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CLOSURE OPERATORS IN ABELIAN CATEGORIES AND
SPECTRAL SPACES

ABHISHEK BANERJEE

Abstract. We give several new ways of constructing spectral spaces starting with
objects in abelian categories satisfying certain conditions which apply, in particular,
to Grothendieck categories. For this, we consider the spaces of invariants of closure
operators acting on subobjects of a given object. The key to our results is a newly
discovered criterion of Finocchiaro that uses ultrafilters to identify spectral spaces along
with subbases of quasi-compact open sets.

1. Introduction

A topological space is said to be spectral if it is homeomorphic to the Zariski spectrum of
a commutative ring. A major fact proved by Hochster in [14] is that such spaces can be
characterized in purely topological fashion, i.e., a topological space X is spectral if and
only if it satisfies the following conditions:

(1) X is quasi-compact.
(2) The quasi-compact open subsets of X are closed under finite intersections and

form an open basis of X.
(3) Every nonempty irreducible closed subset of X has a unique generic point.
Indeed, the study of spectral spaces is a big topic and the literature on this subject

is immense (see [17, Tag 08YF] for a brief introduction). Further, by using a newly
discovered criterion of Finocchiaro [6, Corollary 3.3] for spectral spaces using ultrafilters,
Finocchiaro, Fontana and Spirito [8] have recently given several new examples of spectral
spaces arising in commutative algebra (see also [7], [9], [10]). For instance, the authors
showed in [8] that the space of submodules of a given module M over a commutative ring
R forms a spectral space. This immediately leads us to ask similar questions in algebraic
geometry. For example, would a similar result hold in the category of quasi-coherent
sheaves over a scheme X?

In this paper, our objective is to build spectral spaces starting from a general abelian
category. We require that our abelian categories should satisfy the (AB5) axiom (see [13])
and also be well-powered, i.e., the collection of isomorphism classes of subobjects of any
given object should be a set. In particular, this applies to all Grothendieck categories. For
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instance, if A is a sheaf of rings on a topological space X, then the categories A−Premod
and A − Mod of presheaves and sheaves of A-modules respectively are Grothendieck
categories (see [2, § I.3, II.4]). If X is an arbitrary scheme, then Gabber has shown that
the category QCoh(X) of quasi-coherent sheaves on X is a Grothendieck category (see,
for instance, [3, § 3]). As such, we feel that our results also show the power and versatility
of Finocchiaro’s new criterion [6] for spectral spaces.

We now describe the paper in greater detail. We begin in Section 2 by fixing an object
M of the abelian category C along with a subobject N ⊆ M . We let Fin(N,M) be
the collection of all subobjects of M that may be obtained by adding to N a collection
of finitely generated subobjects of M . If C is a category of modules or more generally,
any category that is “locally finitely generated” (see, for instance, [1]), then Fin(N,M)
reduces to the collection of all subobjects of M that contain N . Then, our first main
result is that Fin(N,M) is a spectral space, for which we use the criterion of Finocchiaro
[6] and adapt the methods of [8]. Thereafter, given any inclusion β : N ↪→ N ′ in the
category Sub(M) of subobjects of M , we construct a morphism

Fin(β) : Fin(N ′,M) −→ Fin(N,M) (1)

It is important to emphasize that the maps in (1) are not just continuous, but also
“spectral maps”, i.e., the inverse of any quasi-compact open is still a quasi-compact and
open set. The latter follows from carefully examining the explicit subbasis of quasi-
compact opens that we construct in the process of showing that each Fin(N,M) is a
spectral space. Further, we consider the Grothendieck topology on Sub(M) in which the
coverings of any N ∈ Sub(M) are given by filtered families {Ni ↪→ N}i∈I in Sub(M)
satisfying

∑
i∈I Ni = N . Then, we show that the association N 7→ Fin(N,M) actually

determines a sheaf on Sub(M) taking values in the category of spectral spaces connected
by spectral maps.

In Section 3, we work more generally with the space Fin(N,M) equipped with a
“closure operator” c : Fin(N,M) −→ Fin(N,M). For this, we are also motivated by
the methods of [8, § 3] with closure operators on submodules. Our idea of a closure
operator in Definition 3.1 for abelian categories should be compared to closure operators
for ideals and submodules, which provide a unifying framework for several closure notions
in commutative algebra such as integral closure, radical closure and Frobenius closure (see,
for instance, [4], [5], [8, § 3]). Given a closure operator, or more generally, an extensive
and order-preserving operator c on Fin(N,M), we show that the space Finc(N,M) of
fixed points of c is a spectral space when c is of finite type (see Definition 3.1). Further,
when we have a family of such operators cN : Fin(N,M) −→ Fin(N,M), N ∈ Sub(M)
constructed by starting from a single operator c = c0 : Fin(0,M) −→ Fin(0,M), we show
that the association N 7→ FincN (N,M) determines a sheaf on Sub(M) taking values in
the category of spectral spaces connected by spectral maps. We conclude Section 3 by
giving several explicit examples of closure operators on quasi-coherent sheaves of ideals
over a quasi-separated Noetherian scheme, thus producing spectral spaces.

We consider in Section 4 the general question of which subsets of Fin(N,M) can
arise as the collection of fixed points of a closure operator of finite type on Fin(N,M).
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We show that families of objects in Fin(N,M) that are closed under intersections and
filtered unions correspond to spaces of fixed points of closure operators of finite type on
Fin(N,M). In particular, they are spectral subspaces of Fin(N,M). Finally, we consider
the object N+M f ∈ Fin(N,M), where M f is the sum of all finitely generated subobjects
of M . Then, it is clear that N + M f contains every other object in Fin(N,M). Hence,
N + M f must be fixed by every closure operator on Fin(N,M). As such, we consider
the space Finc(N,M) with the point N + M f removed and give some conditions for
Finc(N,M)\{N + M f} to be a spectral subspace. We conclude by giving a sufficient
condition for Finc(N,M) with the point N + M f removed to be such that every object
is still contained in a maximal element.

2. Spectral spaces of subobjects

Let C be an abelian category. For each object M ∈ C, we will denote by Sub(M) the cat-
egory of subobjects of M in C. More explicitly, each object of Sub(M) can be represented
by a monomorphism α : N ↪→ M . Two monomorphisms α : N ↪→ M and α′ : N ′ ↪→ M
are said to be equivalent if there exists an isomorphism β : N −→ N ′ such that α′◦β = α.
Then, the subobjects of M are equivalence classes of monomorphisms with target M . For
the sake of simplicity, we will denote the object of Sub(M) reprsented by (α : N ↪→ M)
simply by N and write N ⊆M .

Further, a morphism β from an object (α : N ↪→ M) in Sub(M) to an object (α′ :
N ′ ↪→M) in Sub(M) will be given by a morphism β : N −→ N ′ in C such that α′ ◦β = α.
Since α is a monomorphism, it is immediate that there is at most one such morphism β
and that β must also be a monomorphism. In this case, we will write N ⊆ N ′.

Throughout this section and the rest of this paper, we will assume that the abelian
category C is “well-powered” (see, for example, [11, § 3]), i.e., the category Sub(M) is a
small category for every object M ∈ C. This holds, for instance, if the abelian category
has a generator (see [11, Proposition 3.35]) and in particular every Grothendieck category
is well-powered. We will also assume throughout that C satisfies (AB5), i.e., coproducts
exist and filtered colimits commute with finite limits.

We recall that an object M ∈ C is said to be “finitely generated” if the co-representable
functor HomC(M, ) : C −→ Set preserves filtered colimits of monomorphisms (see, for
instance, [1] where such objects are referred to as “ω-generated”). For each object M ∈ C,
we denote by fg(M) the collection of isomorphism classes of finitely generated subobjects
of M and always set M f :=

∑
M ′∈fg(M)M

′.

For each pair (N,M) with N ⊆M , we now set:

Fin(N,M) := {T | N ⊆ T ⊆M and T = N + T f = N +
∑

T0∈fg(T )

T0} (2)

Then, for each object Q ∈ Fin(N,M), we consider the subsets:

V (Q,N,M) := {T ∈ Fin(N,M) | Q ⊆ T} D(Q,N,M) := Fin(N,M)\V (Q,N,M) (3)
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We can now define a topology on Fin(N,M) whose subbasis is given by the collec-
tion S(N,M) := {D(Q,N,M) | Q ∈ Fin(N,M)}. We show that this topology makes
Fin(N,M) into a spectral space, i.e., it is homeomorphic to the Zariski spectrum of some
commutative ring. For this, we will use the characterization of spectral spaces via ultra-
filters due to Finocchiaro [6]. We recall here (see, for instance, [6, § 1]) that a filter F on
a set X is a collection of subsets of X such that: (a) φ /∈ F, (b) Y , Z ∈ F ⇒ Y ∩ Z ∈ F
and (c) Y ⊆ Z ⊆ X and Y ∈ F implies that Z ∈ F. Then, an ultrafilter F of subsets of
X is a maximal element in the collection of filters on X.

2.1. Proposition. We fix an object M ∈ C and take an arbitrary subobject N ⊆ M .
Then, the following holds for the topological space Fin(N,M):

(a) The subcollection

Sf (N,M) := {D(Q,N,M) ∈ S(N,M) | ∃ Q0 ∈ fg(Q) such that Q = N +Q0}

of S(N,M) also forms a subbasis for the topology on Fin(N,M).
(b) Fin(N,M) is a spectral space with Sf (N,M) as a subbasis of quasi-compact open

sets.

Proof. (a) We consider some Q ∈ Fin(N,M). From the definition in (2), it follows that
Q = N +

∑
Q0∈fg(Q)

Q0. Consequently, we must have:

D(Q,N,M) =
⋃

Q0∈fg(Q)

D(Q0 +N,N,M) (4)

From (4), it is clear that the topology on Fin(N,M) given by the subbasis Sf (N,M) is
identical to the topology given by the subbasis S(N,M).

(b) From the definitions in (3), it is immediate that Fin(N,M) is a T0-space. We now
consider an ultrafilter F of subsets of Fin(N,M) and form the subobject:

QF :=
∑

V (Q,N,M)∈F

Q (5)

Since Fin(N,M) is closed under arbitrary sums, it is clear that QF ∈ Fin(N,M). In
particular, for Q, Q′ ∈ Fin(N,M), we must have Q+Q′ ∈ Fin(N,M) and we notice that
V (Q,N,M) ∩ V (Q′, N,M) = V (Q + Q′, N,M). Since the ultrafilter F is closed under
finite intersections, it follows that the sum in (5) is filtered.

We now claim that for any set D(Q,N,M) ∈ Sf (N,M), the element QF ∈ D(Q,N,M)
if and only if D(Q,N,M) ∈ F. For this, we first suppose there exists some D(Q,N,M) ∈
Sf (N,M) ∩ F but QF /∈ D(Q,N,M). Then, QF ∈ V (Q,N,M), i.e., Q ⊆ QF. We can
express Q as Q = N + Q0 where Q0 ∈ fg(Q). Since Q0 is finitely generated and QF is
expressed as a filtered sum in (5), it follows that we can take Q′ ∈ Fin(N,M) such that
V (Q′, N,M) ∈ F and Q0 ⊆ Q′. Thus, Q = N+Q0 ⊆ Q′. This implies that V (Q,N,M) ⊇
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V (Q′, N,M) and hence V (Q,N,M) ∈ F. But then φ = D(Q,N,M) ∩ V (Q,N,M) ∈ F,
which is a contradiction.

Conversely, suppose that we have D(Q,N,M) ∈ Sf (N,M) with QF ∈ D(Q,N,M).
Then, if D(Q,N,M) /∈ F, it follows that its complement V (Q,N,M) must lie in the ultra-
filter F. But then the definition in (5) implies that Q ⊆ QF and hence QF ∈ V (Q,N,M),
which contradicts the fact that QF ∈ D(Q,N,M). It now follows from the criterion in [6,
Corollary 3.3] that Fin(N,M) is a spectral space. Further, it follows from [8, Corollary
1.2] that Sf (N,M) is a subbasis of quasi-compact open sets for Fin(N,M).

We now turn the association N 7→ Fin(N,M) in Proposition 2.1 into a functor on
Sub(M). For this, we recall (see [14]) that a map f : X −→ X ′ of spectral spaces is
said to be a spectral map if the inverse of any quasi-compact open in X ′ is open and
quasi-compact in X.

2.2. Proposition. We fix an object M ∈ C and consider the category Sub(M) of all
subobjects of M . Then, the association (α : N ↪→M) 7→ Fin(N,M) gives a contravariant
functor from Sub(M) to the category of spectral spaces connected by spectral maps.

Proof. Given a morphism β : N ↪→ N ′ in Sub(M), we define a map:

Fin(β) : Fin(N ′,M) −→ Fin(N,M) T ′ 7→ N + T ′f = N +
∑

T ′
0∈fg(T ′)

T ′0 (6)

From Proposition 2.1, we know that Sf (N,M) is a subbasis of quasi-compact open sets
of Fin(N,M). As such, in order to show that Fin(β) is a spectral map, it suffices to
check that Fin(β)−1(D(Q,N,M)) ∈ Sf (N ′,M) for each D(Q,N,M) ∈ Sf (N,M). Since
D(Q,N,M) ∈ Sf (N,M), we can express Q = N +Q0 for some Q0 ∈ fg(Q). We will now
show that Fin(β)−1(D(Q,N,M)) = D(N ′ +Q0, N

′,M) ∈ Sf (N ′,M) which is equivalent
to checking that:

Fin(β)−1(V (Q,N,M)) = V (N ′ +Q0, N
′,M) (7)

We first take an arbitrary T ′ ∈ V (N ′ + Q0, N
′,M). Then, Q0 ∈ fg(T ′). From the

definition in (6), it now follows that Q = N +Q0 ⊆ Fin(β)(T ′). Hence, we see that T ′ ∈
Fin(β)−1(V (Q,N,M)). Conversely, let T ′ ∈ Fin(N ′,M) be such that T = Fin(β)(T ′) ∈
V (Q,N,M). Again, from (6), it follows that:

T = Fin(β)(T ′) = N +
∑

T ′
0∈fg(T ′)

T ′0 ⊆ N ′ +
∑

T ′
0∈fg(T ′)

T ′0 = T ′ (8)

Since T ⊆ T ′, we see that Q0 ⊆ Q ⊆ T ⊆ T ′. We already know that T ′ ∈ Fin(N ′,M)
contains N ′ and hence T ′ ∈ V (N ′ +Q0, N

′,M). This proves the result.
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Our next aim is to describe sheaf properties of the contravariant functor in Proposition
2.2. But, first we record the following simple results, which will help make the construction
in (6) more transparent.

2.3. Lemma. (a) Given T1, T2 ∈ Fin(N,M) such that fg(T1) = fg(T2), we must have
T1 = T2.

(b) Consider a morphism β : N ↪→ N ′ in Sub(M) and take an arbitrary T ′ ∈
Fin(N ′,M). Let T = Fin(β)(T ′). Then, T ⊆ T ′. Moreover, fg(T ) = fg(T ′).

Proof. (a) Since T1, T2 ∈ Fin(N,M) and fg(T1) = fg(T2), it follows from the definition
in (2) that:

T1 = N +
∑

T10∈fg(T1)

T10 = N +
∑

T20∈fg(T2)

T20 = T2 (9)

(b) We have T = Fin(β)(T ′) ⊆ T ′ as in (8) in the proof of Proposition 2.2. Hence,
fg(T ) ⊆ fg(T ′). On the other hand, from the definition in (6), we have:

T = Fin(β)(T ′) = N +
∑

T ′
0∈fg(T ′)

T ′0 (10)

It is clear from (10) that fg(T ′) ⊆ fg(T ). It follows that fg(T ′) = fg(T ).

We will now say that a family {αi : Ni ↪→ N}i∈I of morphisms in Sub(M) indexed by
a filtered set I is a ‘covering family’ for N if colimi∈INi =

∑
i∈I Ni = N . It is clear that

{1 : N −→ N} is a covering family. Further, given a covering family {αi : Ni ↪→ N}i∈I
and a covering family {αij : Nij ↪→ Ni}j∈Ji for each i ∈ I, we see that {Nij ↪→ N}i∈I,j∈Ji
must be a covering family. Finally, since filtered colimits commute with finite limits in
C, covering families are stable under pullbacks. It follows that covering families give a
Grothendieck topology on Sub(M) in the sense of [15, Chapter III].

For a covering family {αi : Ni ↪→ N}i∈I , the inclusions αij : Ni ↪→ Nj in the filtered
system {Ni}i∈I give rise to an inverse system of spectral spaces {Fin(Ni,M)}i∈I connected
by spectral maps. It follows (see [16, (A.1)]) that the limit of this system in the category
of topological spaces is still a spectral space which is further equal to the limit of the
system in the category of spectral spaces.

2.4. Proposition. (a) Let {αi : Ni ↪→ N}i∈I be a covering family in Sub(M). Then,
there is a homeomorphism of spectral spaces Fin(N,M) = lim←−i∈I Fin(Ni,M).

(b) The association (α : N ↪→ M) 7→ Fin(N,M) defines a sheaf on Sub(M) taking
values in the category of spectral spaces connected by spectral maps.

Proof. First, we will show that Fin(N,M) = lim←−i∈I Fin(Ni,M) at the level of sets. For

this we consider a collection {Ti}i∈I of objects with Ti ∈ Fin(Ni,M) and Fin(αij)(Tj) =
Ti for any inclusion αij : Ni ↪→ Nj in the filtered system {Ni}i∈I of subobjects of N . We
now set T :=

∑
i∈I Ti. Since each Ti = Ni +

∑
Ti0∈fg(Ti)

Ti0 and
∑

i∈I Ni = N , it follows

that T ∈ Fin(N,M).
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Given i, j ∈ I, we fix k ∈ I such that Ni, Nj ⊆ Nk. Now since Ti = Fin(αik)(Tk)
and Tj = Fin(αjk)(Tk), it follows from Lemma 2.3(b) that fg(Ti) = fg(Tk) = fg(Tj).
Hence, the collection fg(Ti) is identical for each i ∈ I. Further, since I is filtered, any
finitely generated T0 ∈ fg(T ) = fg(

∑
i∈I Ti) must lie in fg(Ti0) for some i0 ∈ I and

hence in every fg(Ti), i ∈ I. Thus, fg(T ) = fg(Ti) for each i ∈ I. It follows that
Ti = Ni +

∑
Ti0∈fg(Ti)

Ti0 = Ni +
∑

T0∈fg(T ) T0 = Fin(αi)(T ) for each i ∈ I. Finally, if

S ∈ Fin(N,M) is another object such that Fin(αi)(S) = Ti for each i ∈ I, we must have
fg(S) = fg(Ti) = fg(T ). Since S, T ∈ Fin(N,M), it now follows from Lemma 2.3(a)
that S = T .

By construction, the maps Fin(αi) : Fin(N,M) −→ Fin(Ni,M) are already contin-
uous. Consider an element D(Q,N,M) of the subbasis Sf (N,M) of Fin(N,M). Then,
there exists Q0 ∈ fg(Q) such that Q = N +Q0. We fix i ∈ I. From the proof of Proposi-
tion 2.2, we know that Fin(αi)

−1(D(Ni+Q0, Ni,M)) = D(N+Q0, N,M) = D(Q,N,M).
Hence, the topology on Fin(N,M) given by the subbasis Sf (N,M) is the coarsest topol-
ogy for which the maps Fin(αi) : Fin(N,M) −→ Fin(Ni,M) are all continuous. This
proves (a). The result of (b) follows from (a) and the definition of covering families in
Sub(M).

3. Spectral spaces determined by closure operators

Let R be a commutative ring. In commutative algebra, a closure operator (see, for
instance, [4, § 2.1], [5]) associates to each ideal I in R an ideal Ī such that I ⊆ Ī, ¯̄I = I
and Ī ⊆ J̄ whenever I ⊆ J . We begin this section by adapting this idea to abelian
categories.

3.1. Definition. Let M ∈ C and fix a subobject N ⊆M . We define the following notions
for an operator c : Fin(N,M) −→ Fin(N,M):

(a) Extensive: for each T ∈ Fin(N,M), we have T ⊆ c(T ).
(b) Idempotent: for each T ∈ Fin(N,M), we have c(c(T )) = c(T ).
(c) Order-preserving: for any T1, T2 ∈ Fin(N,M) with T1 ⊆ T2, we have c(T1) ⊆

c(T2).
(d) Finite type: for any T ∈ Fin(N,M), we have c(T ) =

∑
T0∈fg(T ) c(N + T0).

In particular, an operator c : Fin(N,M) −→ Fin(N,M) that is extensive, idempotent
and order-preserving will be referred to as a closure operator.

We urge the reader to compare Definition 3.1 above to the definition of closure in
categories of modules in [4, Definition 7.0.1].

3.2. Lemma. Let c : Fin(N,M) −→ Fin(N,M) be an operator that is extensive, order-
preserving and of finite type. For any T ∈ Fin(N,M), set c∞(T ) :=

∑∞
k=1 c

k(T ). Then,
the object c∞(T ) is fixed by the operator c, i.e., c(c∞(T )) = c∞(T ).
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Proof. We take an arbitrary T0 ∈ fg(c∞(T )). Since T0 is finitely generated, we can
take k0 ∈ N such that T0 ⊆ ck0(T ). Further since N ⊆ T ⊆ ck0(T ), it follows that
N +T0 ⊆ ck0(T ). This gives c(N +T0) ⊆ ck0+1(T ) ⊆ c∞(T ) for each T0 ∈ fg(c∞(T )). The
operator c being of finite type, we now have c(c∞(T )) =

∑
T0∈fg(c∞(T )) c(N+T0) ⊆ c∞(T ).

This proves the result.

3.3. Proposition. Let c : Fin(N,M) −→ Fin(N,M) be an operator that is exten-
sive, order-preserving and of finite type. Then, the collection Finc(N,M) of all ob-
jects in Fin(N,M) fixed by c is a spectral space. Further, the inclusion Finc(N,M) ↪→
Fin(N,M) is a spectral map.

Proof. We maintain the notation from Section 2. From Proposition 2.1 it follows that
the collection D(Q,N,M)∩Finc(N,M) forms a subbasis for the topology on Finc(N,M),
where D(Q,N,M) ∈ Sf (N,M). Now, let F be an ultrafilter of subsets of Finc(N,M)
and set:

TF :=
∑

T∈Finc(N,M),V (T,N,M)∩Finc(N,M)∈F

T (11)

Now suppose that T1, T2 ∈ Finc(N,M) are such that V (T1, N,M) ∩ Finc(N,M) and
V (T2, N,M) ∩ Finc(N,M) lie in F. Using Lemma 3.2, we know that c∞(T1 + T2) ∈
Finc(N,M). Further, we notice that V (c∞(T1 + T2), N,M) ∩ Finc(N,M) = V (T1 +
T2, N,M) ∩ Finc(N,M) = V (T1, N,M) ∩ V (T2, N,M) ∩ Finc(N,M) ∈ F. Hence, the
sum in (11) is filtered.

We claim that TF ∈ Finc(N,M). For this, we take an arbitrary T0 ∈ fg(TF). Since the
sum in (11) is filtered, it follows that we can find some T ∈ Finc(N,M) with V (T,N,M)∩
Finc(N,M) ∈ F such that T0 ⊆ T . Then, N + T0 ⊆ T and since T ∈ Finc(N,M),
we get c(N + T0) ⊆ c(T ) = T ⊆ TF. Since c is of finite type, we now have c(TF) =∑

T0∈fg(TF)
c(N + T0) ⊆ TF and hence TF ∈ Finc(N,M).

Finally, we consider some Q ∈ Fin(N,M) such that Q = N+Q0 for some Q0 ∈ fg(Q).
We will show that

TF ∈ D(Q,N,M) ∩ Finc(N,M) ⇔ D(Q,N,M) ∩ Finc(N,M) ∈ F (12)

First, we suppose that D(Q,N,M)∩Finc(N,M) /∈ F. Since F is an ultrafilter, it follows
that the complement V (Q,N,M) ∩ Finc(N,M) ∈ F. We now notice that V (Q,N,M) ∩
Finc(N,M) = V (c∞(Q), N,M)∩ Finc(N,M). From Lemma 3.2, we know that c∞(Q) ∈
Finc(N,M) and the definition in (11) implies that c∞(Q) ⊆ TF. Hence, Q ⊆ c∞(Q) ⊆ TF
which shows that TF /∈ D(Q,N,M) ∩ Finc(N,M).

Conversely, suppose that TF /∈ D(Q,N,M) ∩ Finc(N,M). Then, TF ∈ V (Q,N,M) ∩
Finc(N,M), i.e., Q ⊆ TF. By assumption, we can express Q = N+Q0, where Q0 ∈ fg(Q).
Since the sum in (11) is filtered, it follows that we can find T ′ ∈ Finc(N,M) with
V (T ′, N,M) ∩ Finc(N,M) ∈ F such that Q0 ⊆ T ′. Then, Q = N + Q0 ⊆ T ′ and we get
V (T ′, N,M) ∩ Finc(N,M) ⊆ V (Q,N,M) ∩ Finc(N,M). Combining with the fact that
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V (T ′, N,M) ∩ Finc(N,M) ∈ F, we see that V (Q,N,M) ∩ Finc(N,M) ∈ F. Hence, the
complement D(Q,N,M) ∩ Finc(N,M) /∈ F.

It now follows from the criterion in [6, Corollary 3.3] that Finc(N,M) is a spec-
tral space. Further, it follows from [8, Corollary 1.2] that the collection D(Q,N,M) ∩
Finc(N,M) forms a subbasis of quasi-compact opens for Finc(N,M), where D(Q,N,M)
varies over all elements of Sf (N,M). From Proposition 2.1, we know that Sf (N,M)
is a subbasis of quasi-compact opens for Fin(N,M) and it follows that the inclusion
Finc(N,M) ↪→ Fin(N,M) is a spectral map.

The next result will give a method for constructing closure operators on the sets
Fin(N,M) and also for modifying them into closure operators of finite type. Before that,
we notice that the sets Fin(N,M) are not necessarily closed under ordinary intersections.
Accordingly, the role of intersections in Fin(N,M) is played by the following construction:
given a family {Ti}i∈I of objects in Fin(N,M), we set:⋂

i∈I

f Ti := N + (
⋂

i∈I Ti)
f ∈ Fin(N,M) (13)

In particular, we note that if T ∈ Fin(N,M) is such that T ⊆
⋂

i∈I Ti, then T ⊆
⋂
i∈I

f Ti.

3.4. Proposition. (a) Let c : Fin(N,M) −→ Fin(N,M) be an operator that is ex-
tensive and order-preserving. Then, there exists a closure operator cl : Fin(N,M) −→
Fin(N,M) such that cl(T ) = c(T ) whenever T = c(T ) for some T ∈ Fin(N,M).

(b) Let cl : Fin(N,M) −→ Fin(N,M) be a closure operator. Then, there exists a
closure operator clf : Fin(N,M) −→ Fin(N,M) of finite type such that clf (T ) = cl(T )
whenever T = N + T0 for some finitely generated object T0.

Proof. (a) We notice that the object N + M f ∈ Fin(N,M) contains every object in
Fin(N,M). Since c is extensive, it follows that N + M f = c(N + M f ). This shows
that the set r(T ) := {T ′ ∈ Fin(N,M) | T ′ ⊇ T , T ′ = c(T ′) } is non-empty for each T ∈
Fin(N,M). We now define cl : Fin(N,M) −→ Fin(N,M) by setting for each T ∈
Fin(N,M):

cl(T ) :=
⋂

T ′∈r(T )

f T ′ (14)

We now claim that c(cl(T )) = cl(T ). For this, we notice that cl(T ) ⊆ T ′ for each T ′ ∈ r(T )
and hence c(cl(T )) ⊆ c(T ′) = T ′ for each T ′ ∈ r(T ), i.e., c(cl(T )) ⊆

⋂
T ′∈r(T ) T

′. But then,

we must have c(cl(T )) ⊆ cl(T ) from the definition in (14). Since c is extensive, we get
c(cl(T )) = cl(T ). Hence, cl(T ) ∈ r(cl(T )) and it is now clear from the definition in (14)
that the operation cl is idempotent, i.e., cl(cl(T )) = cl(T ) for each T ∈ Fin(N,M). It is
also clear from (14) that cl satisfies the other properties for being a closure operator on
Fin(N,M).

(b) Given a closure operator cl on Fin(N,M), we set:

clf : Fin(N,M) −→ Fin(N,M) clf (T ) :=
∑

T0∈fg(T )

cl(N + T0) (15)
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In order to see that clf is idempotent, we consider some finitely generated G ⊆ clf (T ).
Since the sum in (15) is filtered, we can take T0 ∈ fg(T ) such that G ⊆ cl(N + T0). But
then, N +G ⊆ cl(N + T0) and hence cl(N +G) ⊆ cl(cl(N + T0)) = cl(N + T0) ⊆ clf (T ).
The definition in (15) now shows that clf (clf (T )) = clf (T ). On the other hand, it is also
clear from (15) that clf is extensive, order-preserving and of finite type.

We will now show how to construct closure operators on Fin(N,M) starting from
operators on ideals in ordinary rings. Since C is an abelian category, EndC(M) is a
unital ring (not necessarily commutative) for each object M ∈ C. The multiplication on
EndC(M) is taken to be f · g := (g ◦ f) for any f , g ∈ EndC(M). Then, given a subobject
N ⊆ M , HomC(M,N) may be viewed as a left ideal in EndC(M). Suppose now that we
are given an operator that associates each left ideal I ⊆ EndC(M) to another left ideal
Ī ⊆ EndC(M). We now define:

c : Fin(N,M) −→ Fin(N,M) T 7→ T +
∑

g∈HomC(M,T )⊆EndC(M)

Im(g)f (16)

If we assume that the association I 7→ Ī satisfies Ī ⊆ J̄ for any left ideals I ⊆ J in
EndC(M), it follows that the operator c in (16) is extensive and order-preserving. Using
Proposition 3.4, c can be used to construct a closure operator on Fin(N,M) and further
modified into a closure operator of finite type.

We will now study the functorial properties of the spectral spaces Finc(N,M). For
this, we fix in the rest of this section a closure operator c : Fin(0,M) −→ Fin(0,M) of
finite type. For any N ⊆M , this induces an operator:

cN : Fin(N,M) −→ Fin(N,M) T 7→ N + c(T f ) = N +
∑

T0∈fg(T )

c(T0) (17)

It is clear from (17) that each induced operator cN : Fin(N,M) −→ Fin(N,M) is
extensive, order preserving and of finite type. We let FincN (N,M) denote the collection
of objects in Fin(N,M) that are fixed by the operator cN .

3.5. Proposition. The association of each subobject N of M to FincN (N,M) deter-
mines a contravariant functor from Sub(M) to the category of spectral spaces connected
by spectral maps.

Proof. Let γ : N ↪→ N ′ be a morphism in Sub(M) and consider the induced spectral
map Fin(γ) : Fin(N ′,M) −→ Fin(N,M) as defined in the proof of Proposition 2.2. We
claim that Fin(γ) restricts to a map Finc(γ) : FincN′ (N ′,M) −→ FincN (N,M). For
this, we consider some T ∈ Fin(N ′,M) with T = cN ′(T ). From (17), this means that
T = N ′ + T f = N ′ + c(T f ).

On the other hand, by definition, Fin(γ)(T ) = N + T f . Since N + T f ⊆ T , it follows
that (N + T f )f ⊆ T f and hence (N + T f )f = T f . Applying the definition in (17), we get
cN(Fin(γ)(T )) = cN(N + T f ) = N + c(T f ).
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We now claim that Fin(γ)(T ) = N + T f = N + c(T f ) = cN(Fin(γ)(T )). For this, we
note that fg(N + c(T f )) ⊆ fg(N ′ + c(T f )) = fg(T ) = fg(T f ) ⊆ fg(N + T f ). Hence,
fg(N + c(T f )) = fg(N + T f ) and it follows from Lemma 2.3(a) that N + c(T f ) =
N + T f ∈ Fin(N,M). Finally, since Finc(γ) : FincN′ (N ′,M) −→ FincN (N,M) is
obtained by restricting Fin(γ) between the subspaces FincN′ (N ′,M) and FincN (N,M),
it follows directly from (7) that Finc(γ) is still a spectral map.

As in Section 2, we now consider a covering family for an object N ∈ Sub(M), i.e., a
family {αi : Ni −→ N}i∈I of morphisms in Sub(M) indexed by a filtered set I satisfying
colimi∈INi =

∑
i∈I Ni = N . The following result now gives the sheaf properties of the

functor in Proposition 3.5.

3.6. Proposition. (a) Let {αi : Ni ↪→ N}i∈I be a covering family of morphisms in
Sub(M). Then, there is a homeomorphism of spectral spaces

FincN (N,M) = lim←−
i∈I

FincNi (Ni,M)

(b) The association (α : N ↪→ M) 7→ FincN (N,M) defines a sheaf on Sub(M) taking
values in the category of spectral spaces connected by spectral maps.

Proof. We consider a family {Ti}i∈I of objects with each Ti ∈ FincNi (Ni,M) and
Finc(αij)(Tj) = Ti for each inclusion αij : Ni ↪→ Nj in the filtered system {Ni}i∈I of
subobjects of N . We already know from the proof of Proposition 2.4 that T =

∑
i∈I Ti is

the unique object in Fin(N,M) such that Fin(αi)(T ) = Ti for each i ∈ I.
We claim that T ∈ FincN (N,M). We fix i0 ∈ I. Since Ti0 ∈ Fin

cNi0 (Ni0 ,M), we
know that c(T f

i0
) ⊆ Ni0 + c(T f

i0
) = cNi0

(Ti0) = Ti0 ⊆ T . From the proof of Proposition

2.4, we also know that fg(T ) = fg(Ti) for each i ∈ I and hence c(T f ) = c(T f
i0

). We now

obtain cN(T ) = N + c(T f ) = N + c(T f
i0

) ⊆ T . Hence, T ∈ FincN (N,M) and we see that
FincN (N,M) = lim←−i∈I Fin

cNi (Ni,M) at the level of sets.

Finally, we note that the inverse limit topology on FincN (N,M) is the coarsest
topology for which the maps Finc(αi) : FincN (N,M) −→ FincNi (Ni,M) are all con-
tinuous. Since the maps Finc(αi) are obtained by restricting the Fin(αi), it now fol-
lows from similar considerations as in the proof of Proposition 2.4 that FincN (N,M) =
lim←−i∈I Fin

cNi (Ni,M) as spectral spaces. This proves (a). Again, as in the proof of Propo-

sition 2.4, the result of (b) follows from (a) and the definition of covering families in
Sub(M).

We conclude this section by listing some explicit consequences of the results. Suppose
that R is some full subcategory of the category of commutative rings with identity. A
family of closure operators persistent with respect to R (see [4, Definition 4.3.1]) is given
by a collection c = {cR}R∈R with cR a closure operator on (not necessarily proper) ideals of
R for each R ∈ R. Further, the operators {cR}R∈R are compatible in the following sense:
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for any morphism φ : R −→ S in R and any ideal I ⊆ R, we have φ(cR(I))S ⊆ cS(φ(I)S).
When the morphism φ : R −→ S is flat, this reduces to cR(I)⊗R S ⊆ cS(I ⊗R S).

The family c = {cR}R∈R is said to commute with localization in R (see [4, § 4.6]) if
for any morphism R −→ T in R such that T is a localization of R with respect to some
multiplicatively closed subset, we have the equality cR(I)⊗R T = cT (I ⊗R T ).

3.7. Proposition. Let R be a full subcategory of the category of commutative rings with
identity. Let c = {cR}R∈R be a family of closure operators persistent with respect to R
and which commutes with localization in R. Let φ : R −→ S be a morphism in R such
that the induced morphism Spec(S) −→ Spec(R) is a Zariski open immersion of affine
schemes. Suppose that for any multiplicatively closed set W ⊆ R, the localization R[W−1]
lies in R. Then, for any ideal I ⊆ R, we have an equality cR(I) ⊗R S = cS(I ⊗R S) of
ideals in S.

Proof. Since Spec(S) −→ Spec(R) is a Zariski immersion, the morphism φ : R −→ S
must be flat. Then, for every ideal I ⊆ R, the persistence condition on c = {cR}R∈R gives
us an inclusion cR(I)⊗R S ⊆ cS(I ⊗R S) of ideals in S.

Further, the affine open Spec(S) ⊆ Spec(R) can be given a Zariski cover of the form
{Spec(Tk) −→ Spec(S)}k∈K , where each Tk = Rtk is a localization of R with respect to
some element tk ∈ R. For every k ∈ K, this induces an inclusion cR(I) ⊗R S ⊗S Tk ⊆
cS(I ⊗R S)⊗S Tk of ideals in Tk. Applying the persistence condition on c = {cR}R∈R to
the flat morphism S −→ Tk and the ideal I ⊗R S ⊆ S, we obtain

cR(I)⊗RTk = cR(I)⊗RS⊗STk ⊆ cS(I⊗RS)⊗STk ⊆ cTk
(I⊗RS⊗STk) = cTk

(I⊗RTk) (18)

However, since the family c = {cR}R∈R commutes with localization, we must have
cR(I) ⊗R Tk = cTk

(I ⊗R Tk). From (18), it now follows that each of the induced in-
clusions cR(I) ⊗R S ⊗S Tk ⊆ cS(I ⊗R S) ⊗S Tk of ideals in Tk is an identity. Since
{Spec(Tk) −→ Spec(S)}k∈K is a Zariski cover of Spec(S), it follows that we must have
cR(I)⊗R S = cS(I ⊗R S) for each ideal I ⊆ R.

For the remainder of this section, let X be a quasi-separated Noetherian scheme and
let C := QCoh(X), the category of quasi-coherent sheaves on X. It is well known (see, for
instance, [12, Proposition 7]) that QCoh(X) is a locally finitely generated Grothendieck
category. Further, any quasi-coherent sheaf of ideals I ⊆ OX inside the structure sheaf
OX is finitely generated in QCoh(X). In particular, any closure operator on Sub(OX) =
Fin(0,OX) must be of finite type. We now consider the following:

(1) Let R be the category of all commutative rings with identity and let c = {cR}R∈R
be a family of closure operators persistent with respect to R and which commutes with
localization in R. For example, the radical closure and the integral closure satisfy this
property (see [4, § 4.3, § 4.6]). We recall here that the integral closure of an ideal I ⊆ R
is the collection of all r ∈ R such that there exists n ∈ N and ai ∈ I i for 1 ≤ i ≤ n such
that:

rn +
n∑

i=1

air
n−i = 0 (19)
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We can now use c = {cR}R∈R to construct a closure operator on Sub(OX) as follows :
given any quasi-coherent sheaf of ideals I ⊆ OX , we define its closure cX(I) by setting
cX(I)(U) = cOX(U)(I(U)) for any affine open U ⊆ X. From Proposition 3.7, it is clear
that cX(I) is a quasi-coherent sheaf of ideals. It now follows that the collection of quasi-
coherent sheaves of ideals fixed by the operator cX forms a spectral space.

(2) Let R be the full subcategory of all commutative rings of characteristic p and let
c = {cR}R∈R be a family of closure operators persistent with respect to R and which
commutes with localization in R. If we suppose that X is a scheme over Spec(Fp), we
can now use c = {cR}R∈R to construct a closure operator cX on quasi-coherent sheaves
of ideals over X as in (1). Again, it follows from the results above that the collection of
quasi-coherent sheaves of ideals fixed by this closure operator forms a spectral space.

For example, the Frobenius closure (see [4, § 4.3, § 4.6]) is persistent with respect
to characteristic p rings and commutes with localization. We recall that the Frobenius
closure (see, for instance, [4, § 2]) is defined as follows: for R ∈ R, an ideal I ⊆ R and
any n ∈ N, we denote by I [p

n] the ideal generated by the pn-th powers of elements of I.
Then, an element x ∈ R lies in the Frobenius closure IF of the ideal I if there exists some
n ∈ N such that xp

n ∈ I [pn].
(3) Let R be the full subcategory of all integral domains and let c = {cR}R∈R be

a family of closure operators persistent with respect to R and which commutes with
localization in R. The plus closure, for example, satisfies this property (see [4, § 4.3, §
4.6]). For R ∈ R, we recall that an element x ∈ R lies in the plus closure I+ of an ideal
I ⊆ R if there exists an injective map of integral domains R −→ S making S a finite
R-module with x ∈ IS. If the scheme X is taken to be integral, we now see that the fixed
points of the closure operator cX on quasi-coherent sheaves of ideals constructed as in (1)
give a spectral space.

4. Families of subobjects and fixed points of closure operators

We fix an object M ∈ C and a subobject N ⊆ M . From the previous section, we know
that if c : Fin(N,M) −→ Fin(N,M) is a closure operator of finite type, the collection
Finc(N,M) of the fixed points of the operator c forms a spectral space. In this final
section, we give a complete description for the subsets of Fin(N,M) that can arise as
fixed points of a closure operator of finite type. We start with a special case.

4.1. Proposition. Suppose that M f is Noetherian, i.e., every subobject of M f is a
finitely generated object. Let T = {Ti}i∈I be a collection of objects in Fin(N,M) such
that N+M f ∈ T and for any non-empty subset J ⊆ I, we must have

⋂
j∈J

fTj ∈ T . Then T

is the set of fixed points of a closure operator of finite type on Fin(N,M). In particular,
T is a spectral subspace of Fin(N,M).
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Proof. We define an operator c : Fin(N,M) −→ Fin(N,M) as follows: for any U ∈
Fin(N,M) we set

c(U) :=
⋂f

T∈T ,T⊇U
T = N + (

⋂
T∈T ,T⊇U

T )f (20)

It is clear that c is a closure operator. Further, since M f is Noetherian, the object
U f ⊆ M f is finitely generated. As U ∈ Fin(N,M) may be expressed as U = N + U f , it
follows that c is also of finite type.

By the assumption on the family T , we notice that c(U) :=
⋂f

T∈T ,T⊇U
T lies in T for any

U ∈ Fin(N,M). Hence, if U ∈ Fin(N,M) is such that c(U) = U , we must have U ∈ T .
The converse is also clear.

4.2. Proposition. Let T = {Ti}i∈I be a collection of objects in Fin(N,M) such that
N +M f ∈ T . Then, the following are equivalent:

(1) The collection T satisfies the following two conditions:
(a) For any non-empty subset J ⊆ I, the object

⋂
j∈J

fTj ∈ T .

(b) Let {Tk}k∈K be a collection of elements of T indexed by a filtered set K. Then,∑
k∈K Tk lies in T .
(2) There exists a closure operator c of finite type on Fin(N,M) such that T is the

set of fixed points of c. In particular, T is a spectral subspace of Fin(N,M).

Proof. (1)⇒ (2) : Take an arbitrary object U ∈ Fin(N,M). Now, for each U0 ∈ fg(U),
set:

c(N + U0) :=
⋂f

T⊇U0,T∈T
T (21)

We now define the operator c : Fin(N,M) −→ Fin(N,M) by setting:

c(U) :=
∑

U0∈fg(U)

c(N + U0) (22)

It is clear that c is extensive and order-preserving. To show that c is idempotent, we
consider some object U00 ∈ fg(c(U)). Since the sum in (22) is filtered, we must have some
U0 ∈ fg(U) such that U00 ⊆ c(N +U0). It follows from (21) that c(N +U00) ⊆ c(N +U0).
It now follows from (22) that c(c(U)) =

∑
U00∈fg(c(U)) c(N + U00) ⊆ c(U). Hence, c is a

closure operator of finite type.
From (21), (22) and the conditions (a) and (b) on T , it is clear that the right hand

side of (22) always lies in T for any object U ∈ Fin(N,M). Hence, if U ∈ Fin(N,M)
is such that c(U) = U , we must have U ∈ T . Conversely, take an arbitrary T ∈ T and
consider T0 ∈ fg(T ). Then, by (21), we know that c(N + T0) ⊆ N + T f . Applying (22),
we get c(T ) =

∑
T0∈fg(T ) c(N + T0) ⊆ N + T f = T . Since c is extensive, this implies

c(T ) = T .
(2)⇒ (1) : Let c : Fin(N,M) −→ Fin(N,M) be a closure operator of finite type and

let T := {Ti}i∈I = Finc(N,M). In order to show that T satisfies condition (a), we take
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a non-empty J ⊆ I and consider T :=
⋂
j∈J

fTj. Then, c(T ) ⊆
⋂
j∈J
c(Tj) =

⋂
j∈J
Tj and hence

c(T ) ⊆
⋂
j∈J

fTj = T . This shows that c(T ) = T and hence T satisfies condition (a).

On the other hand, let {Tk}k∈K be a collection of elements from T indexed by a filtered
set K. Set T :=

∑
k∈K Tk. Then, for any T0 ∈ fg(T ), we can find k0 ∈ K such that

T0 ⊆ Tk0 . Then, c(N + T0) ⊆ c(Tk0) = Tk0 ⊆ T . Since c is of finite type, we obtain
c(T ) =

∑
T0∈fg(T ) c(N + T0) ⊆ T . Hence, c(T ) = T , which proves condition (b).

We have noted before that the object N +M f is the unique object in Fin(N,M) that
contains every other object in Fin(N,M). Since any closure operator c : Fin(N,M) −→
Fin(N,M) must be extensive, it follows that N +M f must be fixed by c. In the last two
results, we will consider the set Finc(N,M) with the point N + M f removed. First, we
give conditions for Finc(N,M)\{N +M f} to be a spectral subspace of Fin(N,M).

4.3. Proposition. Let c : Fin(N,M) −→ Fin(N,M) be a closure operator of finite
type. Then, we have the following:

(a) If there exists M0 ∈ fg(M) such that N +M f = N +M0, then Finc(N,M)\{N +
M f} is a spectral subspace of Fin(N,M).

(b) Suppose that c : Fin(N,M) −→ Fin(N,M) satisfies the additional property that
for any M ′

0 ∈ fg(M), the object c(N + M ′
0) is given by c(N + M ′

0) = N + M ′
0 + M ′′

0 for
some finitely generated object M ′′

0 ∈ fg(M). Then, if Finc(N,M)\{N+M f} is a spectral
subspace of Fin(N,M), there exists M0 ∈ fg(M) such that N +M f = N +M0.

Proof. (a) For the sake of convenience, we set X := Finc(N,M)\{N + M f}. The sets
D(Q,N,M) ∩ X with D(Q,N,M) ∈ Sf (N,M) form a subbasis for the topology on X.
Then, we consider an ultrafilter F of subsets of X and set:

TF =
∑

T∈Finc(N,M),V (T,N,M)∩X∈F

T (23)

Now if T1, T2 ∈ Finc(N,M) are such that V (T1, N,M) ∩ X and V (T2, N,M) ∩ X both
lie in F, we note that c(T1 + T2) ∈ Finc(N,M) and V (c(T1 + T2), N,M) ∩X = V (T1 +
T2, N,M) ∩X = V (T1, N,M) ∩ V (T2, N,M) ∩X ∈ F. This shows that the sum in (23)
is filtered. We can also check as in the proof of Proposition 3.3 that TF ∈ Finc(N,M).

We now claim that TF 6= N +M f . Indeed, if TF = N +M f = N +M0, there must be
some term in the filtered sum (23) above that contains the finitely generated objectM0 and
hence that term must be equal to N +M f = N +M0. But then V (N +M f , N,M)∩X =
φ ∈ F which is a contradiction. Hence, TF ∈ X. It now follows as in the proof of
Proposition 3.3 that X is spectral.

(b) We take an arbitrary T ∈ X = Finc(N,M)\{N + M f}. Since T 6= N + M f ,
we can find some finitely generated Q0 ∈ fg(M) such that T 6⊇ Q0. Then, T ∈ D(N +
Q0, N,M) ∩X. Thus, the collection D(N + Q0, N,M) ∩X as Q0 varies over all objects
in fg(M) gives a cover of X. Since X is spectral and hence quasi-compact, this gives
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us a finite collection {Q1, ..., Qn} ⊆ fg(M) such that X =
⋃n

i=1D(N + Qi, N,M) ∩ X.
We now set Q :=

∑n
i=1Qi and consider the object c(N + Q) ∈ Finc(N,M). It is clear

from the definition of Q that c(N + Q) /∈ D(N + Qi, N,M) for each 1 ≤ i ≤ n. Hence,
c(N + Q) = N + M f . Finally, by assumption on c, we can find some Q′ ∈ fg(M) such
that c(N +Q) = N +Q+Q′. Hence, N +M f = c(N +Q) = N +Q+Q′, which proves
the result.

We conclude by giving a sufficient condition so that the set Finc(N,M) with the point
N +M f removed still contains maximal elements.

4.4. Proposition. Let c : Fin(N,M) −→ Fin(N,M) be a closure operator of finite
type. Suppose there exists M0 ∈ fg(M) such that N + M f = N + M0. Then, every
element in the set Finc(N,M)\{N +M f} is contained in a maximal element.

Proof. We consider a totally ordered collection {Ti}i∈I of objects in Finc(N,M)\{N +
M f} and set T :=

∑
i∈I Ti. We claim that T ∈ Finc(N,M). Indeed, for each T0 ∈ fg(T )

we can find i0 ∈ I with T0 ⊆ Ti0 and hence c(N + T0) ⊆ c(Ti0) = Ti0 ⊆ T . Since c is of
finite type, it follows that c(T ) =

∑
T0∈fg(T ) c(N + T0) ⊆ T .

We now claim that T 6= N + M f = N + M0. Otherwise, since M0 ∈ fg(M), we have
some i′0 ∈ I with M0 ⊆ Ti′0 . Then, N + M f = N + M0 ⊆ Ti′0 and N + M f being the
maximal element of Fin(N,M), we get N + M f = Ti′0 which is a contradiction. The
result follows from Zorn’s lemma.
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Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: ross.street@mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
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