ is
the set of equations Γ ` t = t′ for which t and t′ are equated under the counit κ[Γ]→ A
of the adjunction from (22). Second, the category of such presentations (whose objects
and morphisms are given in De�nition 4.32) is equivalent to T-Alg.

4.35. Presentations of categories. It is well known that categories are algebraic
over directed graphs, i.e. that a category can be presented by giving a graph together
with a set of equations (see e.g. [Mac98, � II.8]). In the interest of completeness and
consistency, we will show here how to consider presentations for categories as a special
case of presentations for algebraic theories (see De�nition 4.41).

Formally, a directed graph G consists of a set G0 of nodes and a set G1 of edges,
together with functions dom, cod: G1 → G0. Note that a directed graph G can be seen
as an algebraic signature (De�nition 4.2) in which all function symbols are unary. The
set of sorts of the unary signature is simply the set G0 of nodes of G, and the set G1 of
edges is taken as the set of function symbols.

4.36. Definition. Say that an algebraic signature Σ is unary when all of its function
symbols are unary. As usual, we will write f : A → B as shorthand for dom(f) = A
and cod(f) = B. From now on, we will identify a graph G with its corresponding unary
algebraic signature.

4.37. Remark. Let G be a graph, and let A,B ∈ G0 be nodes. Terms (De�nition 4.8)
of type B in a singleton context (x : A) over (the unary signature associated to) G can
be identi�ed with paths from A to B in G. As G has only unary function symbols, all
such terms must be of the form x : A ` fn(. . . f2(f1(x))) : B for some n ≥ 0.

4.38. Proposition. Let G be a graph and Fr(G) the free category generated by G. Then
Fr(G) is isomorphic to the full subcategory of CxtG spanned by the singleton contexts.

4.39. Notation. Let Σ be an algebraic signature, and let Γ ` t be a term in some
context. In order to reduce parentheses, we will use the notation Γ ` t.f1.f2 . . . fn to
denote Γ ` fn(. . . f2(f1(t))), assuming that this is a well-formed term and that each fi is
unary.

4.40. Definition. Let Σ be a (not necessarily unary) signature. An equation Γ ` t = t′

over Σ is unary if the context Γ is a singleton. Say that a set E of equations is unary if
it consists only of unary equations.

576 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

4.41. Definition. A category presentation is a pair (G,E), where G is a graph and E
is a set of unary equations over G. De�ne the category presented by (G,E), denoted
Fr(G)/E, to be the full subcategory of CxtG/E spanned by the singleton contexts.

4.42. Proposition. Let (G,E) be a category presentation. The category CxtG/E is
the free category-with-�nite-products on the category Fr(G)/E. In particular, there is an
equivalence of categories (CxtG/E)-Alg ' [Fr(G)/E,Set].

4.43. Presentations of set-valued functors. If C is a category given by a presen-
tation (G,E), then Proposition 4.42 provides a way of giving presentations for functors
C → Set. Let Γ be a context over the unary algebraic signature G. Then we can
form the free algebra κ[Γ] ∈ (CxtG/E)-Alg as in De�nition 4.26. Under the equivalence
(CxtG/E)-Alg ' [C,Set], this corresponds to a functor C→ Set, namely the restriction
of κ[Γ] : CxtG/E → Set to its full subcategory of singleton contexts C. We will denote
this restriction 〈Γ〉.

It is straightforward to check that the adjunction from Remark 4.27 restricts to an
adjunction 〈�〉 : SetG0 � [C,Set] :U . Hence 〈Γ〉 is the free copresheaf on C generated
by Γ.

Similarly, if E ′ is a set of equations in context Γ, as in De�nition 4.31, then we denote
by 〈Γ〉/E ′ the restriction of κ[Γ]/E ′ : CxtG/E → Set to C, and refer to this as the
copresheaf presented by (Γ, E ′).

4.44. Presentations of algebraic profunctors. In Section 5 we will be interested
in algebraic profunctors M : C T where C is a category and T is an algebraic theory;
see De�nition 3.10. Our approach to presenting an algebraic profunctor M between
C = Fr(G)/EG and T = CxtΣ/EΣ will be in terms of its collage M̃ , as in Example 2.19.

4.45. Definition. Let G = (G0, G1) be a graph (unary signature) and Σ = (SΣ,ΦΣ) be
an algebraic signature. A profunctor signature Υ from G to Σ is a set of unary function
symbols, where each function symbol att ∈ Υ is assigned a sort a := dom(att) ∈ G0 and
a sort τ := cod(att) ∈ SΣ. We will sometimes refer to the function symbol att ∈ Υ as
an attribute, and denote it att : a→ τ .

A profunctor signature Υ has an associated algebraic signature Υ̃ = (SΥ̃,ΦΥ̃), with
sorts SΥ̃ = G0 t SΣ, and function symbols ΦΥ̃ = G1 tΥ t ΦΣ.

Say that a set EΥ of equations over Υ̃ is a set of profunctor equations if for each
equation Γ ` (t1 = t1) : s′ in EΥ, the context is a singleton Γ = (x : s) with s ∈ G0 and
s′ ∈ SΣ.

4.46. Definition. Let (G,EG) be a category presentation, (Σ, EΣ) an algebraic theory
presentation, Υ a profunctor signature from G to Σ, and EΥ a set of profunctor equations.
Let EΥ̃ = EG ∪EΣ ∪EΥ. De�ne the algebraic profunctor presented by this data, denoted
κ[Υ]/EΥ : Fr(G)/EG CxtΣ/EΣ, as follows:
• for any node a ∈ G0 and context Γ ∈ CxtΣ, the set (κ[Υ]/EΥ)(a,Γ) is the hom
set (CxtΥ̃/EΥ̃)((x : a),Γ), i.e. the set of ≈EG∪EΣ∪EΥ

-equivalence classes of context

morphisms (x : a)→ Γ over Υ̃,

ALGEBRAIC DATABASES 577

• the functorial actions are given by substitution.

It is clear from the de�nition that the collage of the profunctor κ[Υ]/EΥ is a full
subcategory of CxtΥ̃/EΥ̃. In fact, it is not much harder to see the following proposition;
cf. Proposition 4.42.

4.47. Proposition. Let C be a category with presentation (G,EG), let T be an algebraic
theory with presentation (Σ, EΣ), and let P : C T be an algebraic profunctor with pre-

sentation (Υ, EΥ). The category CxtΥ̃/EΥ̃ is the free completion of the collage P̃ under
�nite products for which existing products in T are preserved. In particular, the cate-
gory (CxtΥ̃/EΥ̃)-Alg of functors (CxtΥ̃/EΥ̃) → Set which preserve all �nite products

is equivalent to the category of functors P̃ → Set whose restriction to T preserves �nite
products.

4.48. Example. Let C be the category presented by the terminal graph G0 = {X}, G1 =
{f}, with equation x : X ` x.f = x.f.f . Let T be the algebraic theory of commutative
rings, as in Example 4.23. Consider the algebraic profunctor M : C T presented by a
single attribute Υ = {p : X → Int} and a single equation E = {x : X ` x.f.p = x.p×x.p}.
One can check that this presents the following profunctor C T:

κ[Υ]/EΥ
∼= Z[x.fn.p]/

(
x.fn+1.p = (x.fn.p)2 , x.fn+2.p = x.fn+1.p

)
∼= Z[y0, y1]/

(
y1 = y2

0 , y1 = y2
1

)
∼= Z[y]/

(
y2 = y4

)
where, in the �rst line, n ranges over all natural numbers. The edge f ∈ G1 induces the
ring endomorphism f(y) 7→ y2.

5. Algebraic database schemas

In this section we move beyond background and into our construction of databases. What
we call (algebraic) databases straddle what are traditionally known as relational databases
and the more modern graph databases. Importantly, algebraic databases also integrate a
programming language Type, by which to operate on attribute values.

We take our terminology from the relational database world. That is, a database
consists of a conceptual layout, called a schema, as well as some conforming data, called
an instance (because it represents our knowledge in the current instant of time). In this
section we discuss the category of schemas; in Section 6 we discuss instances on them.

5.1. Schemas. For the rest of the paper, Type will be an arbitrary multi-sorted �nitely
presented algebraic theory, as de�ned in De�nition 4.18. However, in all examples, we will
�x Type to be the algebraic theory described in Example 4.24. Recall from De�nition 3.10
the notion of algebraic profunctors M ∈ Prof×(C,Type), denoted M : C Type.

578 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

5.2. Definition. A database schema S over Type is a pair (Se, So), where
• Se is a category, and
• So : Se Type is an algebraic profunctor; i.e. So ∈ Prof×(Se,Type).

We refer to Se as the entity category of S and to So as the observables profunctor. We will
also write So : Sop

e → Type-Alg for the exponential transpose of So : Sop
e ×Type→ Set;

see Lemma 3.9.

5.3. Remark. It is often convenient to work with schemas in terms of their collages. If
S is the schema So : Se Type, we write S̃ for the collage of the profunctor So; see
Example 2.19. By (13), it comes equipped with a map S̃ → 2 and we refer to the two
pullbacks below respectively as the entity side and the type side of the collage:

Se S̃ Type

{∗} 2 {∗}

iS

!
y

iT

!
x

0 1

5.4. Example.Any Type-algebraX : Type→ Set can be regarded as a schema ({∗}, X),
where the entity category is terminal. In particular, the initial Type-algebra κ, described
in Example 3.4, can be viewed as a schema U = ({∗}, κ) called the unit schema.4

5.5. Presentations of schemas. A presentation for a schema So : Se Type is sim-
ply a presentation for the category Se (see De�nition 4.41) together with a presentation
for the algebraic profunctor So (see De�nition 4.46). We spell this out in De�nition 5.6.

5.6. Definition. A schema signature Ξ = (GΞ,ΥΞ) consists of a graph GΞ together with
a profunctor signature ΥΞ from GΞ to the signature of Type.

A schema presentation (Ξ, EΞ) consists of a schema signature Ξ, together with equa-
tions EΞ = (Ee, Eo), where Ee is a set of unary equations over GΞ, and Eo is a set of
profunctor equations over ΥΞ. Note that (GΞ, Ee) is a presentation for a category, which
will be the entity category Se, and (ΥΞ, Eo) is a presentation for an algebraic profunctor
Se Type. We denote the presented schema by Fr(Ξ)/EΞ.

We will write Ξ̃ to mean the associated algebraic signature Υ̃Ξ as in De�nition 4.45,
with sorts (GΞ)0 t SΣ and function symbols (GΞ)1 tΥΞ t ΦΣ, where Type ∼= CxtΣ/EΣ.

In what follows, we refer to function symbols in ΥΞ as attributes, and refer to a general
term (x : A) ` t : τ , where A ∈ (GΞ)0 and τ ∈ Type, as an observable on A of type
τ . In other words, for a schema So : Se Type and objects A ∈ Se and τ ∈ Type, an
observable on A of type τ is an element t ∈ So(A, τ).

5.7. Example. The unit U = ({∗}, κ) of Example 5.4 is presented by the graph with
one vertex and no edges, the empty profunctor signature, and no equations. That is, U
has no attributes, so each of its observables is a ground term ∅ ` c : τ , i.e. a constant
c ∈ κ(τ) = Type(1, τ).

4U is the unit of a certain symmetric monoidal structure on Schema (De�nition 5.11), whose restric-
tion to entities is the cartesian monoidal structure on Cat; however, we do not pursue that here.

ALGEBRAIC DATABASES 579

Entities: Emp, Dept

Edges: mgr : Emp → Emp

wrk : Emp → Dept

sec : Dept→ Emp

Path Eqs: e : Emp ` e.mgr.mgr = e.mgr
e : Emp ` e.mgr.wrk = e.wrk
d : Dept ` d.sec.wrk = d

Attributes: last : Emp → Str
name : Dept→ Str
sal : Emp → Int

Obs. Eqs: e : Emp `
(e.sal ≤ e.mgr.sal) = >

Figure 3: Presentation of S, our running example of a schema.

5.8. Example. Let Type be as in Example 4.24. Consider the presentation (Ξ, Ee, Eo)
for a schema S as displayed in Fig. 3, which will serve as a motivating example throughout
the paper. In this presentation, we use the labels "Entities" for (GΞ)0, "Edges" for (GΞ)1,
"Attributes" for ΥΞ, "Path Eqs" for Ee, and "Obs. Eqs" for Eo.

Below (23) is a graphical display of this presentation; its two grey dots are the entities,
its six arrows are the edges and attributes, and its four equations are the path and
observable equations.

Dept

Emp Int

Str

Boolwrk

mgr

sal

last

sec

name

mgr.mgr = mgr

mgr.wrk = wrk

sec.wrk = id

(sal ≤ mgr.sal) = >

S

(23)

The presented schema S is built according to De�nitions 4.41 and 4.46, as we now
describe explicitly. The entity category Se is the free category on the subgraph of grey
objects and arrows between them, modulo the top three equations. An example (con-
text) morphism Emp → Dept in Se is given by the path mgr.wrk.sec.mgr.wrk. From the
equations, we can show that it is equivalent to wrk,

e : Emp ` (e.mgr.wrk.sec.mgr.wrk ≈ e.wrk) : Dept

In other words, these two terms name the same morphism in Se.
The observables profunctor So : Se Type is freely generated by the three arrows

from an Se-object to a Type-object , modulo the fourth equation. An example
observable Dept → Bool, i.e. an element of So(Dept,Bool), is "whether a department d
is named Admin", given by the term (d : Dept) ` eq(d.name,Admin). By the fourth
equation, we can show it is equivalent to a more complex observable,

d : Dept ` ((d.sec.sal ≤ d.sec.mgr.sal) ∧ eq(d.name,Admin)) : Bool.

580 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

The schema S can accommodate database instances in some company setting, as we
will see in Example 6.3. In such, there exist tables of employees and departments. In each
there are columns (sometimes called foreign keys) that reference other tables in order to
state where an employee works, who is the departmental secretary, etc. There are also
columns that state the last name and salary of each employee, etc. The equations express
integrity constraints, e.g. the fact that the secretary of a department works therein, or
that every employee is paid less than his or her manager.

5.9. Schema mappings. We now discuss morphisms of schemas, also known as schema
mappings [DHI12]. These will eventually be the vertical morphisms in a proarrow equip-
ment. Recall by De�nition 3.10 that a morphism between two algebraic profunctors is
just a 2-cell between profunctors as in (9).

5.10. Definition. A schema mapping F : S→ T is a pair (Fe, Fo), where
• Fe : Se → Te is a functor, and
• Fo is a 2-cell in Prof

Se Type

Te Type

So

Fe

To

⇓Fo

We will also write Fo for the corresponding natural transformation Fo : So ⇒ To ◦ F op
e of

functors Sop
e → Type-Alg.

5.11. Definition. De�ne the category of schemas, denoted Schema, to have database
schemas as objects and schema mappings as morphisms.

5.12. Remark. From the universal property of collages (De�nition 2.16) in Prof , it

follows easily that a schema mapping F : S → T is equivalently a functor F̃ over 2
between their collages, as in the left-hand diagram

S̃ T̃

2

F̃

p p′

Se Te

S̃ T̃

Fe

iS iT

F̃

Type Type

S̃ T̃

iT iT

F̃

(24)

such that the middle and right-hand diagrams are the pullbacks of the left-hand diagram
along the two maps 1 → 2; see (13) and Remark 5.3. By de�nition, a schema mapping
acts as identity on the Type-side of the collages.

ALGEBRAIC DATABASES 581

5.13. Example. Consider the schema presentation given by the following graph, at-
tributes, and equations:

Dept

QR

Emp Int

Str

Bool

f

g

wrk

mgr

sal

last

sec

name

mgr.mgr = mgr

mgr.wrk = wrk

sec.wrk = id

(sal ≤ mgr.sal) = >
(f.sal ≤ g.sec.sal) = >
f.wrk.name = Admin

T

(25)

The schema T which it presents, includes S of Example 5.8. In addition it has a new
entity QR�named for its eventual role as a query result table in Section 9�as well as
two new edges f, g, and two new observable equations

q : QR ` (q.f.sal ≤ q.g.sec.sal) = >, q : QR ` q.f.wrk.name = Admin. (26)

Thus we have a schema inclusion G : S→ T, which of course restricts to identity on the
Type-side by de�nition.

5.14. Example. We will now describe another schema mapping, with codomain the
above schema T. We will again do so in terms of presentations:

A

Int

Str

Bool

diff

emp_last

dept_name

QR

Dept

Emp Int

Str

Bool

f

g

wrk

mgr

sal

last

name

sec

plus eqs
from (25)

TR

F

The schema R has a terminal entity category Re = {A}, along with three generating
attributes�namely diff, emp_last, and dept_name�from the unique object to the
base Type-sorts Str, Int. Schema T has six equations, whereas R has none.

The schema mapping F : R → T viewed as a functor F̃ : R̃ → T̃ , is de�ned to map
the unique object A ∈ Re to QR ∈ Te on the entity side, and to map the three attributes
to the following observables in T:

diff 7→ g.sec.sal− f.sal emp_last 7→ f.last dept_name 7→ g.name

Since on the type side it is identity and R has no equations, there is nothing more to
check; we have de�ned a schema mapping. This choice will be justi�ed by Remark 9.6.

582 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

Emp last wrk mgr sal

e1 Gauss d3 e1 250
e2 Noether d2 e4 200
e3 Einstein d1 e3 300
e4 Turing d2 e4 400
e5 Newton d3 e1 100
e6 Euclid d2 e7 150
e7 Hypatia d2 e7 x

Dept name sec

d1 HR e3

d2 Admin e6

d3 IT e5

Figure 4: Example of an S-instance J.

6. Algebraic database instances

6.1. Instances and transforms. Given a database schema S, which is a conceptual
layout of entities and their attributes (see De�nition 5.2), we are ready to assign each entity
a table full of data laid out according to the schema. Such an assignment is called an
instance on S; it is a set-valued functor (copresheaf) of a certain form. Morphisms between
instances are often called (attribute-preserving) database homomorphisms [AHV95], but
we call them transforms because they are nothing more than natural transformations.

6.2. Definition. Let S be a database schema, S̃ its collage, and iT : Type → S̃ the
inclusion of the type side (see Remark 5.3). An S-instance I is a functor I : S̃ → Set
such that the restriction It := I ◦ iT preserves �nite products, i.e. It : Type → Set is a
Type-algebra.

De�ne the category of S-instances, denoted S-Inst, to be the full subcategory of the
functor category [S̃,Set] spanned by the S-instances. A morphism α : I→ J of instances
is called a transform.

6.3. Example. Recall the schema S generated by the presentation of Example 5.8, which
had employees and departments as entities, edges and attributes such as manager and
salary, and equations such as an employee's salary must be less than that of his or her
manager. A summary of an S-instance J is displayed in Fig. 4, with one table for each
entity in S, and with a column for each edge and attribute.

All data required to determine an instance is encapsulated in the above two tables
(image of the entity side and the attributes) along with a choice of Type-algebra, which
is generally in�nite. Here, the Type-algebra must include not only constants, but also
all terms using the indeterminate x : Int, which expresses Hypatia's unknown salary.
Moreover, the equation e : Emp ` (e.sal ≤ e.mgr.sal) = > in the presentation of S
implies that the terms 150 ≤ x and > must be equal in J(Bool) (by letting e = e6).

Explicitly, we can de�ne the functor J : S̃ → Set as follows: the restriction Jt = J ◦ iT
to Type is the presented type algebra

Jt
∼= κ[x : Int]/(150 ≤ x = >),

ALGEBRAIC DATABASES 583

and J is de�ned on entities by the following sets:

J(Emp) = {e1 , e2 , e3 , e4 , e5 , e6 , e7}, J(Dept) = {d1 , d2 , d3},

and on edges and attributes by functions as shown in the table, e.g.

J(wrk) : J(Emp)→ J(Dept) by e1 7→ d3 , . . . , e7 7→ d2

J(name) : J(Dept)→ J(Str) by d1 7→ HR, . . . , d3 7→ IT

6.4. Example. Let S be as in Example 5.8. Consider another S-instance J̄, which is the
same as J except that e7 is removed from J̄(Emp) and the restriction J̄t = J̄ ◦ iT to Type
is just κ, the algebra of constants as in Example 3.4. We will have use for both J and J̄
later.

6.5. Definition. We refer to instances whose Type-algebra is initial, i.e. It = κ, as
ground instances. So J from Example 6.3 is not a ground instance but J̄ from Example 6.4
is. If a Type-algebra is presented by generators and relations, generators (such as the
indeterminate value `x' of Example 6.3) are often referred to as labelled nulls or Skolem
variables [AHV95].

Even though it wasn't de�ned that way, the category of instances S-Inst can be seen
to be the category of algebras for an algebraic theory. Proving this, as we do next,
immediately gives us several nice properties of the category S-Inst.

6.6. Proposition. For any schema S, the category of instances S-Inst is equivalent to
the category of algebras for an algebraic theory.

Proof. Recall from De�nition 3.3 the category of algebras for a theory. We can consider
S̃ as a �nite-product sketch, whose designated product cones are all �nite products in
Type. Then a model of this sketch is a functor S̃ → Set which preserves �nite products
in Type, i.e. an instance of S. The category of models for any �nite product sketch is
equivalent to the category of algebras for an algebraic theory generated by the sketch; see
e.g. [BW85, �4.3].

6.7. Remark. When given a presentation (Ξ, EΞ) for a schema S, as in De�nition 5.6,
we can make Proposition 6.6 much more concrete: combining Proposition 4.47 and De�-
nition 6.2, it follows that there is an equivalence of categories S-Inst ' (CxtΞ̃/EΞ̃)-Alg.

6.8. Corollary. For any schema S, the category of instances S-Inst has all small col-
imits.

Proof. This follows from 6.6 and 3.5.

584 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

6.9. Remark. As in Warning 3.6, we note that colimits in S-Inst do not always agree
with the pointwise colimits in [S̃,Set], which can make them di�cult to work with.
However, the following simple observation is sometimes useful:

Let X : D → S-Inst be a diagram and let U(X) be its composite with the inclusion

S-Inst → [S̃,Set]. If the colimit colim(UX) in [S̃,Set] lands in the subcategory S-Inst
(i.e. preserves products in Type), then the natural map colim(UX)→ U(colimX) is an
isomorphism. In other words, in this case, the colimit colimX can be taken pointwise.
(Note that this observation only uses the fact that S-Inst is a full subcategory of [S̃,Set]).

6.10. Example. Let ∅ ∈ Schema be the initial schema, i.e. the unique schema having

an empty entity category. Then ∅̃ ∼= Type, thus there is an isomorphism of categories

∅-Inst ∼= Type-Alg.

6.11. Remark. Notice that for any schema S, the Yoneda embedding y : S̃op → [S̃,Set]

is product-preserving and hence factors through the forgetful functor S-Inst → [S̃,Set].

The left factor S̃op → S-Inst, which we also denote y, is fully faithful. In particular, for
any object s ∈ S̃, the representable functor y(s) : S̃ → Set given by y(s)(x) = S̃(s, x) is
an instance, called the S-instance represented by s.

Because the functor S-Inst→ [S̃,Set] is fully faithful, it follows that the embedding

y : S̃op → S-Inst is dense (see Remark 3.7). In particular, for any instance I ∈ S-Inst,
there is a canonical isomorphism of S-instances

I ∼=
∫ s∈S̃

I(s) · y(s)

which also follows from Remark 6.9.

6.12. Presentations of instances. Let (Ξ, EΞ) be a presentation of a schema S (Def-

inition 5.6) and Ξ̃ its associated algebraic signature, whose generated theory is the free

product completion of its collage S̃ (Proposition 4.47). By Remark 6.7, we can use pre-
sentations of algebras for a theory (De�nition 4.32) to give presentations of S-instances.

6.13. Definition. Let Γ be a context over the above algebraic signature Ξ̃. The free
(CxtΞ̃/EΞ̃)-algebra κ[Γ] corresponds under the equivalence of Proposition 6.6 to an S-
instance, which we denote 〈Γ〉, and call the free S-instance generated by Γ.

If EΓ is a set of equations in context Γ, then we similarly write 〈Γ〉/EΓ for the S-
instance corresponding to κ[Γ]/EΓ, and call it the S-instance presented by (Γ, EΓ). Con-

cretely, (〈Γ〉/EΓ) (s) = {terms in context Γ of type s ∈ S̃}/∼, by Remark 4.27.

6.14. Example. For any object s ∈ S̃, the representable instance y(s) as in Remark 6.11
is free, with one generator of type s, i.e. y(s) ∼= 〈(x : s)〉.

ALGEBRAIC DATABASES 585

Emp last wrk mgr sal

e e.last e.wrk e.mgr e.sal
e.mgr e.mgr.last e.wrk e.mgr e.mgr.sal
d.sec d.sec.last d.sec.wrk = d d.sec.mgr d.sec.sal

d.sec.mgr d.sec.mgr.last d d.sec.mgr d.sec.mgr.sal
e.wrk.sec e.wrk.sec.last e.wrk

e.wrk.sec.mgr

Dept name sec

d d.name d.sec
e.wrk Admin e.wrk.sec

Figure 5: Example of a presented S-instance I.

6.15. Remark. Similar to Remark 4.34, any given instance I has a canonical presenta-
tion, where for each s ∈ S̃ and x ∈ I(s) there is a generator x : s, and for each arrow

f : s → s′ in S̃ with y = I(f)(x), there is an equation x : s ` x.f = y. In this way, the
presentation essentially records every entry of every column in every table.

For example, the canonical presentation of J from Example 6.3 has context and equa-
tions

Γ = (e1 , . . . , e7 : Emp, d1 , d2 , d3 : Dept, x : Int)

E = {e1 .last = Gauss, e1 .wrk = d3 , . . . , d3 .sec = e5}
(27)

6.16. Example. Let S be as in Example 5.8. We will now describe an S-instance I that
is fairly di�erent-looking than that in Example 6.3 or 6.4, in that the values of most of
its attributes are non-constants. Instances like I play a central role in database queries
(see Section 9).

We specify the instance I by means of a presentation I = 〈Γ〉/EΓ, where Γ = (e :
Emp, d : Dept), and where EΓ contains the two equations

Γ ` e.wrk.name = Admin

Γ ` (e.sal ≤ d.sec.sal) = >.
(28)

Thus for any entity or type s ∈ S̃, the elements of I(s) are the equivalence classes of
terms Γ ` t : s built out of edges and attributes from S and function symbols from Type,
modulo the equations EΓ as well as those from S.

We can picture this instance in the tables shown in Fig. 5. On types, I contains many
terms, as in

I(Str) = {e.last, e.mgr.last, d.sec.last, . . . , d.name,Admin, . . . , aaBcZ, . . . }
I(Int) = {e.sal, e.mgr.sal, . . . ,−d.sec.sal, e.sal + e.sal + 1, . . . , 28734, . . . }

I(Bool) = {eq(e.last, d.name), . . . , e.mgr.sal ≤ d.sec.sal, . . . ,>,¬>}

586 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

Note, for example, that the value of e.wrk.name in the table Dept has been replaced by
`Admin' because of an equation of I and that the value of e.wrk.sec.wrk has been replaced
by e.wrk because of a path equation of S (see Example 5.8).

6.17. Example. Having de�ned two S-instances J and I in the examples 6.3 and 6.16
above, we will now explicitly describe the set S-Inst(I,J) of instance transforms between
them.

By Remarks 4.34 and 6.7, the set of transforms I→ J is equivalent to the set of mor-
phisms of presentations from the presentation (Γ, EΓ) of I to the canonical presentation
of J. Such a morphism of presentations is simply an assignment of an element ε ∈ J(Emp)
to the generator e : Emp and an element δ ∈ J(Dept) to the generator d : Dept, such that
the two equations ε.wrk.name = Admin and (ε.sal ≤ δ.sec.sal) = > are true in J.

Without the equations, there would be 21 assignments (ε, δ) ∈ J(Emp)×J(Dept). It is
easy to check that only three of those 21 satisfy the two equations: (e6 , d1), (e2 , d1), and
(e6 , d2). For instance, the equation e.wrk.name = Admin means we must have ε.wrk = d2 .
Similarly, the equation

(
(e.sal) ≤ d.sec.sal

)
= > rules out several choices. For example,

the assignment (ε, δ) := (e7 , d1) is invalid because we cannot deduce that x ≤ 300 from
any equations of J (where we only know that 150 ≤ x).

6.18. Example. We will now consider transforms between two instances that are both
presented. As usual, let S be the schema of Example 5.8, and let I be the instance
from above, Example 6.16. We recall its presentation (ΓI, EI), as well as present a new
S-instance I′:

ΓI′ = {e′ : Emp} ΓI = {e : Emp, d : Dept}
EI′ = {e′.wrk.name = Admin

(e′.sal ≤ e′.wrk.sec.sal) = >}
EI = {e.wrk.name = Admin

(e.sal ≤ d.sec.sal) = >}

As in De�nition 4.32, to give an instance transform β : I′ ⇒ I, it is equivalent to give a
context morphism ΓI → ΓI′ (see De�nition 4.11) in the opposite direction which respects
the equations. In this case, there are only two which satisfy the equations: [e′ := e] and
[e′ := e.wrk.sec].

6.19. Decomposing instances.While De�nition 6.2 is how we most often consider in-
stances, it will sometimes be useful to consider their entity and attribute parts separately.
Recall the left action ⊗ of De�nition 3.11 on algebraic profunctors.

An instance I on a schema S is equivalently de�ned to be a tuple (Ie, It, Io), where
• Ie : {∗} Se is a profunctor, called the entity side of I,
• It : {∗} Type is an algebraic profunctor, called the type side of I, and
• Io : Ie ⊗ So → It is a profunctor morphism, called the values assignment for I:

Se

{∗} Type

SoIe

It

⇓Io

ALGEBRAIC DATABASES 587

The functor I : S̃ → Set of De�nition 6.2, viewed as I : {∗} S̃, can then be uniquely

recovered by the lax limit universal property of S̃ spelled out in Remark 2.32, forX = {∗}.
Note that the entity side Ie : Se → Set is just a copresheaf, the type side It : Type→

Set is just a Type-algebra, and the values assignment Io is equivalent to a morphism∫ s∈Se Ie(s) · So(s) → It of Type-algebras (where the coend is in Type-Alg, see The-

orem 3.5). We could also obtain I : S̃ → Set from collages universal property (11) in
Prof .

Similarly, a transform I → J between instances can equivalently be de�ned in terms
of separate entity and type components (αe, αt), where αe : Ie ⇒ Je and αt : It ⇒ Jt are
profunctor morphisms, satisfying the equation:

{∗} Se Type

Ie

Je

Jt

So
⇓αe

⇓Jo

=

Se

{∗} Type

SoIe

It

Jt

⇓Io

⇓αt

Given α : I ⇒ J : S̃ → Set, the entity and type components αe and αt are simply the
restrictions of α along the collage inclusions iS : Se → S̃ ← Type : iT. In the other
direction, given αe and αt, one recovers α by the 2-dimensional part of the universal
property of Remark 2.32.

7. The fundamental data migration functors

In this section, we describe functors that transfer instances from one schema to another.
More speci�cally, we show how any schema mapping F : S→ T induces a system of three
adjoint functors

T-Inst S-Inst∆F

ΠF

⊥

ΣF

⊥

which we call data migration functors. They are related to the usual Kan extensions set-
ting between categories of presheaves. Recall from De�nition 5.10 that a schema mapping
F : S→ T is a functor Fe : Se → Te and a 2-cell Fo:

Se Type

Te Type

So

Fe

To

⇓Fo

7.1. Definition. Let F : S→ T be a schema mapping, and let F̃ : S̃ → T̃ be the induced
map on collages (Remark 5.12). We de�ne a functor ∆F : T-Inst→ S-Inst as follows:

588 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

• For any instance I of T, de�ne ∆F (I) := I ◦ F̃ . By (24) and De�nition 6.2, the
following diagram commutes:

Type

S̃ T̃ Set

iT iT
It

F̃ I

Thus ∆F (I)t = I ◦ F̃ ◦ iT = It preserves products.

• For any α : I→ J in T-Inst, de�ne ∆F (α) = α ◦ F̃ .
We call ∆F the pullback functor (along F).

7.2. Example. For any schema S, the unique map ! : ∅ → S from the initial schema
(Example 6.10) induces a functor ∆! : S-Inst→ Type-Alg, denoted ∆!S . For an instance
I of S, this functor returns the underlying Type-algebra of the instance, ∆!S(I) ∼= It.

A schema mapping F can be considered as a map of �nite product sketches; see
Proposition 6.6. In general one does not expect the pullback functor ∆F between the
corresponding categories of algebras to have a right adjoint; for example, there is no
`cofree monoid' on a set. However, because F restricts to the identity on the Type-side
of the collage by Remark 5.12, we �nd that ∆F does have a right adjoint, denoted ΠF ,
which we call the right pushforward functor.

7.3. Proposition. Let F : S → T be a schema mapping. The right Kan extension
RanF̃ : [S̃,Set] → [T̃ ,Set] takes S-instances to T-instances, de�ning a right adjoint to
∆F ,

∆F : T-Inst� S-Inst :ΠF

Proof. Let I : S̃ → Set be any functor. Then for an object x ∈ T̃ , the right Kan
extension is given by

ΠF (I)(x) := (RanF̃ I)(x) ∼=
[
T̃ ,Set

] (
T̃ (x,−),RanF̃ (I)

)
∼=
[
S̃,Set

] (
T̃ (x, F̃−), I

)
∼=
∫
s∈S̃

I(s)T̃ (x,F̃ s).

(29)

We will show that this formula preserves the property of It being product-preserving.
In fact, it preserves the Type-algebra exactly, i.e. the diagram on the left commutes (up
to natural isomorphism)[

S̃,Set
] [

T̃ ,Set
]

[Type,Set]

Ran
F̃

�◦iT �◦iT

Type Type

S̃ T̃ .

id

iT iT

F̃

(30)

ALGEBRAIC DATABASES 589

or equivalently, the pullback square on the right satis�es the Beck-Chevalley condition for
right Kan extensions. The latter follows formally because the inclusion iT : Type → T̃
is an op�bration, but we can easily check the commutativity of the left diagram directly:
for any τ ∈ Type, (29) gives

(RanF̃ I)(τ) ∼=
[
S̃,Set

] (
T̃ (τ, F̃�), I

)
∼=
[
S̃,Set

] (
S̃(τ, �), I

)
∼= I(τ),

completing the proof.

We now de�ne the left pushforward functor, denoted ΣF .

7.4. Proposition. For any schema mapping F : S→ T, the functor ∆F has a left adjoint

ΣF : S-Inst� T-Inst :∆F .

If I ∈ S-Inst is an instance, then ΣF (I) is given by the following coend taken in T-Inst:

ΣF (I) ∼=
∫ s∈S̃

I(s) · y(F̃ s), (31)

where y(F̃ s) is the representable T-instance T̃ (F̃ s,−), see Remark 6.11.
In other words, ΣF is the left Kan extension

S̃op T̃ op

S-Inst T-Inst

F̃ op

y y

ΣF=Lany(y◦F̃)

(32)

and the above square in fact commutes.

Proof. The coend exists because T-Inst is cocomplete (Corollary 6.8). It is simple to
check that this de�nes a left adjoint to ∆F :

T-Inst

(∫ s∈S̃
I(s) · y(F̃ op(s)), J

)
∼=
∫
s∈S̃

T-Inst
(
I(s) · y(F̃ op(s)), J

)
∼=
∫
s∈S̃

Set
(
I(s),T-Inst(y(F̃ op(s)), J)

)
∼=
∫
s∈S̃

Set
(
I(s), J(F̃ (s))

)
∼=
[
S̃,Set

]
(I, J ◦ F̃) = S-Inst(I,∆F (J)).

The square commutes since ΣF : S-Inst→ T-Inst is a pointwise Kan extension along the
fully faithful y.

590 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

7.5. Remark. The coend (31) is not typically a pointwise colimit, as pointed out in

Remark 6.9. Hence, unlike Π or ∆, given an object t ∈ T̃ there is in general no explicit
formula for computing the set (ΣF (I))(t).

However, obtaining the presentation of Σ(I) from a presentation of I is almost trivial:
if I is presented by a context Γ = (x1 : s1, ..., xn : sn) and some equations, then ΣF (I) is

presented by the context F (Γ) = (x1 : F̃ (s1), ..., xn : F̃ (sn)) and respective equations by

applying F̃ to edges, attributes of the term expressions.

7.6. Remark. For any schema mapping F : S → T, one can check using (30) and Def-
inition 7.1 that the functors ΠF and ∆F preserve Type-algebras, in the sense that
(ΠF I)t

∼= It and (∆FJ)t
∼= Jt. This does not generally hold for Σ; in Proposition 7.12 we

give a simple criterion for when it does.

7.7. Example.We will give an example of the application of the left pushforward functor
ΣH : S-Inst→ L-Inst on J from Example 6.3, for a schema mapping H : S→ L as follows:

Dept

Emp Int

Str

Boolwrk

mgr

sal

last

name

sec

Team

Dept

Emp Int

Str

Bool

on

wrk

mgr

sal

last

bel

col

sec

name mgr.on = on

on.bel = wrk

plus eqs
from (23)

plus eqs
from (23)

LS

H

Schema S is as in Example 5.8, and schema L has a new entity `Team', thought of as
grouping employees into teams, which have a color-name and belong to some department.
The two new equations ensure that an employee is on the same team as their manager
and that their team belongs to their department.

The functor H̃ : S̃ → L̃ is an inclusion, preserving labels (H̃(Emp) = Emp, etc.). Thus,
by Remark 7.5, we �nd that the presentation of ΣH(J) is exactly that of J, shown in
(27), only now interpreted as a L-instance presentation. To calculate the L-instance it
presents, one follows the explanation from Section 6.12 (as we explain brie�y below) and
�nds that ΣH(J) is given by the tables shown in Fig. 6, where t1 , t2 , t3 , t4 are freely
generated terms. The Type-algebra of this instance is larger than that of I; it includes,
for example, new terms t1 .col, . . . , t4 .col : Str.

To calculate the set of rows in the Team table, following De�nition 6.13 one freely
adds a new team for each employee to be on, but quotients by setting each employees
team equal to that of his or her manager, due to the equation (mgr.on = on) : Team in
schema L. Notice how we have one team belonging to HR and one team belonging to
IT, but two teams belonging to Admin. This basically results from the freeness of the
construction and the fact that there are two di�erent managers, Turing and Hypatia, in

ALGEBRAIC DATABASES 591

Team col bel

t1 t1 .col d3

t2 t2 .col d2

t3 t3 .col d1

t4 t4 .col d2

Emp last wrk mgr sal on

e1 Gauss d3 e1 250 t1

e2 Noether d2 e4 200 t2

e3 Einstein d1 e3 300 t3

e4 Turing d2 e4 400 t2

e5 Newton d3 e1 100 t1

e6 Euclid d2 e7 150 t4

e7 Hypatia d2 e7 x t4

Dept name sec

d1 HR e3

d2 Admin e6

d3 IT e5

Figure 6: The left pushforward instance, ΣH(J) ∈ L-Inst.

Admin. The colors assigned to these teams are freely assigned as indeterminate string
values (e.g. t1 .col) in those cells.

7.8. Example. Recall the schema mapping G : S→ T from Example 5.13, which is given
by the inclusion of the S-presentation (23) into the T-presentation (25). We are going to
describe the e�ect of the induced right pushforward functor ΠG : S-Inst→ T-Inst on the
S-instance J of Example 6.3.

The T-instance ΠG(J) : T̃ → Set is given by an ordinary right Kan extension, as
expressed by formula (29). Its Type-algebra coincides with that of J, namely it is the
presented algebra κ[x : Int]/∼. Because G is of a particularly simple form, the only thing
that remains to compute is ΠG(J)(QR), which is the following subset of J(Emp)×J(Dept):

QR f g

qr1 e2 d1

qr2 e6 d1

qr3 e6 d2

These three elements of the product are the ones that satisfy the supplementary equa-
tions of the presentation of T (i.e. f.sal≤g.sec.sal=> and f.wrk.name=Admin). Its
columns ΠG(J)(f) and ΠG(J)(g) represent the respective projections to ΠG(J)(Emp) =
J(Emp) and ΠG(J)(Dept) = J(Dept). As usual, the names qr1 , qr2 , and qr3 are not
canonical; perhaps more canonical names would be (e2 , d1), (e6 , d1), and (e6 , d2).

7.9. Remark. One may notice that there is an isomorphism between the set ΠG(J)(QR)
from Example 7.8 and the set S-Inst(I,J) from Example 6.17. The reason is that there

is in fact an isomorphism of S-instances T̃ (QR, G̃−) ∼= I, as is most evident by observing
the similarity between the de�ning equations (26) and (28).

7.10. Example. Recall the schema mapping F : R→ T described in Example 5.14. Here
we will discuss the pullback ∆F (K), where K := ΠG(J) is computed in Example 7.8.
Brie�y, the table presentation of K consists of the tables Emp, Dept as in Example 6.3 and
QR as in 7.8, and its Type-algebra is κ[x : Int]/∼.

592 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

The R-instance ∆F (K) : R̃→ Set is obtained by pre-composing with F̃ , as in De�ni-
tion 7.1. It has the same Type-algebra (Remark 7.6), and its one entity table is

A emp_last dept_name diff

qr1 Noether HR 100
qr2 Euclid HR 150
qr3 Euclid Admin 0

We conclude this section with some special cases for which Σ is nicely behaved.

7.11. A pointwise formula for Σ. Given an arbitrary mapping F : S → T and S-
instance I, the formula for the functor ΣF (I) : T̃ → Set cannot be given pointwise on

objects t ∈ T̃ . However, there is a special kind of schema mapping F for which we can
write a pointwise formula for ΣF (I), namely those which induce a discrete op�bration on

collages F̃ : S̃ → T̃ . This occurs if and only if F̃ arises via the Grothendieck construction
applied to a functor ∂F : T̃ → Set, for which the composite ∂F ◦ iT : Type→ T̃ → Set
is terminal. Note that in this case, we have a bijection

Ob S̃ ∼=
{

(t, p)
∣∣∣ t ∈ T̃ , p ∈ ∂F (t)

}
∼=
∐
t∈T̃

∂F (t).

One can show using ends, the adjunction Σ a ∆, and the fact that S-Inst ⊆ [S̃,Set] is
fully faithful, that ΣF is then given by the following pointwise formula:

ΣF (I)(t) =
∐

p∈∂F (t)

I(t, p).

In particular, ΣF preserves Type-algebras in this case, i.e. ΣF (I)(τ) = I(τ) for any
τ ∈ Type.

It is easy to show that if F̃ is a discrete op�bration, then Fo is cartesian, so the
preservation of Type-algebras can also be seen as a special case of the following result.

7.12. Proposition.The left pushforward ΣF along a schema mapping F = (Fe, Fo) : S→
T preserves type-algebras if and only if Fo is cartesian.

Proof sketch. Consider the commutative square in Schema shown here:

∅

R S

!R !S

F

By Example 7.2 it su�ces to show that Fo is cartesian if and only if the restriction of the
unit map ∆!Rη : ∆!R → ∆!R∆FΣF = ∆!SΣF coming from ΣF a ∆F is an isomorphism.
Both sides preserve colimits, so since y is dense, ∆!Rη is an isomorphism if and only if the

ALGEBRAIC DATABASES 593

components ∆!R(ηy(r)) are isomorphisms for any r ∈ R̃. For τ ∈ Type, ηy(τ) is always

an isomorphism. For r ∈ R̃, we have ∆!R

(
y(r)

)
= Ro(r) and ∆!SΣF

(
y(r)

)
= So

(
Fe(r)

)
by (32). It is not di�cult to verify that ∆!R(ηy(r)) : ∆!R

(
y(r)

)
→ ∆!SΣF

(
y(r)

)
and the

component Ro(r)→ So

(
Fe(r)

)
of Fo at r agree, completing the proof.

8. The double category Data

In this section, we will introduce the notion of a bimodule between two schemas. We
will see that bimodules generalize instances on a schema, as well as queries, which are
the subject of Section 9. We will show that schemas, schema mappings, and bimodules
together form an equipment, which we denote Data. For database-style examples of
material from this section, see Section 9.

8.1. Relevant terminology and notation. Recall that companions and conjoints
in Prof are given by representable profunctors, as explained in Example 2.12. Also recall
from De�nition 3.10 that a profunctor M whose codomain is an algebraic theory T is
called algebraic if it is product-preserving on the right; it is denoted M : C T. If S is
a schema, then the functor iT : Type→ S̃ denotes the inclusion of Type into the collage
(Remark 5.3).

8.2. Bimodules between schemas. Bimodules admit several equivalent de�nitions,
and it is convenient to be able to switch between these de�nitions as best suits the task
at hand. We will begin with the one which we use most often.

8.3. Definition. Let R and S be database schemas. A bimodule M : R S is a functor
M : R̃op → S-Inst such that the following diagram commutes:

Typeop S̃op

R̃op S-Inst

iop
T

iop
T

y

M

(33)

or succinctly, M(τ) = y(τ) for any τ ∈ Type.
A morphism of (R,S)-bimodules φ : M→ N is a natural transformation φ : M ⇒ N

that restricts to the identity on Type. We denote by RBimodS the category of (R,S)-
bimodules.

8.4. Remark. It is possible to give De�nition 8.3 in a more symmetric form. A bimodule
M : R S is equivalently a profunctor M̃ : R̃ S̃ between collages such that:

• the composite profunctor R̃
M̃

S̃
îT

Type is algebraic, and

• the composite profunctor Type
îT

R̃
M̃

S̃ is isomorphic to the representable
îT : Type S̃.

594 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

A morphism of (R,S)-bimodules φ : M→ N is equivalently a profunctor transforma-

tion φ̃ : M̃ ⇒ Ñ such that îT � φ̃ = idîT .
While this formulation of bimodules may be useful for intuition, we will primarily use

De�nition 8.3 in this paper.

8.5. Adjoints Λ and Γ.Considering a bimodule M : R S as a functor R̃op → S-Inst,
we can apply the left Kan extension along the Yoneda embedding R̃op → R-Inst; see
Remark 6.11. The result is denoted ΛM := LanY (M),

R̃op S-Inst

R-Inst

M

y
ΛM

(34)

Since S-Inst is cocomplete (Corollary 6.8), we can express this using the Kan extension
formula (cf. (2))

ΛM(I) =

∫ r∈R̃
R-Inst

(
y(r), I

)
·M(r)

∼=
∫ r∈R̃

I(r) ·M(r)

(35)

where · is the Set-theoretic copower on S-Inst. Because the Yoneda embedding is fully
faithful, it follows that this Kan extension really is an extension, i.e. (34) commutes. It
also follows that ΛM �preserves types,� that is, that the following diagram commutes:

Typeop

R-Inst S-Inst

y y

ΛM

(36)

A bimodule M : R S also determines a functor in the other direction,

ΓM : S-Inst R-Inst

J S-Inst(M(�), J).
(37)

The condition (33) on M implies that for any object τ ∈ Type,

(ΓMJ)(τ) = S-Inst(M(τ), J) = S-Inst(y(τ), J) = J(τ) (38)

from which it easily follows that ΓM(J) preserves products of types, hence de�nes an
object in R-Inst. We thus say that Γ �preserves type-algebras�, in the sense that the
following diagram commutes:

S-Inst R-Inst

Type-Alg

ΓM

U U

ALGEBRAIC DATABASES 595

8.6. Proposition. For any bimodule M : R S, the functor ΛM is left adjoint to ΓM .

Proof. This is simply a calculation:

S-Inst(ΛMI, J) = S-Inst

(∫ r∈R̃
I(r) ·M(r), J

)
∼=
∫
r∈R̃

S-Inst
(
I(r) ·M(r), J

)
∼=
∫
r∈R̃

Set
(
I(r),S-Inst(M(r), J)

)
=

∫
r∈R̃

Set
(
I(r), (ΓMJ)(r)

) ∼= R-Inst(I,ΓMJ).

The �rst isomorphism follows because homs take colimits in their �rst variable to limits,
while the second is the de�nition of copower.

8.7. Lemma. We collect here several easy but useful properties of Λ:
1. For any schema S, there is an isomorphism of functors Λy

∼= idS-Inst.

2. For any bimodule M : R̃op → S-Inst and any left adjoint L : S-Inst → T-Inst,
there is an isomorphism of functors ΛL◦M ∼= L ◦ ΛM . In particular,

3. For any bimodules M : R S and N : S T, there is an isomorphism of functors
ΛΛN◦M

∼= ΛN ◦ ΛM .

Proof. Property 1 is simply the fact that y is dense (see Remark 6.11), while property 2 is
the fact that left adjoints preserve colimits, hence preserve pointwise left Kan extensions.
Finally, property 3 follows from property 2 using Proposition 8.6.

8.8. Remark. The ΛM a ΓM adjunction is an instance of the general geometric realiza-
tion/nerve adjunction SetSop

� C induced by a functor F : S → C into a cocomplete
category C (see e.g. [Lei04, pp. 244�245] or [nLab]). In this case, F is the functor

M : R̃op → S-Inst. The conditions in De�nition 8.3 guarantee that the nerve functor
lands in the full subcategory R-Inst ⊆ [R̃,Set].

8.9. Equivalent definitions of bimodules. In Theorem 8.10 we give �ve equivalent
de�nitions of bimodules, and we will give a few others throughout the section, e.g. in
Propositions 8.20 and 8.24 and Corollary 8.35. The ones we discuss here are aligned with
the analogy presented in Section 2.2, by which profunctors between categories and linear
transformations between vector spaces can be related. The only complication here is that
all of our structures must deal carefully with the algebraic theory Type, as we now make
explicit.

Consider the coslice 2-category Typeop/Cat. An object is a pair (C, F), where C ∈
Cat is a category and F : Typeop → C is a functor; a morphism (C, F) → (D, G) is a
functor H : C → D such that H ◦ F = G; and a 2-cell H → H ′, where H,H ′ : (C, F)→
(D, G), is a natural transformation α : H ⇒ H ′ such that αF = idG.

596 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

For any schema S, both S-Inst and S̃op can be considered objects in Typeop/Cat
(via y and iop

T). Similarly, S-Inst can be considered an object in the slice 2-category

Cat/Type-Alg, where the functor S-Inst → Type-Alg simply sends an instance S̃ →
Set to its restriction along the inclusion iT : Type→ S̃.

8.10. Theorem. Let R and S be schemas. The following are equivalent:
1. The category RBimodS of bimodules R S.
2. The category (Typeop/Cat)(R̃op,S-Inst).

3. The category of profunctors R̃ S̃ satisfying the conditions of Remark 8.4.
4. The category LAdjType(R-Inst,S-Inst), which we de�ne to be the full subcategory

of (Typeop/Cat)(R-Inst,S-Inst) spanned by left adjoint functors.
5. The category RAdjType(S-Inst,R-Inst)op, whose opposite is de�ned to be the full

subcategory of (Cat/Type-Alg)(S-Inst,R-Inst) spanned by right adjoint functors.

Proof. 1 and 2 are equivalent by De�nition 8.3, and it is easy to check the equivalence
between 1 and 3.

For the equivalence of 2 and 4, consider the functor

(� ◦ y) : LAdjType(R-Inst,S-Inst)→ (Typeop/Cat)(R̃op,S-Inst).

Its inverse is Λ−, the left Kan extension along y : R̃op → R-Inst, which lands in
LAdjType(R-Inst,S-Inst) by (36) and Proposition 8.6. To see that these are inverses,

note that by commutative (34) we have ΛM

(
y(r)

)
= M(r). For the other direction, we

have by Lemma 8.7
ΛL◦y ∼= L ◦ Λy

∼= L ◦ idS-Inst = L.

Finally, we show that 4 and 5 are equivalent. The equivalenceLAdj(R-Inst,S-Inst) '
RAdj(S-Inst,R-Inst)op is standard, so we only need to show that this equivalence re-
spects the restrictions concerning Type. In one direction, if L : R-Inst→ S-Inst is a left
adjoint satisfying (36), then we check that the right adjoint G of L satis�es (38):

(GJ)(τ) ∼= R-Inst
(
y(τ), GJ

)
∼= S-Inst

(
L
(
y(τ)

)
, J
)

∼= S-Inst
(
y(τ), J

)
∼= J(τ).

Conversely, if G : S-Inst→ R-Inst is a right adjoint satisfying (38), then

S-Inst
(
L
(
y(τ)

)
, J
)
∼= R-Inst

(
y(τ), RJ

)
∼= (GJ)(τ)
∼= J(τ)

∼= S-Inst
(
y(τ), J

)
,

hence by the Yoneda lemma, L
(
y(τ)

) ∼= y(τ), for any τ ∈ Type.

ALGEBRAIC DATABASES 597

8.11. Proposition. For any schemas R and S, the category RBimodS has �nite colimits.

Proof. The initial object of RBimodS is given by the left Kan extension of the Yoneda
embedding Typeop → S-Inst along the collage inclusion Typeop → R̃op. Concretely, the
initial bimodule 0 can be described by cases:

0(r, s) =

{
R̃(r, s) if s is a type

∅ otherwise.

To complete the proof, we need to show that RBimodS has pushouts. By Theorem 8.10,

RBimodS ' (Typeop/Cat)(R̃op,S-Inst), and by Corollary 6.8, S-Inst is cocomplete. Let
us �x a choice of pushouts in S-Inst, such that the chosen pushout of the constant span
on an instance I is I. Then it is easy to check that RBimodS is closed under the induced
chosen pointwise pushouts in Cat(R̃op,S-Inst), and that these are in fact pushouts in the

subcategory (Typeop/Cat)(R̃op,S-Inst).

8.12. The equipment Data. We are now ready to assemble schemas, schema mor-
phisms, and bimodules into a single double category Data, which we de�ne in De�ni-
tion 8.13, and which we show to be an equipment in Proposition 8.14. In order to de�ne
the double category structure, we will need the easy notion of restriction of bimodules
along schema morphisms.

Suppose we have a bimodule N : R′ S′, and schema mappings F : R → R′ and
G : S → S′. Thinking of N as a functor N : R̃′op → S′-Inst as in De�nition 8.3, we can
form the bottom composite

R̃op S-Inst

(R̃′)op S′-Inst

F̃ op

FNG

N

∆G

and de�ne a bimodule FNG : R S so that the square commutes. This construction
de�nes a functor FBimodG : R′BimodS′ → RBimodS. By computing the composite ∆F ◦
N ◦ F̃ op on objects, it easily follows that

(
FNG(r)

)
(s) = Ñ(F̃ r, G̃s) for any r ∈ R̃ and

s ∈ S̃, where N is viewed as Ñ : R̃′ S̃ ′. This is relevant to Remark 8.15.

8.13. Definition. We de�ne the double category Data as follows: the objects of Data
are schemas, the vertical morphisms are schema mappings, and the horizontal morphisms
are bimodules. We de�ne a 2-cell of the form

R S

R′ S′

M

F G

N

⇓θ (39)

598 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

to be a natural transformation θ : M → ∆G ◦N ◦ F̃ op:

R̃op S-Inst

R̃′
op

S′-Inst,

M

F̃ op

N

∆G⇓θ

i.e. a morphism θ ∈ RBimodS(M, FNG). Equivalently, it is a 2-cell θ̃ : M̃ ⇒ Ñ in Prof

with frames L(θ̃) = F̃ and R(θ̃) = G̃, and which has identity components on r ∈ Type.
Given bimodules M : R S and N : S T, we de�ne their composite M�N by

M �N := ΛN ◦M : R̃op → S-Inst→ T-Inst. (40)

where ΛN is as de�ned in (35). The unit bimodule UR : R R for any schema R is given

by the Yoneda embedding y : R̃op → R-Inst, since ΛM ◦ y ∼= M by (34). It corresponds

to the unit in Prof , ŨR := UR̃ : R̃ R̃.
The horizontal composition of 2-cells

R S T

R′ S′ T′

M

F

N

G H

M′ N′

⇓θ ⇓φ (41)

is de�ned by the composition

R̃op S-Inst T-Inst

R̃′
op

S′-Inst S′-Inst T′-Inst

M

F̃ op ΣG

ΛN

M ′

∆G

ΛN′

∆H⇓θ ⇓ ⇓Λφ

where the middle triangle is the counit of the ΣG a ∆G adjunction. Vertical composition
of 2-cells works in the evident way.

The data above satisfy the axioms of a double category as in De�nition 2.8, with
vertical category Data0 = Schema and horizontal H(Data)(R,S) = RBimodS.

8.14. Proposition. The double category Data is an equipment.

Proof. It is clear from the de�nition of 2-cells in Data that given a niche

R S

R′ S′

F G

N

there is a cartesian �ller with the bimodule FNG from Section 8.12 on top.

ALGEBRAIC DATABASES 599

8.15. Remark.We deduce that the companion and conjoint of a schema mapping F : R→
S are the bimodules given by the following formulas:

F̂ = y ◦ F̃ op : R̃op → S̃op → S-Inst

F̂ = ∆F ◦ y : S̃op → S-Inst→ R-Inst
(42)

These bimodules turn out to be equivalent, via Theorem 8.10, to the companion and con-
joint of the induced F̃ : R̃→ S̃ in the equipment Prof (3). Moreover, due to Remark 6.9,

F̂ � N � Ĝ in Data coincides with ˆ̃F � Ñ � ˇ̃G in Prof , even though the horizontal
compositions di�er. This will be put into a larger context in Remark 8.32.

Recall from (37) the de�nition of Γ, which is right adjoint to Λ by Proposition 8.6.

8.16. Proposition. The equipment Data is right closed, with NBP := ΓN ◦ P .

Proof. Let M : R S, N : S T and P : R T. By De�nition 2.9, it is enough to
establish a natural bijection RBimodT(M�N,P) ∼= RBimodS(M,NBP). This follows
directly from the ΛN a ΓN adjunction:

RBimodT(M�N,P) = T-InstR̃
op

(ΛN ◦M,P)

∼= S-InstR̃
op

(M,ΓN ◦ P)

= RBimodS(M,NBP),

completing the proof.

In the following, LAdjType ⊆ Typeop/Cat and RAdjType ⊆ Cat/Type-Alg are the
obvious sub-2-categories of the (co)slices described in Section 8.9.

8.17. Proposition. There is a commutative diagram of pseudofunctors and bicategories,
each of which is a local equivalence:

LAdjType

H(Data)

RAdjop
Type

'

Λ−

Γ−

Proof. On objects, Λ� maps a schema S to the functor y : Typeop → S-Inst; on bimod-
ules and 2-cells, it is was described in Theorem 8.10. Then for any bimodules M : R S
and N : S T, we have ΛM�N := ΛΛN◦M

∼= ΛN ◦ ΛM and ΛUS
:= Λy

∼= idS-Inst by
Lemma 8.7.

By checking that the coherence axioms are satis�ed, this establishes that Λ− is a
pseudofunctor. The result follows easily from there.

600 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

The following lemma establishes a certain relationship between Λ,Γ and the data
migration functors of Section 7. Recall that every schema mapping F : S→ T induces a
triple adjunction as on the left below, and that every bimodule M : S T induces an
adjunction as on the right:

T-Inst S-Inst∆F

ΠF

⊥

ΣF

⊥
T-Inst S-Inst

ΓM

⊥
ΛM

Recall also that every schema mapping F : S→ T induces a pair of bimodules F̂ : S T

and F̂ : T S.

8.18. Lemma. For any schema mapping F, we have the following isomorphisms and
adjunctions:

(ΣF
∼= ΛF̂) a (∆F

∼= Λ
F̂
∼= ΓF̂) a (ΠF

∼= Γ
F̂

)

Proof. The adjunctions are given in Propositions 7.3 and 7.4, so we provide the isomor-
phisms. The companion and conjoint of schema mappings are given in (42).

For F : S→ T and an instance I ∈ S-Inst, we have an isomorphism

ΛF̂ (I) =

∫ s∈S̃
I(s) · F̂ (s) ∼=

∫ s∈S̃
I(s) · T̃ (F̃ s,−) ∼= ΣF (I)

by (35), Remark 8.15 and (31). For any s ∈ S̃ we also have an isomorphism

Γ
F̂
I(s) = S-Inst(F̂ (s), I) ∼= S-Inst(∆F (ys), I) ∼= ΠF I(s)

by (37), Remark 8.15, and Proposition 7.3. The remaining isomorphisms (for ∆) follow
by Proposition 8.6.

8.19. Decomposing bimodules. Let M : R S be a bimodule. Since Prof has
extensive collages by Example 2.27, the respective profunctor M̃ : R̃ S̃ determines
an (Ro, So)-simplex in the sense of De�nition 2.21: four profunctors Mee : Re Se,
Met : Re Type, Mte : Type Se, andMtt : Type Type, obtained via the restric-
tion of M along the obvious inclusions, together with four 2-cells Me∗, Mt∗, M∗e, and
M∗t.

The conditions of Remark 8.4 force Mte to be the initial profunctor (i.e. the constant
functor Typeop × Se → Set with value the empty set), Mtt to be the unit profunctor
(i.e. the hom functor Typeop × Type → Set) and Met to be algebraic. Because Mte is
initial, and because tensor product of profunctors preserves colimits, the 2-cells Mt∗ and
M∗e are unique, and hence don't need to be speci�ed. Thus we have proven the following
proposition, in which we let Me := Mee, Mt := Met, Mo := Me∗, and Mr := M∗t.

5

5 The mnemonic for Mr comes from its role as "return clause" in queries; see Section 9.4.

ALGEBRAIC DATABASES 601

8.20. Proposition. A bimodule M : R S is equivalent to a tuple (Me,Mt,Mo,Mr),
where Me : Re Se is a profunctor, Mt : Re Type is an algebraic profunctor, and Mo

and Mr are profunctor morphisms

Se

Re Type

SoMe

Mt

Ro

⇓Mo

⇑Mr

(43)

8.21. Example. For any schema R, the unit bimodule UR : R R is given by

Re

Re Type

RoRe

Ro

Ro

id

id

(44)

and the companion/conjoint of a schema mapping F = (Fe, Fo) : R→ S decompose as

Se

Re Type

SoF̂e

F̂e�So

Ro

⇓id

⇑F̂o

Re

Se Type

RoF̂ e

So

So

⇓F̂o

⇑id

where 2-cells F̂o, F̂o are as in Section 2.11 for Prof . This is `component-wise' Remark 8.15.

The equivalence FResG (Section 2.22) for the extensive collages equipment Prof , which
on objects resulted in Proposition 8.20, also gives an equivalent expression of a 2-cell θ

in Data, viewed as M → ̂̃F �N � ̂̃G inside H(Prof)(S̃, R̃) (see Remark 8.15).

8.22. Proposition. A 2-cell θ in Data (39) is equivalently a pair of profunctor mor-
phisms

Re Se

R′e S ′e

Me

Fe Ge

M ′e

⇓θe

Re Type

R′e Type

Mt

Fe

M ′t

⇓θt

602 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

satisfying the equations

Re Se Type

R′e S ′e Type

Me

Fe

So

Ge

M ′e

M ′t

S′o

⇓θe ⇓Go

⇓M ′o

=

Se

Re Type

R′e Type

SoMe

Mt
Fe

M ′t

⇓Mo

⇓θt

Re Type

R′e Type

Ro

Mt

Fe

M ′t

⇓Mr

⇓θt =

Re Type

R′e Type

Ro

Fe

R′o

M ′t

⇓Fo

⇓M ′r

(45)

8.23. Corollary. A 2-cell θ in Data is cartesian if and only if the 2-cells θe and θt

from Proposition 8.22 are cartesian in Prof .

Because it will be convenient later, we now present yet another equivalent repre-
sentation of bimodules, which is in some sense intermediate between De�nition 8.3 and
the completely decomposed representation of Proposition 8.20. Recall from Example 7.2
that for any S-instance I, the underlying Type-algebra is given by It = ∆!S(I), where
!S : ∅ → S is the unique map.

8.24. Proposition. A bimodule M : R S is equivalent to a functor Mo : Rop
e →

S-Inst together with a natural transformation

Rop
e Type-Alg

S-Inst

Ro

Mo ∆!S

⇓Mr

Proof. The functor Mop : R̃ → S-Instop, opposite to the one given in De�nition 8.3,
can equivalently be de�ned�using the universal property (11) of collages in Prof �as
a functor Mop

o : Re → S-Instop, along with a natural transformation

Re Type

S-Instop S-Instop.

Ro

Mop
o yop

S-Instop

⇓Mr

since by de�nition, types are mapped to representables. This natural family of functions
Ro(r, τ)→ S-Inst (y(τ),Mo(r)) equivalently de�ne Mr as a natural transformation Ro ⇒
∆!S ◦Mo by Yoneda: S-Inst

(
y(τ),Mo(r)

) ∼= Mo(r)(τ).

ALGEBRAIC DATABASES 603

8.25. Instances in terms of bimodules. The category of instances on a schema S
can be viewed entirely in terms of bimodules. Indeed, if U = ({∗}, κ) is the unit schema
from Example 5.4, then we have an isomorphism of categories

H(Data)(U,S) ∼= S-Inst.

This follows by comparing their decomposed forms�see Section 6.19 and Propositions 8.20
and 8.22�and using the fact that κ : {∗} Type is the initial Type-algebra.

It also follows that ΛN(�) is simply given by bimodule composition. Indeed, by (40),
for any bimodule N : S T and S-instance J, considered as a (U,S)-bimodule, one has

ΛN(J) ∼= J�N. (46)

Similarly, for any T-instance I,
ΓN(I) ∼= JBN.

8.26. Data migration functors in terms of bimodules. We can also recover the
fundamental data migration functors from the structure of Data, using Lemma 8.18
and (46). That is, if we consider instances as bimodules I : U R and J : U S,
then composing and exponentiating them with companions and conjoints of F : R→ S is
equivalent to applying Σ,∆,Π:

ΣF (I) ∼= I� F̂, ∆F (J) ∼= J� F̂ ∼= F̂B J, ΠF (I) ∼= F̂B I

8.27. Collages in Data.We now consider collages (see De�nition 2.16) in the proarrow
equipment Data. Using Proposition 8.20 and the fact that Prof has extensive collages
(Example 2.27), we can fully express a collage in Data in terms of profunctor collages.

Let M = (Me,Mt,Mo,Mr) : R S be a bimodule as in (43). Its collage will be a
schema Col(M), together with two schema mappings R→ Col(M)← S and a universal
2-cell µ : M⇒ UCol(M) in Data. We begin by describing Col(M).

8.28. The schema of a bimodule collage.The entity category of the collage Col(M)
is the collage of the profunctor Me : Re Se

Col(M)e := M̃e,

and the observables profunctor Col(M)o : M̃e Type is the one uniquely corresponding,

via the universal property of the lax colimit M̃e (dual of Remark 2.32), to the cocone

Se

Type

Re

So

Me

Mt

⇓Mo

In simple words, the functor Col(M)o : M̃e

op
× Type → Set is given by Mt on the Re-

side of M̃e, by So on the Se-side of M̃e, and by Mo on the morphisms in between. The
profunctor Col(M)o is algebraic, because Mt and So are.

604 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

8.29. The schema mappings of a bimodule collage. We now de�ne the collage
inclusions iR : R → Col(M) ← S : iS. They are schema mappings as in De�nition 5.10,
thus each consists of a functor between entity categories and a 2-cell in Prof . The functors
between entity categories are the collage inclusions from Prof (see Example 2.19):

(iR)e := iRe : Re → M̃e and (iS)e := iSe : Se → M̃e.

The 2-cells (iR)o and (iS)o in Prof are de�ned respectively as follows:

Re Type

M̃e Type

Ro

Mt

iRe

Col(M)o

⇓Mr

⇓cart and

Se Type

M̃e Type

So

iSe

Col(M)o

⇓cart (47)

The fact that the indicated 2-cells are cartesian follows by de�nition of Col(M) as a lax
colimit; see Proposition 2.30.

8.30. The 2-cell of a bimodule collage. We now de�ne the 2-cell µ in Data

R S

Col(M) Col(M)

M

iR iS

Col(M)

⇓µ (48)

in its decomposed form (see Proposition 8.22) to be the pair µ = (µe, µt)

Re Se

M̃e M̃e

Me

iRe iSe

M̃e

⇓µe

Re Type

M̃e Type

Mt

iRe

Col(M)o

⇓µt

where µe is the universal 2-cell for M̃e in Prof (see Example 2.19) and µt is the (cartesian)
square shown to the left in (47). The components µe and µt satisfy the equations (45) by
the unit bimodule decomposition (44) and the universal property of lax colimit (20).

8.31. Proposition. The equipment Data has normal collages.

Note that Data does not have extensive collages. In particular, iR is not in general
fully faithful.

ALGEBRAIC DATABASES 605

Proof. We must �rst verify that Data has collages, i.e. that the 2-cell µ de�ned in
(48) has the required universal property (11). Suppose that X is a schema and that
φ : M ⇒ UX is a 2-cell from M to the unit bimodule. We must show that φ factors
uniquely through µ:

R S

X X

M

F G

X

⇓φ =

R S

Col(M) Col(M)

X X

M

iR iS

Col(M)

φ̄ φ̄

X

⇓µ

⇓φ̄

We work with components, writing φ = (φe, φt) as in Proposition 8.22. Firstly, since µe is
the universal 2-cell for a collage in Prof , we have that φe = Uφ̄e

◦ µe for a unique functor

φ̄e : M̃e → Xe. Also, φt = φ̄t ◦ µt as in

Re Type

Xe Type

Mt

Fe

Xo

⇓φt =

Re Type

M̃e Type

Xe Type

Mt

iRe

Col(M)o

φ̄e

Xo

⇓µt

⇓φ̄t

for a unique 2-cell φ̄t, obtained via the 2-dimensional universal property of the lax colimit

M̃e (Proposition 2.30). This profunctor morphism φ̄t : Col(M)o ⇒ ̂̄φe �Xo is concretely
de�ned, omitting the details, by natural components

(φ̄t)rτ = Col(M)o(r, τ) ∼−→Mt(r, τ)
(φt)rτ−−−→ Xo(Fer, τ) = Xo(φ̄er, τ)

(φ̄t)sτ = Col(M)o(s, τ) ∼−→ So(s, τ)
(Go)sτ−−−−→ Xo(Ges, τ) = Xo(φ̄es, τ)

for r ∈ Re, s ∈ Se and τ ∈ Type. De�ning φ̄ to be the pair (Uφ̄e
, φ̄t) : Col(M)→ X, we

have φ = Uφ̄ ◦ µ as desired.
Moreover, collages in Data are normal, as in De�nition 2.18, since the 2-cell µ con-

structed in Section 8.30 is cartesian: by Corollary 8.23, it is enough that µe and µt are
cartesian liftings in Prof .

8.32. Remark. Although we will not use this fact, we note that the collage correspon-
dences from Remarks 5.3, 5.12 and 8.4 provide a lax double functor (see e.g. [GP04])

(̃−) : Data→ Prof .

606 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

This functor is only lax, because for bimodules R
M

S
N

T in Data, the natural

map M̃ � Ñ → M̃ �N in Prof given by the unique transformation in [T̃ ,Set]∫ s∈S̃
M̃(r, s)× Ñ(s,−)⇒

∫ s∈S̃
M(r)(s) ·N(s)

between the pointwise colimit (4) and the T-Inst-one (40), is not an isomorphism (Re-
mark 6.9). Since lax double functors between equipments automatically preserve cartesian
liftings (see [Shu08, Prop. 6.4]), this fact also explains Remark 8.15.

8.33. Bimodules in terms of data migration.We will now see that any bimodule,
considered as an adjoint functor on instance categories via Theorem 8.10, is equivalent to
a composite of data migration functors.

8.34. Corollary. Let M : R S be a bimodule, and let iR : R→ Col(M) and iS : S→
Col(M) be the collage inclusions. We have isomorphisms

ΛM
∼= ∆iS ◦ ΣiR and ΓM ∼= ∆iR ◦ ΠiS

Proof. Since Data has normal collages, (48) is a cartesian 2-cell, hence M ∼= îR �
UCol(M) � îS. Therefore, by Lemma 8.18 and Proposition 8.17, we have

ΛM
∼= Λ

îR�UCol(M)�îS
∼= Λ

îS
◦ ΛîR

∼= ∆iS ◦ ΣiR

and dually for the right adjoint ΓM .

8.35. Corollary. Suppose that R and S be schemas. Let L ⊆ LAdjType(R-Inst,S-Inst)
[resp. let R ⊆ RAdjType(S-Inst,R-Inst)] denote the full subcategory spanned by func-
tors of the form ∆G ◦ΣF [resp. of the form ΠG ◦∆F]. This inclusion is an equivalence of
categories.

Proof. The inclusion functor is fully faithful by de�nition and essentially surjective by
Corollary 8.34 and Theorem 8.10.

8.36. Remark. Corollary 8.35 says that every right adjoint between instance categories
is naturally isomorphic to a right pushforward followed by a pullback, ∆◦Π. While we do
not discuss the details here, there is a similar characterization of parametric right adjoints
(a.k.a. local right adjoints) between instance categories.

Recall that a functor F : C → D is a parametric right adjoint if, for each object
c ∈ C, the slice F/c : C/c → D/(Fc) is a right adjoint, see e.g. [Web07]. In our setting,
one can show that every parametric right adjoint between instance categories is naturally
isomorphic to a functor of the form Σdopf ◦ ∆ ◦ Π, where the left pushfoward is along a
discrete op-�bration, as discussed in Section 7.11. This generalizes the analogous fact for
parametric right adjoints between presheaf categories, as shown in [Web07, Remark 2.12].

ALGEBRAIC DATABASES 607

8.37. Bimodules presentation.We conclude Section 8 by discussing presentations of
bimodules, which work very similarly to presentations of profunctors (De�nition 4.45).
Recall also the de�nition of schema presentations, De�nition 5.6. Suppose that Type ∼=
CxtΣ/EΣ has algebraic signature Σ;6 see De�nition 4.18.

8.38. Definition. Let R and R′ be schemas given respectively by presentations (Ξ, Ee, Eo)
and (Ξ′, E ′e, E

′
o). These present entity category Re

∼= Fr(GΞ)/Ee and observables profunc-
tor Ro

∼= κ[ΥΞ]/Eo, and similarly for R′.
A bimodule signature Ω = (Ωe,Ωo) from Ξ to Ξ′ is a pair where Ωe is a profunctor

signature from GΞ to GΞ′, and Ωo is a profunctor signature from GΞ to Σ.
A bimodule signature has an associated algebraic signature Ω̃ = (SΩ̃,ΦΩ̃), where

SΩ̃ = (GΞ)0 t (GΞ′)0 t SΣ

ΦΩ̃ = (GΞ)1 t (GΞ′)1 t ΦΣ tΥΞ tΥΞ′ t Ωe t Ωo.

Say that a set EΩ of equations over Ω̃ is a set of bimodule equations if for each
equation Γ ` (t1 = t2) : s′ of EΩ, the context is a singleton Γ = (x : s) with s ∈ (GΞ)0 and
s′ ∈ (GΞ′)0 t SΣ. We can partition the set EΩ = (EΩ)e t (EΩ)o, where (EΩ)e contains all
equations where s′ ∈ (GΞ′)0, and (EΩ)o contains all equations where s′ ∈ SΣ.

Given a pair (Ω, EΩ), consider the category CxtΩ̃/EΩ̃, where

EΩ̃ = Ee ∪ Eo ∪ E ′e ∪ E ′o ∪ EΩ.

The bimodule M = κ[Ω]/EΩ presented by (Ω, EΩ) is de�ned as follows:

• for any objects r ∈ R̃ and s ∈ R̃′, the set M(r, r′) is de�ned to be the hom-set
(CxtΩ̃/EΩ̃)(r, s),
• the functorial actions are given by substitution.

8.39. Remark. The presented bimodule M = κ[Ω]/EΩ may be easier to understand in
terms of its collage. We will write Col(Ω) = (GCol(Ω),ΥCol(Ω)) for the following schema
presentation:

(GCol(Ω))0 = (GΞ)0 t (GΞ′)0

(GCol(Ω))1 = (GΞ)1 t (GΞ′)1 t Ωe

ΥCol(Ω) = ΥΞ tΥΞ′ t Ωo.

It is easy to see that the algebraic signature C̃ol(Ω) corresponding to the schema signature

Col(Ω) as in De�nition 5.6 is precisely the same as the signature Ω̃ given above. Moreover,
the collage Col(M) of the bimoduleM is presented by (Col(Ω), Ee∪E ′e∪ (EΩ)e, Eo∪E ′o∪
(EΩ)o).

The inclusions iR and iS of the schemas R and S into the collage Col(M) are also
easy to understand in terms of this presentation, as they are both inclusions on the level
of generators and equations as well.

6Signatures Σ should not be confused with data migration functors Σ−.

608 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

8.40. Example. Let F = (Fe, Fo) : R → S be a schema morphism. Both its companion

F̂ and its conjoint F̂ have very simple presentations.
The generators of F̂ : R S are ψr : r → Fe(r) for each r ∈ Re. For each edge f : r →

r′ in R there is an equation x.f.ψr′ = x.ψr.Fe(f), and for each attribute att : r → τ in R
there is an equation x.att = x.ψr.Fo(att), both in context (x : r).

The generators of F̂ : S R are φr : Fe(r)→ r for each r ∈ Re. For each edge f : r →
r′ in R there is an equation x.φr.f = x.Fe(f).φr′ , and for each attribute att : r → τ in R
there is an equation x.φr.att = x.Fo(att), both in context (x : Fe(r)).

9. Queries and uber-queries

In this section, we will employ many of the concepts and operations studied so far in order
to describe the process of querying an algebraic database. We will also give examples that
tie in with running examples from previous sections.

A query is a question asked of a database, such as "Tell me the set of employees whose
manager is named Alice". Queries are often written using "Select-From-Where"�e.g. in
the database query language SQL�or equivalently using "For-Where-Return" syntax.
This syntax both poses the question and provides a table layout in which to record the
results.

In our current setting, we will express a query on a given S-instance J, by constructing
a new schema R and a bimodule M : R S. Running the query will amount to applying
the functor ΓM : S-Inst → R-Inst from (37). Classically, a For-Where-Return query
returns a single table (with no foreign keys), so the result schema R has a very speci�c
form; namely, its entity side is the terminal category, Re = {∗}.

If we allow arbitrary R and arbitrary bimodules R S, the "query" ΓM could be
thought of as a method of migrating data from S to R, but it could also be considered as
a collection of queries and homomorphisms between them; we refer to such a setup as an
uber-query. We will discuss this interpretation of bimodules in Section 9.8.

9.1. Queries.We begin by discussing the usual For-Where-Return queries and how they
appear in our setup.

9.2. Definition. Let S be a schema given by a presentation (Ξ, E), see De�nition 5.6.

A query on S is a 4-tuple Q = (Qf , Qw, Qa, Qr), where Qf is a context over Ξ̃, Qw is a
set of equations in Qf , Qa is a context over (the signature of) Type, and Qr : Qf → Qa

is a context morphism over Ξ̃.

We will adopt the For-Where-Return notation for presenting the data of a query as
de�ned in De�nition 9.2, as follows:

FOR: Qf
WHERE: Qw
RETURN: Qr

ALGEBRAIC DATABASES 609

This notation is sometimes called �ower syntax (an acronym of For-Let-Where-Return)
or comprehension syntax [AHV95].

9.3. Example. Let S be the schema from Example 5.8. We give an example query Q on
S:

FOR: e : Emp, d : Dept
WHERE: e.wrk.name = Admin,

(e.sal ≤ d.sec.sal) = >
RETURN: emp_last := e.last

dept_name := d.name
diff := d.sec.sal− e.sal

In this query, Qf is the context (e : Emp, d : Dept), Qw is the set containing the two equa-
tions at the WHERE clause, Qa is the context (emp_last : Str, dept_name : Str, diff :
Int), and Qr : Qf → Qa is the context morphism (De�nition 4.11) displayed in the RE-

TURN clause.

9.4. Query bimodules. Any query Q on a schema S gives rise to a schema R and
bimodule M : R S. The schema R is free on the schema signature (G,Υ), where G is
the graph with one node ∗ and no edges, and Υ has one function symbol, i.e. generating
attribute x : ∗ → τ , for each variable x : τ in Qa. Note that the entity category Re is
terminal, hence Ro : Re Type can be identi�ed with a single Type-algebra, the free
algebra Ro = κ[Qa]. We may refer to R as the result schema.

Using Proposition 8.24, the data of any M : R S is equivalent to a single S-instance
Mo(∗) denoted Mo, together with a morphism of Type-algebras Mr : κ[Qa] → (Mo)t.
Equivalently, by Σ!S a ∆!S this is a morphism of S-instances Mr : Σ!Sκ[Qa] = 〈Qa〉 →Mo,
using Remark 7.5 and De�nition 6.13.

We thus de�ne Mo = 〈Qf〉/Qw, precisely presented by the �rst two clauses of the
�ower syntax, while Mr is given by the context morphism Qr of the last clause (see
De�nition 4.32). Following standard database theory, we refer to Mo = 〈Qf〉/Qw as the
frozen instance of the query Q.

The bimodule M associated to Q in turn determines a functor ΓM : S-Inst→ R-Inst;
we will abuse notation by writing it as ΓQ. It is this functor which carries out the operation
of �querying an S-instance using Q�. As the result schema R has a single entity, the output
of this functor can be seen as a single table containing the results of the query, with one
column for each variable in Qa.

9.5. Example. Let S and Q be as in Example 9.3. The query Q determines a schema
R and a bimodule M : R S as follows. The schema R has a single entity�call it
�∗� �and attributes emp_last, dept_name : ∗ → Str, and diff : ∗ → Int coming from
Qa.

The bimodule M is determined by the frozen instance Mo = 〈e : Emp, d : Dept〉/Qw,
where Qw contains the two equations from Example 9.3, together with the morphism

Mr : 〈emp_last, dept_name : Str, diff : Int〉 → 〈e : Emp, d : Dept〉/Qw

610 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

given by the context morphism

[emp_last := e.last, dept_name := d.name, diff := d.sec.sal− e.sal].

Note that the schema R is isomorphic to the one from Example 5.14, and that the frozen
instance Mo is the instance from Example 6.16.

Let J ∈ S-Inst be the instance from Example 6.3. We will now compute the result
ΓQ(J) ∈ R-Inst of querying J with Q. On the single entity of R, we have by (37) that
(ΓQJ)(∗) = S-Inst(Mo,J), and we saw in Example 6.17 that this set has three elements.
The Type-algebra (ΓQJ)t is the same as Jt, by (38). The values of the attributes of R
are determined using the morphism Mr:

(ΓQJ)(∗) = S-Inst
(
〈Qf〉/Qw, J

)
−→ S-Inst

(
〈Qa〉, J

) ∼= ∏
(x:τ)∈Qa

Jt(τ). (49)

A transform 〈Qf〉 → J has an underlying context morphism Φ → Qf , where Φ is the
context of the canonical presentation of J (see Remark 6.15). We can express (49) using
context morphisms: given a transform 〈Qf〉/Qw → J corresponding to an element of
(ΓQJ)(∗), simply compose its underlying context morphism Φ→ Qf with Qr : Qf → Qa.
The attributes of this row of the table �∗� can be read o� of the resulting context morphism
Φ→ Qa.

Doing this, we obtain the result

∗ emp_last dept_name diff

1 Noether HR 100
2 Euclid HR 150
3 Euclid Admin 0

(Note that the row-ids are arbitrary.) For example, the �rst row corresponds to the
transform 〈Qf〉 → J given by [e := e2 , d := d1]. Composing this with Qr gives
[emp_last := e2 .last, dept_name := d1 .name, diff := d1 .sec.sal − e1 .sal], which
simpli�es to the �rst row of the table above.

9.6. Remark. By Corollary 8.34, the result of any query Q on S, with result schema R
and associated bimodule M, is equivalently obtained as the composite of data migration
functors

S-Inst Col(M)-Inst R-Inst

J ΠiS(J) ∆iR

(
ΠiS(J)

) ∼= ΓQ(J)

ΠiS ∆iR

(50)

where the schema mappings iR : R→ Col(M)← S : iS into the bimodule collage Col(M)
are as in Section 8.29.

For example, the query in Example 9.5 gave the same result as we found using Exam-
ples 7.8 and 7.10. One can check that the bimodule collage is Col(M) ∼= T given in (25),
and the mappings F, G of the mentioned examples are the collage inclusions. Hence this
is an instance of (50).

ALGEBRAIC DATABASES 611

9.7. Remark. In practice, one would like a guarantee that a query result ΓQ(J) is �nite
whenever J is �nite. To achieve this, one has to place the extra condition on the query
Q that only entities�no types�appear in Qf . This condition also ensures the domain
independence [AHV95] of the query, meaning that it is not necessary to enumerate the
elements of a type to compute the query result.

9.8. Uber-queries. If queries correspond to (R,S)-bimodules where R has only one
entity, then we need a name for more general bimodules; we call them uber-queries. An
uber-query is roughly a diagram of queries. The morphisms in this diagram will be called
Keys, and our syntax is accordingly extended to be of the form For-Where-Keys-Return.

9.9. Example. To describe a bimodule of the following form

A

A'

Int

Str

Bool
dept_name

diff

f

last
Dept

Emp Int

Str

Bool

wrk

mgr

sal

last

sec

name

plus eqs
from (25)

SL

N

we will need two instances I := N(A) and I′ := N(A′), and a transform N(f) : I′ → I
between them, as well as three terms diff, name, last of the speci�ed types in I and I′.
Indeed, this gives a functor L̃op → S-Inst (where objects Int, Str, and Bool in the type
side are sent to the corresponding representable instances, as usual; De�nition 8.3).

In Example 6.18, we constructed two S-instances and a transform I′ → I between
them . We will rewrite them, together with the three terms, in For-Where-Keys-Return
syntax below.

A′ = A =

FOR: e′ : Emp FOR: e : Emp, d : Dept

WHERE: e′.wrk.name = Admin WHERE: e.wrk.name = Admin

e′.sal ≤ e′.wrk.sec.sal e.sal ≤ d.sec.sal

KEYS: f := Emp[e := e′, d := e′.wrk]

RETURN: last := e′.last RETURN: dept_name := e.wrk.name

diff := d.sec.sal− e.sal

For any S-instance J, we can apply ΓN : S-Inst→ L-Inst. If J is as in Example 6.3,
then ΓN(J) is the following L-instance:

612 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

A' last f

0 Euclid 3

A dept_name diff

1 HR 100
2 HR 150
3 Admin 0

10. Implementation

The mathematics developed in this paper has been implemented using OPL, an Operadic
Programming Language, which can be can be downloaded from http://categoricaldata.

net/fql.html. The examples in this paper are pre-loaded as the �Paper� example in the
software package. In this section we brie�y discuss implementation issues that arise,
namely in negotiating between syntactic presentations (e.g. those discussed in Section 4)
and the objects they denote.

Most constructions involving �nitely-presented categories, including query evaluation
and collage construction, depend crucially on solving word problems in categories, and
these problems are not in general decidable. In Section 10.1 we describe our approach
to solving word problems, and in Section 10.2 we describe how we use word problems to
compute collages and evaluate queries.

10.1. Solving Word Problems. Given a category presentation (G,E) as described in
Section 4.35, the word problem is to decide if two terms (words) in G are equivalent under
E. The word problem is obviously semi-decidable: to prove if two terms p and q in G are
equal under E, we can systematically enumerate all of the (usually in�nite) consequences
of E until we �nd p = q. However, if p and q are not equal, then this enumeration will
never stop. In practice, not only is enumeration computationally infeasible, but for query
evaluation and collage construction, we require a true decision procedure: an algorithm
which, when given p and q as input, will always terminate with �equal� or �not equal�.
Hence, we must look to e�cient, but incomplete, automated theorem proving techniques
to decide word problems.

The OPL tool allows any theorem prover to be used to decide word problems. In
addition, the OPL tool also provides a default, built-in theorem prover based on Knuth-
Bendix completion [KB70]: from (Σ, E), it attempts to construct a system of re-write
rules (oriented equations), R, such that p and q are equal under E if and only if p and q
re-write to syntactically equal terms (so-called normal forms) under R. We demonstrate
this with an example. Consider a presentation of the algebraic theory of groups, on the
left, below. Knuth-Bendix completion yields the re-write system on the right, below: 7

7Because there is only one sort, say SΣ = {G}, we drop the contexts in the Axiom side. For example,
the second equation� axiom�should be x : G ` (x−1 ∗ x = 1) : G, according to Section 4.

http://categoricaldata.net/fql.html
http://categoricaldata.net/fql.html

ALGEBRAIC DATABASES 613

Axioms Re-write rules
1 ∗ x = x 1 ∗ x x

x−1 ∗ x = 1 x−1 ∗ x 1
(x ∗ y) ∗ z = x ∗ (y ∗ z) (x ∗ y) ∗ z x ∗ (y ∗ z)

x−1 ∗ (x ∗ y) y
1−1 1
x ∗ 1 x
(x−1)−1 x
x ∗ x−1 1
x ∗ (x−1 ∗ y) y
(x ∗ y)−1 y−1 ∗ x−1

To see how these re-write rules are used to decide the word problem, consider the two
terms (a−1 ∗a)∗ (b∗ b−1) and b∗ ((a∗ b)−1 ∗a). Both of these terms re-write to 1 under the
above re-write rules; hence, we conclude that they are equal. In contrast, the two terms
1 ∗ (a ∗ b) and b ∗ (1 ∗a) re-write to a ∗ b and b ∗a, respectively, which are not syntactically
the same; hence, we conclude that they are not equal.

The details of how the Knuth-Bendix algorithm works are beyond the scope of this
paper. However, we make two remarks. First, Knuth and Bendix's original algorithm
([KB70]) can fail even when a re-write system to decide a word problem exists; for this
reason, we use the more modern, �unfailing� variant of Knuth-Bendix completion [BDP89].
Second, we remark that Buchberger's algorithm for computing Gröbner bases is a very
similar algorithm used in many computer algebra systems, and it may be seen as the
instantiation of the Knuth-Bendix algorithm in the theory of polynomial rings [Mar96].

10.2. Saturation and Query Evaluation. Given a category presentation (G,E), a
decision procedure for the word problem allows us to (semi) compute the category C that
(G,E) presents. To do this, we construct C in stages: �rst, we �nd all non-equal terms
of size 0 in G; 8 call this C0. Then, we add to C0 all non-equal terms of size 1 that are
not equal to a term in C0; call this C1. We iterate this procedure, obtaining a sequence
C0, C1, If C is indeed �nite, then there will exist some n such that Cn = Cn+1 = C
and we can stop. Otherwise, our attempt to construct C will run forever: it is not
decidable whether a given presentation (G,E) generates a �nite category. The category
C will be isomorphic to the category Fr(G)/E obtained by quotienting the free category on
G by the equations in E (De�nition 4.41); essentially, C represents equivalence classes of
terms by a smallest possible representative, as explained in detail in Section 4. (Note that
the normal forms chosen by the internal Knuth-Bendix theorem prover for the purposes of
deciding the word problem need not in general be the same as the chosen representatives
of equivalences classes in C.)

Most uses of the OPL tool involve saturating instance presentations into collages so
that they may be examined as tables (e.g. Example 6.16). This just means replacing part

8By the size of a term, we mean the height of the associated syntax tree. For example
max(x.sal, x.mgr.sal) has size of three.

614 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

Figure 7: OPL displaying the instance from Example 6.3

of the presentation with a canonical presentation (see Remarks 4.21, 4.34 and 6.159) The
saturation process is very similar to the process described in the preceding paragraph, with
one small di�erence. In general, the `type side' of the collage (see Remark 5.3) will denote
an in�nite category. For example, if Type is the free group on one generator {a}, it will
contain a, a ∗ a, a ∗ a ∗ a, and so on. Hence, it is usually not possible to saturate the type
side of an instance. So, the OPL tool saturates only the entity side of an instance, which
will often be �nite in practice. From the saturated entity side presentation and a set of re-
write rules for the collage, it is possible to construct a set of tables that faithfully represent
the instance. The tables for the entity side of the instance are simply a tabular rendering
of the �nite category corresponding to the saturated entity side of the instance's collage
(C in the preceding paragraph). The tables for the attributes of the instance must also
contain representatives of equivalence classes of terms, but unlike the entity side case,
where representatives are chosen based on size, it is less clear which representative to
choose. For example, there is an implicit preference to display 1,024 instead of 210, even
though the size (as de�ned in the previous footnote) of the former is greater than the
size of the latter. The OPL tool allows these representatives to be computed by external
programs, thereby providing a �hook� for the tool to interface with other programming
languages and systems. For example, users can provide a Java implementation of natural
numbers for the commutative ring type side used in this paper, and the java compiler
will normalize terms like 210 into 1024. By default, the OPL tool will display the normal
forms computed by the internal Knuth-Bendix theorem prover in the attribute tables.

To evaluate a query Q such as that in Example 9.5 on a presented instance I, we
�rst saturate the entity side of I as described in the preceding paragraph. Evaluation of
the query, ΓQ(I) as in Section 9.4, proceeds similarly to evaluation of `For-Where-Return'
queries in traditional SQL systems [AHV95]: �rst, we compute a (typically large) set of
tuples corresponding to the FOR clause by repeatedly looping through I. Then, we �lter

9For explanatory reasons these particular examples saturate a frozen instance associated with a query,
but the implementation does not need to saturate frozen instances to evaluate queries.

ALGEBRAIC DATABASES 615

this set of tuples by the WHERE clause; here we must be sure to decide equality of tuples
under the equational theory for I, using Knuth-Bendix as described above. Finally, we
project out certain components of these tuples, according to the RETURN clause. The
result of the query will be a saturated instance, which has a canonical presentation as in
Remark 6.15.

The OPL tool's tabular rendering of the instance from Example 6.3 is shown in Fig. 7.
Because a unary representation of the integers is computationally ine�cient, for expedi-
ency the employee salaries in the OPL program have been reduced compared to Exam-
ple 6.3. A more e�cient axiomatization of the integers, such as using binary, can also be
used.

A. Componentwise composition and exponentiation in Data

We de�ned composition of bimodules and 2-cells in (40) and (41) and exponentiation
of bimodules in Proposition 8.16. In Proposition 8.20 we saw that bimodules can be
equivalently de�ned in several components, separating the entity and type sides of the
structure. It is natural to ask what composition and exponentiation (and as special cases,
the data migration functors) look like in this decomposed view.

In fact, when �rst working out the ideas presented in this paper, we used component-
wise formulas to understand all the constructions. In writing it up, we decided that the
coend formulas were more succinct and often easier to work with; however, the machinery
below still turns out to be useful in certain cases, so we present it without proof for the
interested reader.

Recall the left tensor ⊗ de�ned in De�nition 3.11, which `preserves algebraicity' of
profunctors on the right.

A.1. Proposition. The composition M�N of two bimodules R
M

S
N

T in Data
(40) is equivalently given in components as follows: (M � N)e = Me � Ne in Prof , and
the rest of the components are given using a pushout, as in the following diagram in the
category [Rop

e ,Type-Alg]:

Ro Me ⊗ So Me ⊗Ne ⊗ To

Mt Me ⊗Nt

(M �N)t

Mr

(M�N)r

Mo

Me⊗Nr

p

Me⊗No

(M�N)o

This follows from the following lemma, which can be proven using Proposition 2.25:

616 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

A.2. Lemma. Let L : A0 A1, M : B0 B1, and N : C0 C1 be proarrows in an
equipment D with extensive collages and local �nite colimits. Let X ∈ LSimpM and Y ∈
MSimpN be simplices, and let P : L̃ M̃ and Q : M̃ Ñ be proarrows such that X ∼=
LResM(P) and Y ∼= MResN(Q) (see Section 2.22). Then the components of LResN(P�Q)
can be computed by pushout:

Xi,0 �M � Y1,j Xi,0 � Y0,j

Xi,1 � Y1,j îAi � (P �Q)� îCj
p

(51)

Moreover, the 2-cells of LResN(P �Q) are found using these pushouts in an evident way.

A.3. Proposition. The horizontal composition of 2-cells in Data

R S T

R′ S′ T′

M

F

N

G H

M′ N′

⇓θ ⇓φ

is given (Proposition 8.22) by (θ� φ)e = θe� φe, while (θ� φ)t is induced by the diagram

Mt Me ⊗ So Me ⊗Nt

F̂e ⊗M ′
t F̂e ⊗M ′

e ⊗ S ′o F̂e ⊗M ′
e ⊗N ′t

θt θe⊗Go

Mo Me⊗Nr

θe⊗φt

id⊗M ′o id⊗M ′e⊗N ′r

where (M �N)t and (M ′�N ′)t are the pushouts of the top and bottom rows respectively,
by Proposition A.1.

A.4. Proposition. Let N : S T and P : R T be bimodules. The bimodule N B
P : R S is given as follows: the entity component (N BP)e is computed by a pointwise
pullback, for any objects s ∈ Se, r ∈ Re,

(N B P)e(r, s) SetTe
(
Ne(s, �), Pe(r, �)

)

SetTe

(
Ne(s, �),Type-Alg

(
To(�), Pt(r)

))

Type-Alg
(
Nt(s), Pt(r)

)
Type-Alg

(
(Ne ⊗ To)(s), Pt(r)

)
.

y Po

∼=

No

Equivalently, (NBP)e(r, s) = T-Inst
(
N(s), P (r)

)
. The other components are (NBP)t =

Pt, (N B P)r = Pr, and (N B P)o is the composition

(N B P)e ⊗ So → Type-Alg
(
Nt(�), Pt(�)

)
⊗Nt → Pt.

ALGEBRAIC DATABASES 617

References

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995. isbn: 0-201-53771-0.

[AR94] Ji°í Adámek and Ji°í Rosický. Locally presentable and accessible categories.
London Mathematical Society Lecture Note Series 189. Cambridge University
Press, 1994. isbn: 0-521-42261-2.

[ARV11] J. Adámek, J. Rosický, and E. M. Vitale. Algebraic theories. Cambridge Tracts
in Mathematics 184. Cambridge University Press, 2011. isbn: 978-0-521-11922-
1.

[BDP89] L. Bachmair, N. Dershowitz, and D.A. Plaisted. �Completion Without Fail-
ure�. In: Resolution of Equations in Algebraic Structures - Rewriting Tech-
niques 2 (1989), pp. 1�30.

[Bén00] Jean Bénabou. �Distributors at work�. Lecture notes written by Thomas Stre-
icher. 2000. url: http://www.mathematik.tu-darmstadt.de/~streicher/
FIBR/DiWo.pdf.

[Bor94a] Francis Borceux. Handbook of categorical algebra. Vol. 1: Basic category the-
ory. 3 vols. Encyclopedia of Mathematics and its Applications 50. Cambridge
University Press, 1994. isbn: 0-521-44178-1.

[Bor94b] Francis Borceux. Handbook of categorical algebra. Vol. 2: Categories and struc-
tures. 3 vols. Encyclopedia of Mathematics and its Applications 51. Cambridge
University Press, 1994. isbn: 0-521-44178-1.

[BW85] Michael Barr and Charles Wells. Toposes, Triples and Theories. A Series of
Comprehensive Studies in Mathematics 278. Springer-Verlag, 1985. isbn: 0-
387-96115-1.

[DHI12] AnHai Doan, Alon Halevy, and Zachary Ives. Principles of Data Integration.
1st. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2012. isbn:
0124160441, 9780124160446.

[FGR03] Michael Fleming, Ryan Gunther, and Robert Rosebrugh. �A database of cat-
egories�. In: Journal of Symbolic Computation 35.2 (Feb. 2003), pp. 127�135.
issn: 0747-7171. doi: 10.1016/S0747-7171(02)00104-9.

[GP04] Marco Grandis and Robert Paré. �Adjoint for double categories�. In: Cahiers
de Topologie et Géométrie Di�érentielle Catégoriques 45.3 (2004), pp. 193�
240.

[GS15] Richard Garner and Michael Shulman. Enriched categories as a free cocom-
pletion. Nov. 2015. arXiv: 1301.3191v2 [math.CT].

[Hun04] Edward V. Huntington. �Sets of independent postulates for the algebra of
logic�. In: Transactions of the American Mathematical Society 5.3 (1904),
pp. 288�309. doi: 10.1090/s0002-9947-1904-1500675-4.

http://www.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf
http://www.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf
https://doi.org/10.1016/S0747-7171(02)00104-9
http://arxiv.org/abs/1301.3191v2
https://doi.org/10.1090/s0002-9947-1904-1500675-4

618 SCHULTZ, SPIVAK, VASILAKOPOULOU, WISNESKY

[Jac99] Bart Jacobs. Categorical logic and type theory. Vol. 141. Studies in Logic and
the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam,
1999, pp. xviii+760. isbn: 0-444-50170-3.

[JR02] Michael Johnson and Robert Rosebrugh. �Sketch Data Models, Relational
Schema and Data Speci�cations�. In: Electronic Notes in Theoretical Com-
puter Science 61 (2002). CATS'02, Computing: the Australasian Theory Sym-
posium, pp. 51�63. issn: 1571-0661.

[KB70] Donald Knuth and Peter Bendix. �Simple Word Problems in Universal Al-
gebra�. In: Computational Problems in Abstract Algebra. Ed. by John Leech.
Pergamon Press, 1970, pp. 263�297.

[Kel05] G. M. Kelly. �Basic concepts of enriched category theory�. In: Reprints in
Theory and Applications of Categories 10 (2005). url: http://www.tac.
mta.ca/tac/reprints/articles/10/tr10abs.html.

[Kel89] G.M. Kelly. �Elementary observations on 2-categorical limits�. In: Bulletin of
the Australian Mathematical Society 39.02 (Apr. 1989), pp. 301�317. issn:
1755-1633. doi: 10.1017/S0004972700002781.

[Lei04] Tom Leinster. Higher operads, higher categories. London Mathematical Society
Lecture Note Series 298. Cambridge University Press, Cambridge, 2004. isbn:
0-521-53215-9. doi: 10.1017/CBO9780511525896.

[Mac98] Saunders Mac Lane. Categories for the working mathematician. 2nd ed. Grad-
uate Texts in Mathematics 5. New York: Springer-Verlag, 1998. isbn: 0-387-
98403-8.

[Mar96] Claude Marché. �Normalized Rewriting: An Alternative to Rewriting Modulo
a Set of Equations�. In: Journal of Symbolic Computation 21.3 (Mar. 1996),
pp. 253�288. issn: 0747-7171. doi: 10.1006/jsco.1996.0011.

[Mat89] Hideyuki Matsumura. Commutative ring theory. Trans. from Japanese by M.
Reid. 2nd ed. Cambridge Studies in Advanced Mathematics 8. Cambridge
University Press, 1989. isbn: 0-521-36764-6.

[Mit96] John C. Mitchell. Foundations of Programming Languages. Cambridge, MA:
MIT Press, 1996. isbn: 0-262-13321-0.

[MS08] Katherine Munn and Barry Smith. Applied ontology: an introduction. Vol. 9.
Walter de Gruyter, 2008.

[nLab] Nerve and realization. url: http://ncatlab.org/nlab/show/nerve+and+
realization (visited on 01/19/2016).

[RW92] Robert Rosebrugh and R. J. Wood. �Relational Databases and Indexed Cat-
egories�. In: Canadian Mathematical Society Conference Procedings. Interna-
tional Summer Category Theory Meeting. (June 23�30, 1991). Ed. by R. A. G.
Seely. Vol. 13. American Mathematical Society, 1992, pp. 391�407.

http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html
http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html
https://doi.org/10.1017/S0004972700002781
https://doi.org/10.1017/CBO9780511525896
https://doi.org/10.1006/jsco.1996.0011
http://ncatlab.org/nlab/show/nerve+and+realization
http://ncatlab.org/nlab/show/nerve+and+realization

ALGEBRAIC DATABASES 619

[Sch15] Patrick Schultz. Regular and exact (virtual) double categories. 2015. arXiv:
1505.00712 [math.CT].

[Shu08] Michael Shulman. �Framed bicategories and monoidal �brations�. In: Theory
and Applications of Categories 20.18 (2008), pp. 650�738. arXiv: 0706.1286
[math.CT].

[Shu10] Michael Shulman. Constructing symmetric monoidal bicategories. 2010. arXiv:
1004.0993 [math.CT].

[Spi12] David I. Spivak. �Functorial data migration�. In: Information and Computa-
tion 127 (Aug. 2012), pp. 31�51. issn: 0890-5401. doi: 10.1016/j.ic.2012.
05.001. arXiv: 1009.1166v4 [cs.DB].

[SW15] David I. Spivak and Ryan Wisnesky. �Relational Foundations for Functorial
Data Migration�. In: Proceedings of the 15th Symposium on Database Pro-
gramming Languages. DBPL 2015. Pittsburgh, PA: ACM, 2015, pp. 21�28.
isbn: 978-1-4503-3902-5. doi: 10.1145/2815072.2815075.

[Web07] Mark Weber. �Familial 2-Functors and Parametric Right Adjoints�. In: Theory
and Applications of Categories 18.22 (2007), pp. 665�732.

[Wis+15] Ryan Wisnesky, David I. Spivak, Patrick Schultz, and Eswaran Subrahmanian.
Functorial Data Migration: From Theory to Practice. report G2015-1701. Na-
tional Institute of Standards and Technology, 2015. arXiv: 1502.05947v2.

[Woo82] R. J. Wood. �Abstract pro arrows I�. In: Cahiers de Topologie et Géométrie
Di�érentielle Catégoriques 23.3 (1982), pp. 279�290. issn: 0008-0004.

[Woo85] R. J. Wood. �Proarrows II�. In: Cahiers de Topologie et Géométrie Di�érent-
ielle Catégoriques 26.2 (1985), pp. 135�168.

Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139
Email: schultzp@mit.edu

dspivak@mit.edu,

cvasilak@mit.edu

ryan@catinf.com

This article may be accessed at http://www.tac.mta.ca/tac/

http://arxiv.org/abs/1505.00712
http://arxiv.org/abs/0706.1286
http://arxiv.org/abs/0706.1286
http://arxiv.org/abs/1004.0993
https://doi.org/10.1016/j.ic.2012.05.001
https://doi.org/10.1016/j.ic.2012.05.001
http://arxiv.org/abs/1009.1166v4
https://doi.org/10.1145/2815072.2815075
http://arxiv.org/abs/1502.05947v2

THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
signi�cantly advance the study of categorical algebra or methods, or that make signi�cant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scienti�c knowledge that make use of
categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both signi�cant and excellent are accepted
for publication.
Full text of the journal is freely available from the journal's server at http://www.tac.mta.ca/tac/. It
is archived electronically and in printed paper format.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For in-
stitutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

Information for authors The typesetting language of the journal is TEX, and LATEX2e is
required. Articles in PDF format may be submitted by e-mail directly to a Transmitting Editor. Please
obtain detailed information on submission format and style �les at http://www.tac.mta.ca/tac/.

Managing editor. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXnical editor. Michael Barr, McGill University: barr@math.mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin_seal@fastmail.fm

Transmitting editors.
Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
Richard Blute, Université d' Ottawa: rblute@uottawa.ca
Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown(at)btinternet.com
Valeria de Paiva: Nuance Communications Inc: valeria.depaiva@gmail.com
Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, Macquarie University: steve.lack@mq.edu.au
F. William Lawvere, State University of New York at Bu�alo: wlawvere@buffalo.edu
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Ieke Moerdijk, Utrecht University: i.moerdijk@uu.nl
Susan Nie�eld, Union College: niefiels@union.edu
Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stashe�, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: ross.street@mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Université du Québec à Montréal : tierney.myles4@gmail.com
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca

	Introduction
	Profunctors and proarrow equipments
	Algebraic theories
	Presentations and syntax
	Algebraic database schemas
	Algebraic database instances
	The fundamental data migration functors
	The double category S
	Queries and uber-queries
	Implementation
	Componentwise composition and exponentiation in Data

