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FROBENIUS ALGEBRAS AND HOMOTOPY FIXED POINTS OF
GROUP ACTIONS ON BICATEGORIES

JAN HESSE, CHRISTOPH SCHWEIGERT, AND ALESSANDRO VALENTINO

Abstract. We explicitly show that symmetric Frobenius structures on a �nite-di-
mensional, semi-simple algebra stand in bijection to homotopy �xed points of the trivial
SO(2)-action on the bicategory of �nite-dimensional, semi-simple algebras, bimodules
and intertwiners. The results are motivated by the 2-dimensional Cobordism Hypothesis
for oriented manifolds, and can hence be interpreted in the realm of Topological Quantum
Field Theory.

1. Introduction

While �xed points of a group action on a set form an ordinary subset, homotopy �xed
points of a group action on a category as considered in [Kir02, EGNO15] provide additional
structure.

In this paper, we take one more step on the categorical ladder by considering a topolog-
ical group G as a 3-group via its fundamental 2-groupoid. We provide a detailed de�nition
of an action of this 3-group on an arbitrary bicategory C, and construct the bicategory
of homotopy �xed points CG as a suitable limit of the action. Contrarily from the case
of ordinary �xed points of group actions on sets, the bicategory of homotopy �xed points
CG is strictly �larger� than the bicategory C. Hence, the usual �xed-point condition is
promoted from a property to a structure.

Our paper is motivated by the 2-dimensional Cobordism Hypothesis for oriented man-
ifolds: according to [Lur09b], 2-dimensional oriented fully-extended topological quantum
�eld theories are classi�ed by homotopy �xed points of an SO(2)-action on the core of
fully-dualizable objects of the symmetric monoidal target bicategory. In case the target
bicategory of a 2-dimensional oriented topological �eld theory is given by Alg2, the bicat-
egory of algebras, bimodules and intertwiners, it is claimed in [FHLT10, Example 2.13]
that the additional structure of a homotopy �xed point should be given by the structure
of a symmetric Frobenius algebra.

As argued in [Lur09b], the SO(2)-action on Alg2 should come from rotating the 2-
framings in the framed cobordism category. By [Dav11, Proposition 3.2.8], the induced
action on the core of fully-dualizable objects of Alg2 is actually trivializable. Hence,
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instead of considering the action coming from the framing, we may equivalently study the
trivial SO(2)-action on Algfd

2 .
Our main result, namely Theorem 4.1, computes the bicategory of homotopy �xed

points CSO(2) of the trivial SO(2)-action on an arbitrary bicategory C. It follows then
as a corollary that the bicategory (K (Algfd

2 ))SO(2) consisting of homotopy �xed points of
the trivial SO(2)-action on the core of fully-dualizable objects of Alg2 is equivalent to the
bicategory Frob of semisimple symmetric Frobenius algebras, compatible Morita contexts,
and intertwiners. This bicategory, or rather bigroupoid, classi�es 2-dimensional oriented
fully-extended topological quantum �eld theories, as shown in [SP09]. Thus, unlike �xed
points of the trivial action on a set, homotopy �xed-points of the trivial SO(2)-action
on Alg2 are actually interesting, and come equipped with the additional structure of a
symmetric Frobenius algebra.

If Vect2 is the bicategory of linear abelian categories, linear functors and natural
transformations, we show in corollary 4.8 that the bicategory (K (Vectfd

2 ))SO(2) given by
homotopy �xed points of the trivial SO(2)-action on the core of the fully dualizable objects
of Vect2 is equivalent to the bicategory of Calabi-Yau categories, which we introduce in
De�nition 4.6.

The two results above are actually intimately related to each other via natural consid-
erations from representation theory. Indeed, by assigning to a �nite-dimensional, semi-
simple algebra its category of �nitely-generated modules, we obtain a functor Rep :
K (Algfd

2 ) → K (Vectfd
2 ). This 2-functor turns out to be SO(2)-equivariant, and thus

induces a morphism on homotopy �xed point bicategories, which is moreover an equiv-
alence. More precisely, one can show that a symmetric Frobenius algebra is sent by the
induced functor to its category of representations equipped with the Calabi-Yau struc-
ture given by the composite of the Frobenius form and the Hattori-Stallings trace. These
results have appeared in [Hes16].

The present paper is organized as follows: we recall the concept of Morita contexts
between symmetric Frobenius algebras in section 2. Although most of the material has al-
ready appeared in [SP09], we give full de�nitions to mainly �x the notation. We give a very
explicit description of compatible Morita contexts between �nite-dimensional semi-simple
Frobenius algebras not present in [SP09], which will be needed to relate the bicategory
of symmetric Frobenius algebras and compatible Morita contexts to the bicategory of ho-
motopy �xed points of the trivial SO(2)-action. The expert reader might wish to at least
take notice of the notion of a compatible Morita context between symmetric Frobenius
algebras in de�nition 2.4 and the resulting bicategory Frob in de�nition 2.9.

In section 3, we recall the notion of a group action on a category and of its homotopy
�xed points, which has been named �equivariantization� in [EGNO15, Chapter 2.7]. By
categorifying this notion, we arrive at the de�nition of a group action on a bicategory and
its homotopy �xed points. This de�nition is formulated in the language of tricategories.
Since we prefer to work with bicategories, we explicitly spell out the de�nition in Remark
3.13.

In section 4, we compute the bicategory of homotopy �xed points of the trivial SO(2)-
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action on an arbitrary bicategory. Corollaries 4.3 and 4.8 then show equivalences of
bicategories

(K (Algfd
2 ))SO(2) ∼= Frob

(K (Vectfd
2 ))SO(2) ∼= CY

(1.1)

where CY is the bicategory of Calabi-Yau categories. We note that the bicategory Frob
has been proven to be equivalent [Dav11, Proposition 3.3.2] to a certain bicategory of 2-
functors. We clarify the relationship between this functor bicategory and the bicategory
of homotopy �xed points (K (Algfd

2 ))SO(2) in Remark 4.4.
Throughout the paper, we use the following conventions: all algebras considered will be

over an algebraically closed �eld K. All Frobenius algebras appearing will be symmetric.
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2. Frobenius algebras and Morita contexts

In this section we will recall some basic notions regarding Morita contexts, mostly with the
aim of setting up notations. We will mainly follow [SP09], though we point the reader to
Remark 2.5 for a slight di�erence in the statement of the compatibility condition between
Morita context and Frobenius forms.

2.1. Definition. Let A and B be two algebras. A Morita context M consists of a
quadruple M := (BMA, ANB, ε, η), where BMA is a (B,A)-bimodule, ANB is an (A,B)-
bimodule, and

ε : AN ⊗B MA → AAA

η : BBB → BM ⊗A NB

(2.1)

are isomorphisms of bimodules, so that the two diagrams

BM ⊗A NB ⊗B MA BM ⊗A AA

BB ⊗B MA BMA

idM⊗ε

η⊗idM (2.2)
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AN ⊗B M ⊗A NB AN ⊗B BB

AA⊗A NB ANB

ε⊗idN

idN⊗η
(2.3)

commute.

Note that Morita contexts are the adjoint 1-equivalences in the bicategory Alg2 of
algebras, bimodules and intertwiners. These form a category, where the morphisms are
given by the following:

2.2. Definition. Let M := (BMA, ANB, ε, η) and M′ := (BM
′
A, AN

′
B, ε

′, η′) be two
Morita contexts between two algebras A and B. A morphism of Morita contexts consists
of a morphism of (B,A)-bimodules f : M → M ′ and a morphism of (A,B)-bimodules
g : N → N ′, so that the two diagrams

BM ⊗A NB BM
′ ⊗A N ′B

B

f⊗g

η

η′

AN ⊗B MA AN
′ ⊗B M ′

A

A

g⊗f

ε

ε′

(2.4)

commute.

If the algebras in question have the additional structure of a symmetric Frobenius
form λ : A→ K, we would like to formulate a compatibility condition between the Morita
context and the Frobenius forms. We begin with the following two observations: if A is
an algebra, the map

A/[A,A]→ A⊗A⊗Aop A

[a] 7→ a⊗ 1
(2.5)

is an isomorphism of vector spaces, with inverse given by a ⊗ b 7→ [ab]. Furthermore, if
B is another algebra, and (BMA, ANB, ε, η) is a Morita context between A and B, there
is a canonical isomorphism of vector spaces

τ : (N ⊗B M)⊗A⊗Aop (N ⊗B M)→ (M ⊗A N)⊗B⊗Bop (M ⊗A N)

n⊗m⊗ n′ ⊗m′ 7→ m⊗ n′ ⊗m′ ⊗ n.
(2.6)

Using the results above, we can formulate a compatibility condition between Morita con-
text and Frobenius forms, as in the following lemma.

2.3. Lemma. Let A and B be two algebras, and let (BMA, ANB, ε, η) be a Morita context
between A and B. Then, there is a canonical isomorphism of vector spaces

f : A/[A,A]→ B/[B,B]

[a] 7→
∑
i,j

[
η−1(mj.a⊗ ni)

] (2.7)
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where ni and mj are de�ned by

ε−1(1A) =
∑
i,j

ni ⊗mj ∈ N ⊗B M. (2.8)

Proof. Consider the following chain of isomorphisms:

f : A/[A,A] ∼= A⊗A⊗Aop A (by equation 2.5)
∼= (N ⊗B M)⊗A⊗Aop (N ⊗B M) (using ε⊗ ε)
∼= (M ⊗A N)⊗B⊗Bop (M ⊗A N) (by equation 2.6)
∼= B ⊗B⊗Bop B (using η ⊗ η)
∼= B/[B,B] (by equation 2.5)

(2.9)

Chasing through those isomorphisms, we can see that the map f is given by

f([a]) =
∑
i,j

[
η−1(mj.a⊗ ni)

]
(2.10)

as claimed.

The isomorphism f described in Lemma 2.3 allows to introduce the following relevant
de�nition.

2.4. Definition. Let (A, λA) and (B, λB) be two symmetric Frobenius algebras, and let
(BMA, ANB, ε, η) be a Morita context between A and B. Since the Frobenius algebras are
symmetric, the Frobenius forms necessarily factor through A/[A,A] and B/[B,B]. We
call the Morita context compatible with the Frobenius forms, if the diagram

A/[A,A] B/[B,B]

K
λA

f

λB

(2.11)

commutes.

2.5. Remark. The de�nition of compatible Morita context of [SP09, De�nition 3.72]
requires another compatibility condition on the coproduct of the unit of the Frobenius
algebras. However, a calculation using proposition 2.8 shows that the condition of [SP09]
is already implied by our condition on Frobenius form of de�nition 2.4; thus the two
de�nitions of compatible Morita context do coincide.

For later use, we give a very explicit way of expressing the compatibility condition
between Morita context and Frobenius forms: if (A, λA) and (B, λB) are two �nite-
dimensional semi-simple symmetric Frobenius algebras over an algebraically closed �eld
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K, and (BMA, BNA, ε, η) is a Morita context between them, the algebras A and B are
isomorphic to direct sums of matrix algebras by Artin-Wedderburn:

A ∼=
r⊕
i=1

Mdi(K), and B ∼=
r⊕
j=1

Mnj(K). (2.12)

By Theorem 3.3.1 of [EGH+11], the simple modules (S1, . . . , Sr) of A and the simple
modules (T1, . . . , Tr) of B are given by Si := Kdi and Ti := Kni , and every module is a
direct sum of copies of those. Since simple �nite-dimensional representations of A⊗KB

op

are given by tensor products of simple representations of A and Bop by Theorem 3.10.2
of [EGH+11], the most general form of BMA and ANB is given by

BMA : =
r⊕

i,j=1

αij Ti ⊗K Sj

ANB : =
r⊕

k,l=1

βkl Sk ⊗K Tl

(2.13)

where αij and βkl are multiplicities. First, we show that the multiplicities are trivial:

2.6. Lemma. In the situation as above, the multiplicities are trivial after a possible re-
ordering of the simple modules: αij = δij = βij and the two bimodules M and N are
actually given by

BMA =
r⊕
i=1

Ti ⊗K Si

ANB =
r⊕
j=1

Sj ⊗K Tj.

(2.14)

Proof. Suppose for a contradiction that there is a term of the form (Ti ⊕ Tj) ⊗ Sk in
the direct sum decomposition of M . Let f : Ti → Tj be a non-trivial linear map, and
de�ne ϕ ∈ EndA((Ti ⊕ Tj)⊗ Sk) by setting ϕ((ti + tj)⊗ sk) := f(ti)⊗ sk. The A-module
map ϕ induces an A-module endomorphism on all of AMB by extending ϕ with zero on
the rest of the direct summands. Since EndA(BMA) ∼= B as algebras by Theorem 3.5 of
[Bas68], the endomorphism ϕ must come from left multiplication, which cannot be true
for an arbitrary linear map f . This shows that the bimodule M is given as claimed in
equation (2.14). The statement for the other bimodule N follows analogously.

Lemma 2.6 shows how the bimodules underlying a Morita context of semi-simple
algebras look like. Next, we consider the Frobenius structure.

2.7. Lemma. [Koc03, Lemma 2.2.11] Let (A, λ) be a symmetric Frobenius algebra. Then,
every other symmetric Frobenius form on A is given by multiplying the Frobenius form
with a central invertible element of A.
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By Lemma 2.7, we conclude that the Frobenius forms on the two semi-simple algebras
A and B are given by

λA =
r⊕
i=1

λAi trMdi
(K) and λB =

r⊕
i=1

λBi trMni (K) (2.15)

where λAi and λBi are non-zero scalars. We can now state the following proposition, which
will be used in the proof of corollary 4.3.

2.8. Proposition. Let (A, λA) and (B, λB) be two �nite-dimensional, semi-simple sym-
metric Frobenius algebras and suppose thatM := (M,N, ε, η) is a Morita context between
them. Let λAi and λBj be as in equation (2.15), and de�ne two invertible central elements

a : = (λA1 , . . . , λ
A
r ) ∈ Kr ∼= Z(A)

b : = (λB1 , . . . , λ
B
r ) ∈ Kr ∼= Z(B)

(2.16)

Then, the following are equivalent:

1. The Morita context M is compatible with the Frobenius forms in the sense of de�-
nition 2.4.

2. We have m.a = b.m for all m ∈ BMA and n.b−1 = a−1.n for all n ∈ ANB.

3. For every i = 1, . . . , r, we have that λAi = λBi .

Proof.With the form of M and N determined by equation (2.14), we see that the only
isomorphisms of bimodules ε : N ⊗B M → A and η : B → M ⊗A N must be given by
multiples of the identity matrix on each direct summand:

ε : N ⊗AM ∼=
r⊕
i=1

M(di × di,K)→
r⊕
i=1

M(di × di,K) = A

r∑
i=1

Mi 7→
r∑
i=1

εiMi

(2.17)

Similarly, η is given by

η : B =
r⊕
i=1

M(ni × ni,K) 7→M ⊗A B ∼=
r⊕
i=1

M(ni × ni,K)

r∑
i=1

Mi 7→
r∑
i=1

ηiMi

(2.18)

Here, εi and ηi are non-zero scalars. The condition that this data should be a Morita con-
text then demands that εi = ηi, as a short calculation in a basis con�rms. By calculating
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the action of the elements a and b de�ned above in a basis, we see that conditions (2) and
(3) of the above proposition are equivalent.

Next, we show that (1) and (3) are equivalent. In order to see when the Morita context
is compatible with the Frobenius forms, we calculate the map f : A/[A,A] → B/[B,B]
from equation (2.11). One way to do this is to notice that [A,A] consists precisely of
trace-zero matrices (cf. [AM57]); thus

A/[A,A]→ Kr

[A1 ⊕ A2 ⊕ · · · ⊕ Ar] 7→ (tr(A1), · · · , tr(Ar))
(2.19)

is an isomorphism of vector spaces. Using this identi�cation, we see that the map f is
given by

f : A/[A,A]→ B/[B,B]

[A1 ⊕ A2 ⊕ · · · ⊕ Ar] 7→
r⊕
i=1

trMdi
(Ai)

[
E

(ni×ni)
11

] (2.20)

Note that this map is independent of the scalars εi and ηi coming from the Morita context.
Now, the two Frobenius algebras A and B are Morita equivalent via a compatible Morita
context if and only if the diagram in equation (2.11) commutes. This is the case if and
only if λAi = λBi for all i, as a straightforward calculation in a basis shows.

Having established how compatible Morita contexts between semi-simple algebras over
an algebraic closed �eld look like, we arrive at following de�nition.

2.9. Definition. Let K be an algebraically closed �eld. Let Frob be the bicategory where

• objects are given by �nite-dimensional, semisimple, symmetric Frobenius K-algebras,

• 1-morphisms are given by compatible Morita contexts, as in de�nition 2.4,

• 2-morphisms are given by isomorphisms of Morita contexts.

Note that Frob has got the structure of a symmetric monoidal bigroupoid, where the
monoidal product is given by the tensor product over the ground �eld, which is the monoidal
unit.

The bicategory Frob will be relevant for the remainder of the paper, due to the fol-
lowing theorem.

2.10. Theorem. [Oriented version of the Cobordism Hypothesis, [SP09]] The weak 2-
functor

Fun⊗(Cobor

2,1,0,Alg2)→ Frob

Z 7→ Z(+)
(2.21)

is an equivalence of bicategories.
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3. Group actions on bicategories and their homotopy �xed points

For a group G, we denote with BG the category with one object and G as morphisms.
Similarly, if C is a monoidal category, BC will denote the bicategory with one object and
C as endomorphism category of this object. Furthermore, we denote by G the discrete
monoidal category associated to G, i.e. the category with the elements of G as objects,
only identity morphisms, and monoidal product given by group multiplication.

Recall that an action of a group G on a set X is a group homomorphism ρ : G →
Aut(X). The set of �xed points XG is then de�ned as the set of all elements of X which
are invariant under the action. In equivalent, but more categorical terms, a G-action on
a set X can be de�ned to be a functor ρ : BG → Set which sends the one object of the
category BG to the set X.

If ∆ : BG→ Set is the constant functor sending the one object of BG to the set with
one element, one can check that the set of �xed points XG stands in bijection to the set
of natural transformations from the constant functor ∆ to ρ, which is exactly the limit of
the functor ρ. Thus, we have bijections of sets

XG ∼= lim
∗//G

ρ ∼= Nat(∆, ρ). (3.1)

3.1. Remark. A further equivalent way of providing a G-action on a set X is by giving
a monoidal functor ρ : G → Aut(X), where we regard both G and Aut(X) as categories
with only identity morphisms. This de�nition however does not allow us to express the
set of homotopy �xed points in a nice categorical way as in equation (3.1), and thus turns
out to be less useful for our purposes.

Categorifying the notion of a G-action on a set yields the de�nition of a discrete group
acting on a category:

3.2. Definition. Let G be a discrete group and let C be a category. Let BG be the 2-
category with one object and G as the category of endomorphisms of the single object. A
G-action on C is de�ned to be a weak 2-functor ρ : BG→ Cat with ρ(∗) = C.

Note that just as in remark 3.1, we could have avoided the language of 2-categories
and have de�ned a G-action on a category C to be a monoidal functor ρ : G→ Aut(C).

Next, we would like to de�ne the homotopy �xed point category of this action to be
a suitable limit of the action, just as in equation (3.1). The appropriate notion of a limit
of a weak 2-functor with values in a bicategory appears in the literature as a pseudo-limit
or indexed limit, which we will simply denote by lim. We will only consider limits indexed
by the constant functor. For background, we refer the reader to [Lac10], [Kel89], [Str80]
and [Str87].

We are now in the position to introduce the following de�nition:

3.3. Definition. Let G be a discrete group, let C be a category, and let ρ : BG → Cat
be a G-action on C. Then, the category of homotopy �xed points CG is de�ned to be the
pseudo-limit of ρ.
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Just as in the 1-categorical case in equation (3.1), it is shown in [Kel89] that the limit
of any weak 2-functor with values in Cat is equivalent to the category of pseudo-natural
transformations and modi�cations Nat(∆, ρ) . Hence, we have an equivalence of categories

CG ∼= lim ρ ∼= Nat(∆, ρ). (3.2)

Here, ∆ : BG→ Cat is the constant functor sending the one object of BG to the terminal
category with one object and only the identity morphism. By spelling out de�nitions, one
sees:

3.4. Remark. Let ρ : BG → Cat be a G-action on a category C, and suppose that
ρ(e) = idC, i.e. the action respects the unit strictly. Then, the homotopy �xed point
category CG is equivalent to the �equivariantization� introduced in [EGNO15, De�nition
2.7.2].

3.5. G-actions on bicategories. Next, we would like to step up the categorical ladder
once more, and de�ne an action of a group G on a bicategory. Moreover, we would also
like to account for the case where our group is equipped with a topology. This will be
done by considering the fundamental 2-groupoid of G, referring the reader to [HKK01]
for additional details.

3.6. Definition. Let G be a topological group. The fundamental 2-groupoid of G is the
monoidal bicategory Π2(G) where

• objects are given by points of G,

• 1-morphisms are given by paths between points,

• 2-morphisms are given by homotopy classes of homotopies between paths, called 2-
tracks.

The monoidal product of Π2(G) is given by the group multiplication on objects, by pointwise
multiplication of paths on 1-morphisms, and by pointwise multiplication of 2-tracks on 2-
morphisms. Notice that this monoidal product is associative on the nose, and all other
monoidal structure like associators and unitors can be chosen to be trivial.

We are now ready to give a de�nition of a G-action on a bicategory. Although the
de�nition we give uses the language of tricategories as de�ned in [GPS95] or [Gur07], we
provide a bicategorical description in Remark 3.9.

3.7. Definition. Let G be a topological group, and let C be a bicategory. A G-action on
C is de�ned to be a trifunctor

ρ : BΠ2(G)→ Bicat (3.3)

with ρ(∗) = C. Here, BΠ2(G) is the tricategory with one object and with Π2(G) as
endomorphism-bicategory, and Bicat is the tricategory of bicategories.
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3.8. Remark. If C is a bicategory, let Aut(C) be the bicategory consisting of auto-
equivalences of bicategories of C, pseudo-natural isomorphisms and invertible modi�ca-
tions. Observe that Aut(C) has the structure of a monoidal bicategory, where the monoidal
product is given by composition. Since there are two ways to de�ne the horizontal compo-
sition of pseudo-natural transformation, which are not equal to each other, there are actu-
ally two monoidal structures on Aut(C). It turns out that these two monoidal structures
are equivalent; see [GPS95, Section 5] for a discussion in the language of tricategories.

With either monoidal structure of Aut(C) chosen, note that as in Remark 3.1 we could
equivalently have de�ned a G-action on a bicategory C to be a weak monoidal 2-functor
ρ : Π2(G)→ Aut(C).

Since we will only consider trivial actions in this paper, the hasty reader may wish to
skip the next remark, in which the de�nition of a G-action on a bicategory is unpacked.
We will, however use the notation introduced here in our explicit description of homotopy
�xed points in remark 3.13.

3.9. Remark. [Unpacking De�nition 3.7] Unpacking the de�nition of a weak monoidal
2-functor ρ : Π2(G)→ Aut(C), as for instance in [SP09, De�nition 2.5], or equivalently of
a trifunctor ρ : BΠ2(G)→ Bicat, as in [GPS95, De�nition 3.1], shows that a G-action on
a bicategory C consists of the following data and conditions:

• For each group element g ∈ G, an equivalence of bicategories Fg := ρ(g) : C → C,

• For each path γ : g → h between two group elements, the action assigns a pseudo-
natural isomorphism ρ(γ) : Fg → Fh,

• For each 2-track m : γ → γ′, the action assigns an invertible modi�cation ρ(m) :
ρ(γ)→ ρ(γ′).

• There is additional data making ρ into a weak 2-functor, namely: if γ1 : g → h and
γ2 : h→ k are paths in G, we obtain invertible modi�cations

φγ2γ1 : ρ(γ2) ◦ ρ(γ1)→ ρ(γ2 ◦ γ1) (3.4)

• Furthermore, for every g ∈ G there is an invertible modi�cation φg : idFg → ρ(idg)
between the identity endotransformation on Fg and the value of ρ on the constant
path idg.

There are three compatibility conditions for this data: one condition making φγ2,γ1

compatible with the associators of Π2(G) and Aut(C), and two conditions with
respect to the left and right unitors of Π2(G) and Aut(C).

• Finally, there are data and conditions for ρ to be monoidal. These are:

� A pseudo-natural isomorphism

χ : ρ(g)⊗ ρ(h)→ ρ(g ⊗ h) (3.5)
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� A pseudo-natural isomorphism

ι : idC → Fe (3.6)

� For each triple (g, h, k) of group elements, an invertible modi�cation ωghk in
the diagram

Fg ⊗ Fh ⊗ Fk Fgh ⊗ Fk

Fg ⊗ Fhk Fghk

χgh⊗id

id⊗χhk χgh,k
ωghk

χg,hk

(3.7)

� An invertible modi�cation γ in the triangle below

Fe ⊗ Fg

idC ⊗ Fg Fg

χe,gι⊗id

idFg

γ
(3.8)

� Another invertible modi�cation δ in the triangle

Fg ⊗ Fe

Fg ⊗ idC Fg

χg,eid⊗ι

idFg

δ
(3.9)

The data (ρ, χ, ι, ω, γ, δ) then has to obey equations (HTA1) and (HTA2) in [GPS95, p.
17].

Just as in the case of a group action on a set and a group action on a category, we would
like to de�ne the bicategory of homotopy �xed points of a group action on a bicategory as
a suitable limit. However, the theory of trilimits is not very well established. Therefore
we will take the description of homotopy �xed points as natural transformations as in
equation (3.1) as a de�nition, and de�ne homotopy �xed points of a group action on
a bicategory as the bicategory of pseudo-natural transformations between the constant
functor and the action.

3.10. Definition. Let G be a topological group and C a bicategory. Let

ρ : BΠ2(G)→ Bicat (3.10)

be a G-action on C. The bicategory of homotopy �xed points CG is de�ned to be

CG := Nat(∆, ρ) (3.11)
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Here, ∆ is the constant functor which sends the one object of BΠ2(G) to the terminal bi-
category with one object, only the identity 1-morphism and only identity 2-morphism. The
bicategory Nat(∆, ρ) then has objects given by tritransformations ∆ → ρ, 1-morphisms
are given by modi�cations, and 2-morphisms are given by perturbations.

3.11. Remark. The notion of the �equivariantization� of a strict 2-monad on a 2-category
has already appeared in [MN14, Section 6.1]. Note that de�nition 3.10 is more general
than the de�nition of [MN14], in which some modi�cations have been assumed to be
trivial.

3.12. Remark. In principle, even higher-categorical de�nitions are possible: for instance
in [FV15] a homotopy �xed point of a higher character ρ of an ∞-group is de�ned to be
a (lax) morphism of ∞-functors ∆→ ρ.

3.13. Remark. [Unpacking objects of CG] Since unpacking the de�nition of homotopy
�xed points is not entirely trivial, we spell it out explicitly in the subsequent remarks,
following [GPS95, De�nition 3.3]. In the language of bicategories, a homotopy �xed point
consists of:

• an object c of C,

• a pseudo-natural equivalence

Π2(G) C

∆c

evc ◦ρ

Θ (3.12)

where ∆c is the constant functor which sends every object to c ∈ C, and evc is the
evaluation at the object c. In components, the pseudo-natural transformation Θ
consists of the following:

� for every group element g ∈ G, a 1-equivalence in C

Θg : c→ Fg(c) (3.13)

� and for each path γ : g → h, an invertible 2-morphism Θγ in the diagram

c Fg(c)

c Fh(c)

Θg

idc ρ(γ)c
Θγ

Θh

(3.14)

which is natural with respect to 2-tracks.
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• an invertible modi�cation Π in the diagram

Π2(G)× Π2(G) C

Aut(C)× C

Aut(C)× Aut(C)

Π2(G) Aut(C)

∆c

⊗

ρ×∆c

ρ×ρ

ev

⊗

id×evc

χ

ρ

evc

Θ×1

1×Θ

∼=

ΠΠ

Π2(G)× Π2(G) C

Π2(G) Aut(C)

∆c

⊗

ρ

∆c evc
Θ

∼=

(3.15)

which in components means that for every tuple of group elements (g, h) we have
an invertible 2-morphism Πgh in the diagram

c Fg(c) Fg(Fh(c)) Fgh(c)
Θg

Θgh

Fg(Θh)

Πgh

χcgh
(3.16)
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• for the unital structure, another invertible modi�cation M , which only has the
component given in the diagram

c Fe(c)

Θe

ιc

M (3.17)

with ι as in equation (3.6). The data (c,Θ,Π,M) of a homotopy �xed point then has to
obey the following three conditions. Using the equation in [GPS95, p.21-22] we �nd the
condition

FxFy c FxFyFz c

Fx c Fxy c FxyFz c

c Fxyz c

FxFy(Θz)

∼=
χcxy χ

Fz(c)
xyFx(Θy)

Fxy(Θz)

χxy,zΘxy

Θxyz

Θx

Πxy

Πxy,z

=

FxFy c FxFyFz c

Fx c FxFyz c FxyFz c

c Fxyz c

FxFy(Θz)

χ
Fz(c)
xy

Fx(χcyz)

Fx(Θy)

Fx(Θyz)

χcx,yz

χxy,z

ωxyz

Θxyz

Θx

Πx,yz

Fx(Πyz)

(3.18)
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whereas the equation on p.23 of [GPS95] demands that we have

Fe c FeFx c

c Fx c Fx c

Fe(Θx)

χex

Θx

Θe
Θx

idFx(c)

Πex

∼=

=

Fe c FeFx c

c Fx c Fx c

Fe(Θx)

∼=
χex

Θx

Θe

ιc

idFx(c)

ιFx(c)

γ
M

(3.19)

and �nally the equation on p.25 of [GPS95] demands that

Fx c FxFe c

c Fx c

Fx(Θe)

χxeΘx

Θx

Πxe =

Fx c FxFe c

c Fx c

Fx(Θe)

Fx(ιc)

idFx(c) χxeΘx

Θx

Fx(M)

∼=

δ−1 (3.20)

3.14. Remark. Suppose that (c,Θ,Π,M) and (c′,Θ′,Π′,M ′) are homotopy �xed points.
A 1-morphism between these homotopy �xed points consists of a trimodi�cation. In
detail, this means:
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• A 1-morphism f : c→ c′,

• An invertible modi�cation m in the diagram

Π2(G) C

∆c

evc ◦ρ

evc′ ◦ρ

Θ

evf ∗id

mm Π2(G) C

∆c

∆c′

evc′ ◦ρ

∆f

Θ′

(3.21)
In components, mg is given by

c Fg(c)

c′ Fg(c
′)

Θg

f Fg(f)
mg

Θ′g

(3.22)

The data (f,m) of a 1-morphism of homotopy �xed points has to satisfy the following
two equations as on p.25 and p. 26 of [GPS95]:
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c Fg(c) Fg(Fh(c)) Fgh(c)

c′ Fgh(c
′)

Θg

f
Θgh

Fg(Θh)

Πgh

χcgh

Fgh(f)

Θ′gh

mgh

=

c Fg(c) Fg(Fh(c)) Fgh(c)

Fg(c
′) Fg(Fh(c

′))

c′ Fgh(c
′)

Θg

f

Fg(f)

Fg(Θh)

Fg(mh)
Fg(Fh(f))

χcgh

Fgh(f)
Fg(Θ′h)mg

χc
′
gh

∼=

Θ′gh

Θ′g
Π′gh

(3.23)

whereas the second equation reads

c Fe(c)

c′ Fe(c
′)

ιc

Θe

f
ιf

Fe(f)

ιc′

M

=

c Fe(c)

c′ Fe(c
′)

Θe

f Fe(f)
me

ιc′

Θ′e

M ′

(3.24)

3.15. Remark. The condition saying that m, as introduced in equation (3.21), is a
modi�cation will be vital for the proof of Theorem 4.1 and states that for every path
γ : g → h in G, we must have the following equality of 2-morphisms in the two diagrams:
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c Fg(c) Fg(c
′) Fh(c

′)

c′ c′

c c′

idc

f

Θg

mg

Fg(f)

Θ′γ

ρ(γ)c
′

idc′

Θ′g

Θ′h

f

Θ′h∼=

=

c Fg(c) Fg(c
′) Fh(c

′)

Fh(c)

c c′

idc

Θg

ρ(γ)c

Fg(f)

ρ(γ)−1
f

ρ(γ)c
′

Θγ
Fh(f)

mh

f

Θh
Θ′h

(3.25)

Next, we come to 2-morphisms of the bicategory CG of homotopy �xed points:

3.16. Remark. Let (f,m), (ξ, n) : (c,Θ,Π,M)→ (c′,Θ′,Π′,M ′) be two 1-morphisms of
homotopy �xed points. A 2-morphism of homotopy �xed points consists of a perturbation
between those trimodi�cations. In detail, a 2-morphism of homotopy �xed points consists
of a 2-morphism α : f → ξ in C, so that

c Fg(c)

c′ Fg(c
′)

Θg

fξ α Fg(f)
mg

Θ′g

=

c Fg(c)

c′ Fg(c
′)

Θg

ξ Fg(ξ) Fg(f)
ng

Θ′g

Fg(α)
(3.26)

Let us give an example of a group action on bicategories and its homotopy �xed points:
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3.17. Example. Let G be a discrete group, and let C be any bicategory. Suppose ρ :
Π2(G) → Aut(C) is the trivial G-action. Then, by remark 3.13 a homotopy �xed point,
i.e. an object of CG consists of

• an object c of C,

• a 1-equivalence Θg : c→ c for every g ∈ G,

• a 2-isomorphism Πgh : Θh ◦Θg → Θgh,

• a 2-isomorphism M : Θe → idc.

This is exactly the same data as a functor BG→ C, where BG is the bicategory with one
object, G as morphisms, and only identity 2-morphisms. Extending this analysis to 1- and
2-morphisms of homotopy �xed points shows that we have an equivalence of bicategories

CG ∼= Fun(BG, C). (3.27)

When one specializes to C = Vect2, the functor bicategory Fun(BG, C) is also known
as Rep2(G), the bicategory of 2-representations of G. Thus, we have an equivalence of
bicategories VectG2

∼= Rep2(G). This result generalizes the 1-categorical statement that the
homotopy �xed point 1-category of the trivial G-action on Vect is equivalent to Rep(G),
cf. [EGNO15, Example 4.15.2].

4. Homotopy �xed points of the trivial SO(2)-action

We are now in the position to state and prove the main result of the present paper.
Applying the description of homotopy �xed points in Remark 3.13 to the trivial action of
the topological group SO(2) on an arbitrary bicategory yields Theorem 4.1. Specifying
the bicategory in question to be the core of the fully-dualizable objects of the Morita-
bicategory Alg2 then shows in corollary 4.3 that homotopy �xed points of the trivial
SO(2)-action on K (Algfd

2 ) are given by symmetric, semi-simple Frobenius algebras.

4.1. Theorem. Let C be a bicategory, and let ρ : Π2(SO(2)) → Aut(C) be the trivial
SO(2)-action on C. Then, the bicategory of homotopy �xed points CSO(2) is equivalent to
the bicategory where

• objects are given by pairs (c, λ) where c is an object of C, and λ : idc → idc is a
2-isomorphism,

• 1-morphisms (c, λ) → (c′, λ′) are given by 1-morphisms f : c → c′ in C, so that the
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diagram of 2-morphisms

f f ◦ idc f ◦ idc

idc′ ◦ f idc′ ◦ f f

∼

∼

idf∗λ

∼

λ′∗idf ∼

(4.1)

commutes, where ∗ denotes horizontal composition of 2-morphisms. The unlabeled
arrows are induced by the canonical coherence isomorphisms of C.

• 2-morphisms of CG are given by 2-morphisms α : f → f ′ in C.

Proof. First, notice that we do not require any conditions on the 2-morphisms of CSO(2).
This is due to the fact that the action is trivial, and that π2(SO(2)) = 0. Hence, all nat-
urality conditions with respect to 2-morphisms in Π2(SO(2)) are automatically ful�lled.

To start, we observe that the fundamental 2-groupoid Π2(SO(2)) is equivalent to the
bicategory consisting of only one object, Z worth of morphisms, and only identity 2-
morphisms which we denote by BZ. Thus, it su�ces to consider the homotopy �xed
point bicategory of the trivial action BZ → Aut(C). In this case, the de�nition of a
homotopy �xed point as in 3.10 reduces to

• An object c of C,

• A 1-equivalence Θ := Θ∗ : c→ c,

• For every n ∈ Z, an invertible 2-morphism Θn : idc ◦ Θ → Θ ◦ idc. Since Θ is
a pseudo-natural transformation, it is compatible with respect to composition of
1-morphisms in BZ. Therefore, Θn+m is fully determined by Θn and Θm, cf. [SP09,
Figure A.1] for the relevant commuting diagram. Thus, it su�ces to specify Θ1.

By using the canonical coherence isomorphisms of C, we see that instead of giving
Θ1, we can equivalently specify an invertible 2-morphism

λ̃ : Θ→ Θ. (4.2)

which will be used below.

• A 2-isomorphism
idc ◦Θ ◦Θ→ Θ (4.3)

which is equivalent to giving a 2-isomorphism

Π : Θ ◦Θ→ Θ. (4.4)

• A 2-isomorphism
M : Θ→ idc. (4.5)
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Note that equivalently to the 2-isomorphism λ̃, one can specify an invertible 2-isomorphism

λ : idc → idc (4.6)

where
λ := M ◦ λ̃ ◦M−1. (4.7)

with M as in equation (4.5). This data has to satisfy the following three equations:
Equation (3.18) says that we must have

Π ◦ (idΘ ∗ Π) = Π ◦ (Π ∗ idΘ) (4.8)

whereas equation (3.19) demands that Π equals the composition

Θ ◦Θ
idΘ∗M−−−−→ Θ ◦ idc ∼= Θ (4.9)

and �nally equation (3.20) tells us that Π must also be equal to the composition

Θ ◦Θ
M∗idΘ−−−−→ idc ◦Θ ∼= Θ. (4.10)

Hence Π is fully speci�ed by M . An explicit calculation using the two equations above
then con�rms that equation (4.8) is automatically ful�lled. Indeed, by composing with
Π−1 from the right, it su�ces to show that idΘ ∗Π = Π ∗ idΘ. Suppose for simplicity that
C is a strict 2-category. Then,

idΘ ∗ Π = idΘ ∗ (M ∗ idΘ) by equation (4.10)

= (idΘ ∗M) ∗ idΘ

= Π ∗ idΘ by equation (4.9)

(4.11)

Adding appropriate associators shows that this is true in a general bicategory.
If (c,Θ, λ,Π,M) and (c′,Θ′, λ′,Π′,M ′) are two homotopy �xed points, the de�nition

of a 1-morphism of homotopy �xed points reduces to

• A 1-morphism f : c→ c′ in C,

• A 2-isomorphism m : f ◦Θ→ Θ′ ◦ f in C

satisfying two equations. The condition due to equation (3.24) demands that the following
isomorphism

f ◦Θ
idf∗M−−−→ f ◦ idc ∼= f (4.12)

is equal to the isomorphism

f ◦Θ
m−→ Θ′ ◦ f

M ′∗idf−−−−→ idc′ ◦ f ∼= f (4.13)
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and thus is equivalent to the equation

m =

(
f ◦Θ

idf∗M−−−→ f ◦ idc ∼= f ∼= idc′ ◦ f
M ′−1∗idf−−−−−→ Θ′ ◦ f

)
. (4.14)

Thus, m is fully determined by M and M ′. The condition due to equation (3.23) reads

m ◦ (idf ∗ Π) = (Π′ ∗ idf ) ◦ (idΘ′ ∗m) ◦ (m ∗ idΘ) (4.15)

and is automatically satis�ed, as an explicit calculation con�rms. Indeed, if C is a strict
2-category we have that

(Π′ ∗ idf ) ◦ (idΘ′ ∗m) ◦ (m ∗ idΘ)

= (Π′ ∗ idf ) ◦
[
idΘ′ ∗ (M ′−1 ∗ idf ◦ idf ∗M)

]
◦
[
(M ′−1 ∗ idf ◦ idf ∗M) ∗ idΘ

]
= (Π′ ∗ idf ) ◦ (idΘ′ ∗M ′−1 ∗ idf ) ◦ (idΘ′ ∗ idf ∗M)

◦ (M ′−1 ∗ idf ∗ idΘ) ◦ (idf ∗M ∗ idΘ)

= (Π′ ∗ idf ) ◦ (Π′
−1 ∗ idf ) ◦ (idΘ′ ∗ idf ∗M) ◦ (M ′−1 ∗ idf ∗ idΘ) ◦ (idf ∗ Π)

= (idΘ′ ∗ idf ∗M) ◦ (M ′−1 ∗ idf ∗ idΘ) ◦ (idf ∗ Π)

= (M−1 ∗ idf ) ◦ (idf ∗M) ◦ (idf ∗ Π)

= m ◦ (idf ∗ Π)

as desired. Here, we have used equation (4.14) in the �rst and last line, and equations (4.9)
and (4.10) in the third line. Adding associators shows this for an arbitrary bicategory.

The condition that m is a modi�cation as spelled out in equation (3.25) demands that

(λ̃′ ∗ idf ) ◦m = m ◦ (idf ∗ λ̃) (4.16)

as equality of 2-morphisms between the two 1-morphisms

f ◦Θ→ Θ′ ◦ f. (4.17)

Using equation (4.14) and replacing λ̃ by λ as in equation (4.7), we see that this require-
ment is equivalent to the commutativity of diagram (4.1).

If (f,m) and (g, n) are two 1-morphisms of homotopy �xed points, a 2-morphism of
homotopy �xed points consists of a 2-morphisms α : f → g. The condition coming from
equation (3.26) then demands that the diagram

f ◦Θ Θ′ ◦ f

g ◦Θ Θ′ ◦ g

m

α∗idΘ idΘ′∗α

n

(4.18)
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commutes. Using the fact that both m and n are uniquely speci�ed by M and M ′, one
quickly con�rms that the diagram commutes automatically.

Our analysis shows that the forgetful functor U which forgets the data M , Θ and
Π on objects, which forgets the data m on 1-morphisms, and which is the identity on
2-morphisms is an equivalence of bicategories. Indeed, let (c, λ) be an object in the
stricti�ed homotopy �xed point bicategory. Choose Θ := idc, M := idΘ and Π as in
equation (4.9). Then, U(c,Θ,M,Π, λ) = (c, λ). This shows that the forgetful functor is
essentially surjective on objects. Since m is fully determined by M and M ′, it is clear
that the forgetful functor is essentially surjective on 1-morphisms. Since (4.18) commutes
automatically, the forgetful functor is bijective on 2-morphisms and thus an equivalence
of bicategories.

In the following, we specialise Theorem 4.1 to the case of symmetric Frobenius algebras
and Calabi-Yau categories.

4.2. Symmetric Frobenius algebras as homotopy fixed points. In order to
state the next corollary, recall that the fully-dualizable objects of the Morita bicategory
Alg2 consisting of algebras, bimodules and intertwiners are precisely given by the �nite-
dimensional, semi-simple algebras [SP09]. Furthermore, recall that the core K (C) of a
bicategory C consists of all objects of C, the 1-morphisms are given by 1-equivalences of
C, and the 2-morphisms are restricted to be isomorphisms.

4.3. Corollary. Suppose C = K (Algfd
2 ), and consider the trivial SO(2)-action on C.

Then CSO(2) is equivalent to the bicategory of �nite-dimensional, semi-simple symmet-
ric Frobenius algebras Frob, as de�ned in de�nition 2.9. This implies a bijection of
isomorphism-classes of symmetric, semi-simple Frobenius algebras and homotopy �xed
points of the trivial SO(2)-action on K (Algfd

2 ).

Proof. Indeed, by Theorem 4.1, an object of CSO(2) is given by a �nite-dimensional
semisimple algebra A, together with an isomorphism of Morita contexts idA → idA. By
de�nition, a morphism of Morita contexts consists of two intertwiners of (A,A)-bimodules
λ1, λ2 : A → A. The diagrams in de�nition 2.2 then require that λ1 = λ−1

2 . Thus, λ2 is
fully determined by λ1. Let λ := λ1. Since λ is an automorphism of (A,A)-bimodules,
it is fully determined by λ(1A) ∈ Z(A). This gives A, by Lemma 2.7, the structure of a
symmetric Frobenius algebra.

We analyze the 1-morphisms of CSO(2) in a similar way: if (A, λ) and (A′, λ′) are �nite-
dimensional semi-simple symmetric Frobenius algebras, a 1-morphism in CSO(2) consists
of a Morita contextM : A→ A′ so that (4.1) commutes.

Suppose that M = (A′MA, ANA′ , ε, η) is a Morita context, and let a := λ(1A) and
a′ := λ′(1A′). Then, the condition that (4.1) commutes demands that

m.a = a′.m

a−1.n = n.a′
−1 (4.19)

for every m ∈M and every n ∈ N . By proposition 2.8 this condition is equivalent to the
fact that the Morita context is compatible with the Frobenius forms as in de�nition 2.4.
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It follows that the 2-morphisms of CSO(2) and Frob are equal to each other, proving
the result.

4.4. Remark. In [Dav11, Proposition 3.3.2], the bigroupoid Frob of corollary 4.3 is shown
to be equivalent to the bicategory of 2-functors Fun(B2Z,K (Algfd

2 )). Assuming a homo-
topy hypothesis for bigroupoids, as well as an equivariant homotopy hypothesis in a
bicategorical framework, this bicategory of functors should agree with the bicategory of
homotopy �xed points of the trivial SO(2)-action on K (Algfd

2 ) in corollary 4.3. Con-
cretely, one might envision the following strategy for an alternative proof of corollary 4.3,
which should roughly go as follows:

1. By [Dav11, Proposition 3.3.2], there is an equivalence of bigroupoids

Frob ∼= Fun(B2Z,K (Algfd
2 )).

2. Then, use the homotopy hypothesis for bigroupoids. By this, we mean that the
fundamental 2-groupoid should induce an equivalence of tricategories

Π2 : Top≤2 → BiGrp . (4.20)

Here, the right hand-side is the tricategory of bigroupoids, whereas the left hand
side is a suitable tricategory of 2-types. Such an equivalence of tricategories induces
an equivalence of bicategories

Fun(B2Z,K (Algfd
2 )) ∼= Π2(Hom(BSO(2), X)), (4.21)

where X is a 2-type representing the bigroupoid K (Algfd
2 ).

3. Now, consider the trivial homotopy SO(2)-action on the 2-type X. Using the fact
that we work with the trivial SO(2)-action, we obtain a homotopy equivalence
Hom(BSO(2), X) ∼= XhSO(2), cf. [Dav11, Page 50].

4. In order to identify the 2-type XhSO(2) with our de�nition of homotopy �xed points,
we additionally need an equivariant homotopy hypothesis: namely, we need to use
that a homotopy action of a topological group G on a 2-type Y is equivalent to a
G-action on the bicategory Π2(Y ) as in de�nition 3.7 of the present paper. Further-
more, we also need to assume that the fundamental 2-groupoid is G-equivariant,
namely that there is an equivalence of bicategories Π2(Y hG) ∼= Π2(Y )G. Using this
equivariant homotopy hypothesis for the trivial SO(2)-action on the 2-type X then
should give an equivalence of bicategories

Π2(XhSO(2)) ∼= Π2(X)SO(2) ∼= (K (Algfd
2 ))SO(2). (4.22)

Combining all four steps gives an equivalence of bicategories between the bigroupoid of
Frobenius algebras and homotopy �xed points:

Frob ∼=
(1)

Fun(B2Z,K (Algfd
2 )) ∼=

(2)
Π2(Hom(BSO(2), X)) ∼=

(3)
Π2(XhSO(2)) ∼=

(4)
(K (Algfd

2 ))SO(2).
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In order to turn this argument into a full proof, we would need to provide a proof of
the homotopy hypothesis for bigroupoids in equation (4.20), as well as a proof for the
equivariant homotopy hypothesis in equation (4.22). While the homotopy hypothesis
as formulated in equation (4.20) is widely believed to be true, we are not aware of a
proof of this statement in the literature. A step in this direction is [MS93], which proves
that the homotopy categories of 2-types and 2-groupoids are equivalent. We however
really need the full tricategorical version of this statement as in equation (4.20), since we
need to identify the (higher) morphisms in BiGrp with (higher) homotopies. Notice that
statements of this type are rather subtle, see [KV91, Sim98].

While certainly interesting and conceptually illuminating, a proof of the equivariant
homotopy hypothesis in a bicategorical language in equation (4.22) is beyond the scope of
the present paper, which aims to give an algebraic description of homotopy �xed points
on bicategories. Although an equivariant homotopy hypothesis for ∞-groupoids follows
from [Lur09a, Theorem 4.2.4.1], we are not aware of a proof of the bicategorical statement
in equation (4.22).

Next, we compute homotopy �xed points of the trivial SO(2)-action on Vectfd
2 and

show that they are given by Calabi-Yau categories. This result is new and has not yet
appeared in the literature.

4.5. Calabi-Yau categories as homotopy fixed points. We now apply Theo-
rem 4.1 to Calabi-Yau categories, as considered in [MS06]. Let Vect2 be the bicategory
consisting of linear, abelian categories, linear functors, and natural transformations.

Recall that a K-linear, abelian category C is called �nite, if is has �nite-dimensional
Hom-spaces, every object has got �nite length, the category C has got enough projectives,
and there are only �nitely many isomorphism classes of simple objects.

The fully-dualizable objects of Vect2 are then precisely the �nite, semi-simple linear
categories, cf. [BDSV15, Appendix A]. For convenience, we recall the de�nition of a �nite
Calabi-Yau category.

4.6. Definition. Let K be an algebraically closed �eld. A Calabi-Yau category (C, trC)
is a K-linear, �nite, semi-simple category C, together with a family of K-linear maps

trCc : EndC(c)→ K (4.23)

for each object c of C, so that:

1. for each f ∈ HomC(c, d) and for each g ∈ HomC(d, c), we have that

trCc (g ◦ f) = trCd(f ◦ g), (4.24)

2. for each f ∈ EndC(x) and each g ∈ EndC(d), we have that

trCc⊕d(f ⊕ g) = trCc (f) + trCd(g), (4.25)
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3. for all objects c of C, the induced pairing

〈− ,−〉C : HomC(c, d)⊗K HomC(d, c)→ K
f ⊗ g 7→ trCc (g ◦ f)

(4.26)

is a non-degenerate pairing of K-vector spaces.

We will call the collection of morphisms trCc a trace on C.
An equivalent way of de�ning a Calabi-Yau structure on a linear category C is by

specifying a natural isomorphism

HomC(c, d)→ HomC(d, c)
∗, (4.27)

cf. [Sch13, Proposition 4.1].

4.7. Definition. Let (C, trC) and (D, trD) be two Calabi-Yau categories. A linear functor
F : C → D is called a Calabi-Yau functor, if

trCc (f) = trDF (c)(F (f)) (4.28)

for each f ∈ EndC(c) and for each c ∈ Ob(C). Equivalently, one may require that

〈Ff, Fg〉D = 〈f, g〉C (4.29)

for every pair of morphisms f : c→ d and g : d→ c in C.
If F , G : C → D are two Calabi-Yau functors between Calabi-Yau categories, a Calabi-

Yau natural transformation is just an ordinary natural transformation.
This allows us to de�ne the symmetric monoidal bicategory CY consisting of Calabi-

Yau categories, Calabi-Yau functors and natural transformations. The monoidal structure
is given by the Deligne tensor product of abelian categories.

4.8. Corollary. Suppose C = K (Vectfd
2 ), and consider the trivial SO(2)-action on C.

Then CSO(2) is equivalent to the bicategory of Calabi-Yau categories.

Proof. Indeed, by Theorem 4.1 a homotopy �xed point consists of a category C, together
with a natural transformation λ : idC → idC. Let X1, . . . , Xn be the simple objects of
C. Then, the natural transformation λ : idC → idC is fully determined by giving an
endomorphism λX : X → X for every simple object X. Since λ is an invertible natural
transformation, the λX must be central invertible elements in EndC(X). Since we work
over an algebraically closed �eld, Schur's Lemma shows that EndC(X) ∼= K as vector
spaces. Hence, the structure of a natural transformation of the identity functor of C
boils down to choosing a non-zero scalar for each simple object of C. This structure is
equivalent to giving C the structure of a Calabi-Yau category.

Now note that by equation (4.1) in Theorem 4.1, 1-morphisms of homotopy �xed
points consist of equivalences of categories F : C → C ′ so that F (λX) = λ′F (X) for every
object X of C. This is exactly the condition saying that F must a Calabi-Yau functor.

Finally, one can see that 2-morphisms of homotopy �xed points are given by natural
isomorphisms of Calabi-Yau functors.
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