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FREE OBJECTS OVER POSEMIGROUPS IN THE CATEGORY POSGR∨

SHENGWEI HAN, CHANGCHUN XIA, XIAOJUAN GU

ABSTRACT. As we all know, the complete lattice ID(S) of all D-ideals of a meet-semilattice
S is precisely the injective hull of S in the category of meet-semilattices. In this paper, we
consider sm-ideals of posemigroups which can be regarded as a generalization of D-ideals of
meet-semilattices. Unfortunately, the quantale R(S) of all sm-ideals of a posemigroup S is
in general not an injective hull of S. However, R(S) can be seen as a new type of quantale
completions of S. Further, we can see that R(S) is also a free object over S in the category
PoSgr∨ of posemigroups with sm-distributive join homomorphisms.

1. Introduction

Bruns and Lakser investigated the injective objects in the category of meet-semilattices with
meet-semilattice homomorphisms, and they also gave the concrete form of injective hulls of
meet-semilattices in [Bruns and Lakser (1970)]. Since partially ordered monoids (pomonoids
for short) can be regarded as a generalization of meet-semilattices, it is natural to consider the
injectivity in the category PoMon of pomonoids with pomonoid homomorphisms. However,
injective objects in PoMon are trivial [Lambek et al. (2012)]. Hence, Lambek et al. changed a
few of the definitions of pomonoid homomorphisms, chose submultiplicative order-preserving
maps as morphisms of the category PoMon≤ of pomonoids to investigate the injectivity in
PoMon≤, where a submultiplicative map between pomonoids is a map f : (A, ·,≤)→ (B,∗,≤)
such that f (a)∗ f (a′)≤ f (a ·a′) for all a,a′ ∈ A. Also, they proved that every pomonoid has an
injective hull and gave the concrete form of the injective hulls. Based on the work of Lambek
et al., dropping out the unit, Zhang and Laan considered the injective hulls in the category
PoSgr≤ of partially ordered semigroups (posemigroups for short) and their submultiplicative
order-preserving maps , and constructed the injective hulls for a certain class of posemigroups
with respect to a class of order embedding. In [Xia et al. (2017)], Xia, Han and Zhao proved
the existence of injective hulls and gave the concrete form of the injective hull of an arbitrary
posemigroup in the category PoSgr≤.

As we all know, injective hulls are unique up to isomorphism. In the category of meet-
semilattices, the injective hull of a meet-semilattice S is precisely the complete lattice ID(S)
of all D-deals of S with inclusion order [Bruns and Lakser (1970)]. Motivated by the con-
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struction of the injective hulls of meet-semilattices, Lambek wanted to carry over the way of
the construction of injective hulls from meet-semilattices to pomonoids. Hence, the candidate
for the injective hulls of pomonoids (posemigroups) may be the object R(S) consisting of all
down-closed sets that were closed under distributive joins. Unfortunately, the object R(S) is in
general not the injective hull of a pomonoid (posemigroup) S [Lambek et al. (2012)]. Then we
naturally ask for the question whether R(S) is possible to be some kind of special objects in the
category of posemigroups, which is the main motivation of this paper.

In [Han and Zhao (2008)], we investigated the quantale completions of posemigroups, and
proved that up to isomorphism the quantale completions of a posemigroup S are completely
determined by the topological closures on the power-set quantale (P(S),⊆,•). In [Han and
Zhao (2008), Xia et al. (2016)], we gave two classes of standard quantale completions of a
posemigroup S—the greatest quantale completion ((P(S))D ,⊆,⊗) and the smallest quantale
completion (S?,⊆,⊗). Whether there is another type of quantale completions for a posemi-
group except two classes of standard quantale completions is an unsolvable question in [Xia et
al. (2016)]. In fact, we can also see that (S?,⊆,⊗) is exactly the injective hull of a posemi-
group (pomonoid) S in the category PoSgr≤ (PoMon≤) [Xia et al. (2017)]. In this paper, we
shall prove that R(S) is a new type of quantale completions of a posemigroup S. Moreover, we
shall see that R(S) is also the free object over S in the category PoSgr∨ of posemigroups with
sm-distributive join homomorphisms.

A partially ordered semigroup (posemigroup for short) is a semigroup (S, ·) with a partial
order≤ on S which is compatible with the multiplication ·, that is, x≤ y⇒ x ·z≤ y ·z and z ·x≤
z · y for any z in S. A quantale is a complete lattice Q with an associative binary operation &
satisfying a&(

∨
i∈I bi) =

∨
i∈I(a&bi) and (

∨
i∈I bi)&a=

∨
i∈I(bi&a) for any a∈Q and {bi}i∈I ⊆

Q. Since a&− and −&a preserve arbitrary joins, they have right adjoints and we shall denote
them by a → − and − ← a respectively. Thus a&c ≤ b iff c ≤ a → b iff a ≤ b ← c. A
quantale homomorphism f : P→ Q is both a semigroup homomorphism and a complete lattice
homomorphism. A quantic nucleus j on a quantale Q is a submultiplicative closure operator
where a closure operator on Q is an order-preserving, expansive and idempotent map. It is easy
to show that j(a&b) = j(a& j(b)) = j( j(a)&b) = j( j(a)& j(b)) for all a,b ∈ Q. Furthermore,
we can also prove that the set Q j of fixed points of j is a quantale with a⊗ b = j(a&b) and
Q j∨

i∈Iai = j(
∨

i∈I ai). A subset S of Q is called a quantic quotient of Q if there exists some
quantic nucleus j such that S = Q j. Let j,k be two quantic nuclei on Q. Then we have that j ≤
k⇐⇒ Qk ⊆ Q j. Clearly, every quantale is necessarily a posemigroup. For a given semigroup
(S, ·), we denote by P(S) the set of all subsets of S. Clearly, (P(S),•) forms a quantale under
the inclusion order, where A•B = {a ·b : a∈ A,b∈ B}. When A = {a}, we write A•B and B•A
simply as a ·B and B · a. Then A •B ⊆ C⇔ A ⊆C← B and B •A ⊆C⇔ A ⊆ B→ C, where
C← B = {x ∈ S : x ·B⊆C} and B→C = {x ∈ S : B · x⊆C}.

For notions and concepts concerned, but not explained here, please refer to [Adámek et al.
(2004)], [Lambek et al. (2012)] and [Rosenthal (1990)].
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2. Quantale completions of posemigroups

In order to describe the revised semantic for intuitionistic linear logic, Larchey-Wendling and
Galmiche introduced the concept of quantale completions of pomonoids in [Larchey-Wendling
and Galmiche (2000)]. However, quantales mentioned in [Larchey-Wendling and Galmiche
(2000)] are called right semiquantales in [Rosenthal (1990)], which are not the real quantales
we usually speak of. Similar to the work of Larchey-Wendling and Galmiche, Han and Zhao
considered the concept of quantale completions of posemigroups, and proved that up to isomor-
phism the quantale completions of a posemigroup S are completely determined by the topolog-
ical closures on the power-set quantale P(S) [Han and Zhao (2008)].

2.1. DEFINITION. [Han and Zhao (2008)] A pair (i,Q) is called a quantale completion of a
posemigroup S if i : S→ Q is a posemigroup embedding into a quantale Q and i(S) is join-
dense in Q, that is, for any a ∈ Q, there exists Sa ⊆ S such that a =

∨
s∈Sa

i(s).

For convenience of the readers, we shall list some basic concepts and results on quantale
completions of posemigroups.

2.2. DEFINITION. [Han and Zhao (2008)] Let S be a posemigroup. A topological closure on
the power-set quantale P(S) is a quantic nucleus j on P(S) such that j({x}) = x↓ for all x∈ S.

2.3. PROPOSITION. [Han and Zhao (2008)] Let S be a posemigroup. Then (iQ,Q) is a quantale
completion of S if and only if there exists a topological closure j on P(S) and a quantale
isomorphism f : (P(S)) j→ Q such that iQ = f ◦ i(P(S)) j , where i(P(S)) j(s) = j({s}).

2.4. COROLLARY. [Han and Zhao (2008)] Let S be a posemigroup, j be a topological closure
on P(S). Then (i(P(S)) j ,(P(S)) j) is a quantale completion of S.

In what follows we shall give two classes of standard topological closures—the smallest
topological closure D and the greatest topological closure (·)? (see [Han and Zhao (2008), Xia
et al. (2016)]).

∀X ∈P(S), D(X) = X ↓, X? =: Xul∩XL∩XR∩XT ,

where
Xul =: {s ∈ S : ∀ b ∈ S,X ⊆ b↓ ⇒ s≤ b}

XL =: {s ∈ S : ∀ a,b ∈ S,X ·a⊆ b↓ ⇒ s ·a≤ b}

XR =: {s ∈ S : ∀ a,b ∈ S,a ·X ⊆ b↓ ⇒ a · s≤ b}

XT =: {s ∈ S : ∀ a,b,c ∈ S,a ·X · c⊆ b↓ ⇒ a · s · c≤ b}.

In this paper, we denote by S? the set of fixed points of (·)?, that is, S? = {A ∈P(S) : A? =
A}. Let (i1,Q1) and (i2,Q2) be quantale completions of a posemigroup S. Then there exist two
topological closures j1, j2 such that (P(S)) j1

∼= Q1 and (P(S)) j2
∼= Q2. If j1 ≤ j2, then we

say that Q2 is smaller than Q1 (or Q1 is greater than Q2), written as Q2 v Q1. In this sense,
if Q2 v Q1 and Q1 v Q2, then Q2 ∼= Q1. Hence, up to isomorphism (P(S))D is the greatest
quantale completion of S and S? is the smallest quantale completion of S. The greatest quantale
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completion and the smallest quantale completion play an important role in the study of free
objects and injective hulls [Kruml and Paseka (2008), Xia et al. (2017)]. Naturally, we consider
a question whether there exists another type of quantale completions of posemigroups except
two classes of standard quantale completioms, which is another motivation of this paper.

3. A new type of quantale completions

In this section, we shall prove that R(S) can be seen as a new type of quantale completions of
a posemigroup S. Furthermore, we can see that S? ⊆R(S) ⊆ (P(S))D . In general, S?, R(S)
and (P(S))D are not the same (see Example 3.13). First, we shall introduce the concept of sm-
ideals of posemigroups which can be regarded as a generalization of D-deals of meet-lattices
[Bruns and Lakser (1970)].

3.1. DEFINITION. Let (S, ·,≤) be a posemigroup, A ⊆ S. Then A is called left (right) m-
distributive if

∨
A exists and A satisfies the left (right) distributive law, that is, (

∨
A) ·s=

∨
(A ·s),

(s · (
∨

A) =
∨
(s ·A)) for all s ∈ S. A is called m-distributive if A is both left m-distributive and

right m-distributive.

3.2. REMARK. Let (S, ·,≤) be a posemigroup. Then

1. If A is a left (right) m-distributive subset of S, then A · s (s ·A) is left (right) m-distributive
for all s ∈ S.

2. If A is a m-distributive subset of a posemigroup S, then A · s and s ·A are not necessarily
m-distributive for all s ∈ S.

3.3. DEFINITION. Let A be a m-distributive subset of a posemigroup S. Then A is called strong
m-distributive (sm-distributive for short) provided that A · s is right m-distributive for all s ∈ S.

3.4. LEMMA. Let A be a m-distributive subset of a posemigroup S. Then A is sm-distributive
if and only if s ·A is left m-distributive for all s ∈ S.

PROOF. Let A be sm-distributive. Then for all x,s∈ S, we have that (
∨
(s ·A)) ·x=(s ·(

∨
A)) ·x=

s · ((
∨

A) · x) = s · (
∨
(A · x)) =

∨
(s · (A · x)) =

∨
((s ·A) · x), which implies that s ·A is left m-

distributive. By symmetry, we can prove the inverse.

3.5. REMARK. Let (S, ·,≤) be a posemigroup. Then

1. {x}, x↓ are sm-distributive for all x ∈ S.

2. If X is sm-distributive, then X · y and y ·X are also sm-distributive for all y ∈ S.

3. If (S,≤) is a complete lattice, then every subset of S is m-distributive if and only if S is a
quantale. Furthermore, every subset of a quantale is sm-distributive.

3.6. DEFINITION. Let (S, ·,≤) be a posemigroup. A lower set X of S is called a sm-ideal if
it is closed under sm-distributive joins, that is, for any subset D of X ,

∨
D ∈ X whenever D is

sm-distributive in (S, ·,≤). We denote by R(S) the set of all sm-ideals of S.
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3.7. REMARK. Let (S, ·,≤) be a posemigroup. Then

1. S ∈R(S).

2. For all x ∈ S, x↓∈R(S).

3. If (S, ·,≤) is a meet-semilattice and · = ∧, then A is a D-ideal of S if and only if S is a
sm-ideal of S.

4. If (S, ·,≤) is a quantale, then for any A ∈R(S), there exists an element s ∈ S such that
A = s↓.

3.8. LEMMA. [Rosenthal (1990)] If Q is a quantale and S ⊆ Q, then S is a quantic quotient if
and only if S is closed under infs, and a→ s,s← a ∈ S, whenever a ∈ Q and s ∈ S.

3.9. PROPOSITION. Let (S, ·,≤) be a posemigroup. Then R(S) is a quantic quotient of the
power-set quantale (P(S),⊆,•).

PROOF. It is easy to show that R(S) is closed under arbitrary meets, that is,
⋂
i∈I

Ai ∈R(S) for

all Ai ∈R(S). Let C ∈R(S), A ∈P(S). Then we have that C← A and A→C are in R(S).
Indeed: (1) Let y≤ x ∈C← A. Then x ·a ∈C for all a ∈ A. Since C is a lower set, one can see
that y ·a≤ x ·a∈C for all a∈ A, which implies that y∈C← A, that is, C← A is a lower set of S.
(2) Let D⊆C← A be a sm-distributive subset. Then D•A⊆C, which implies that D ·a⊆C for
all a ∈ A. Since D ·a is sm-distributive for all a ∈ A, we have ∨(D ·a) ∈C, that is, (∨D) ·a ∈C
for all a ∈ A. Thus, ∨D ∈C← A. By (1) and (2), we have C← A ∈R(S). Similarly, we have
A→C ∈R(S). Therefore, by Lemma 3.8 we have that R(S) is a quantic quotient of P(S).

3.10. REMARK. Let (S, ·,≤) be a posemigroup. Then there exists a quantic nucleus ρR such
that R(S) = (P(S))ρR

and ρR({x}) = x↓, that is, ρR is a topological closure on P(S).

By Corollary 2.4 and Remark 3.10, we have the following theorem.

3.11. THEOREM. Let (S, ·,≤) be a posemigroup. Then (ηS ,R(S)) is a quantale completion of
S, where ηS(s) = ρR({s}).

3.12. REMARK. If (S, ·,≤) be a quantale, then ηS is a quantale isomorphism.

By Theorem 3.11, we see that (ηS ,R(S)) is a quantale completion of a posemigroup S.
According to the description in Section 2, we have that S? ⊆R(S)⊆ (P(S))D . The following
example will indicate that R(S) lies strictly between S? and (P(S))D .

3.13. EXAMPLE. Let S be a posemigroup with the partial order ≤ determined by Figure 3.1
and the binary multiplication · defined by (3.1)
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Figure 3.1

∀x,y ∈ S, x · y =
{

0, if x = 0 or y = 0,
d, otherwise. (3.1)

One can easily verify that M is a sm-distributive subset of S if and only if
∨

M exists in S.
Therefore, we have

S? = {{0},{a,0},{b,0},{c,0},{a,b,d,0},S},

R(S) = {{0},{a,0},{b,0},{c,0},{a,c,0},{b,c,0},{a,b,d,0},S},

(P(S))D = {∅,{0},{a,0},{b,0},{c,0},{a,b,0},{a,c,0},{b,c,0},{a,b,c,0},{a,b,d,0},S}.

4. Free objects over posemigroups in the category PoSgr∨
In this section, we shall show that R(S) is in fact a free object over S in the category PoSgr∨ of
posemigroups with sm-distributive join homomorphisms. First, we shall introduce the concept
of sm-distributive join homomorphisms.

4.1. DEFINITION. Let (S, ·,≤) and (T,∗,≤) be posemigroups. Then a map f : S→ T is called
a sm-distributive join homomorphism if for any sm-distributive subset X of S, f (X) is sm-
distributive with f (

∨
X) =

∨
f (X) and f is a semigroup homomorphism.

Let PoSgr∨ the category of posemigroups with sm-distributive join homomorphisms. By
Remark 3.5(3), we have that the sm-distributive join homomorphisms between quantales are
exactly the quantale homomorphisms, which implies that the category Quant of quantales with
quantale homomorphisms is a full subcategory of PoSgr∨.

4.2. LEMMA. Let (S, ·,≤) be a posemigroup. Then for all a ∈ S,X ∈ R(S), we have that
(−·a)−1(X),(a ·−)−1(X) ∈R(S).

PROOF. The proof is straightforward.

In the following, we shall give a characterization for sm-distributive join homomorphisms
between posemigroups.

4.3. LEMMA. Let f : (S,≤, ·)→ (T,≤,∗) be a semigroup homomorphism between posemi-
groups. Then f is a sm-distributive join homomorphism if and only if f−1(X) ∈R(S) for all
X ∈R(T ).
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PROOF. Assume that f is a sm-distributive join homomorphism and X is a sm-ideal of T , that
is, X ∈R(T ). One can easily prove that f is order-preserving, which implies that f−1(X) is a
lower set of S. For any sm-distributive subset A of f−1(X), we have that f (A)⊆ X and f (

∨
A) =∨

f (A). Since X is a sm-ideal and f (A) is a sm-distributive subset of X , we have f (
∨

A) ∈ X ,
which implies

∨
A ∈ f−1(X). Thus, f−1(X) is a sm-ideal of S, that is, f−1(X) ∈R(S).

Conversely, it suffices to prove that f (X) is sm-distributive with f (
∨

X) =
∨

f (X) for any
sm-distributive set X of S.

(1) f is order-preserving. Let x,y ∈ S with x ≤ y. Then from Remark 3.7 it follows that
f−1( f (y) ↓) ∈ R(S). Since y ∈ f−1( f (y) ↓), we have x ∈ f−1( f (y) ↓), which implies that
f (x)≤ f (y).

(2) f (
∨

X) =
∨

f (X). Obviously, f (
∨

X) is an upper bound of f (X). Assume that t ∈ T is
an arbitrary upper bound of f (X), then X ⊆ f−1(t ↓). Since f−1(t ↓) is a sm-ideal and

∨
X ∈

f−1(t ↓), we have f (
∨

X)≤ t. Thus, f (
∨

X) =
∨

f (X).
(3) f (X) is sm-distributive. For any x∈ T , x∗(

∨
f (X)) is clearly an upper bound of x∗ f (X).

Assume that t ∈ T is an arbitrary upper bound of x∗ f (X), then x∗ f (X)⊆ t↓. From Lemma 4.2,
it follows that f (X) ⊆ (x ∗−)−1(t ↓) ∈ R(T ). By the assumption of f , we have that X ⊆
f−1((x ∗−)−1(t ↓)) and

∨
X ∈ f−1((x ∗−)−1(t ↓)), which implies that x ∗ f (

∨
X) ≤ t. Thus,

x ∗ (
∨

f (X)) =
∨
(x ∗ f (X)). Similarly, (

∨
f (X)) ∗ x =

∨
( f (X) ∗ x). So, we have that f (X)

is m-distributive. In the following we shall prove that for any x ∈ T , f (X) ∗ x is right sm-
distributive. For any y∈ T , y∗(

∨
( f (X)∗x)) is clearly an upper bound of y∗( f (X)∗x). Suppose

that t ∈ S is an arbitrary upper bound of y ∗ ( f (X) ∗ x). Then we have y ∗ ( f (X) ∗ x) ⊆ t ↓
and X ⊆ f−1((y ∗−)−1((−∗x)−1(t ↓))). Since X is sm-distributive, by Lemma 4.2 and the
assumption of f we have that

∨
X ∈ f−1((y ∗−)−1((−∗x)−1(t ↓))) and (y ∗ f (

∨
X)) ∗ x ≤ t,

which implies
∨
(y∗ ( f (X)∗ x)) = y∗ (

∨
( f (X)∗ x)). Thus, f (X) is sm-distributive.

4.4. LEMMA. Let f : (S, ·,≤)→ (T,∗,≤) be a sm-distributive join homomorphism between
posemigroups. Then

1. ρR( f (X)) = ρR( f (ρR(X))) for all X ∈P(S).

2. Ff : R(S)→R(T ) is a quantale homomorphism, where Ff (X) = ρR( f (X)).

PROOF. (1) It is obvious to see that ρR( f (X)) ⊆ ρR( f (ρR(X))). From Lemma 4.3, it follows
that f (X)⊆ ρR( f (X)) =⇒ X ⊆ f−1(ρR( f (X))) =⇒ ρR(X)⊆ f−1(ρR( f (X))) =⇒ f (ρR(X))⊆
ρR( f (X)) =⇒ ρR( f (ρR(X)))⊆ ρR( f (X)). Thus, ρR( f (X)) = ρR( f (ρR(X))).

(2) Define a map G : R(T )→R(S) as follows G(Y ) = f−1(Y ). From Lemma 4.3, it follows
that G is well defined. Since Ff (X)⊆Y ⇔ ρR( f (X)))⊆Y ⇔ f (X)⊆Y ⇔ X ⊆ f−1(Y )⇔ X ⊆
G(Y ) for all X ∈R(S),Y ∈R(T ), we have that F is the left adjoint of G, which implies that
Ff preserves arbitrary joins. For all A,B ∈R(S), by (1) we have Ff (A⊗B) = ρR( f (A⊗B)) =
ρR( f (ρR(A•B))) = ρR( f (A•B)) = ρR( f (A)• f (B)) = ρR( f (A))⊗ρR( f (B)) = Ff (A)⊗Ff (B).
Thus, Ff is a quantale homomorphism.

4.5. THEOREM. R(S) is a free object over a posemigroup S in the category Posgr∨.
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PROOF. As we have seen above, Quant is a full subcategory of Posgr∨. Let S be a posemigroup.
Then by Proposition 3.9 we see that R(S) is a quantale. Further, by Theorem 3.11 we have that
ηS : S→ R(S) is a semigroup homomorphism which is order-preserving. By Remark 3.5(3)
and Remark 3.7, we have that for all A ∈P(S), ηS(A) is sm-distributive in R(S). For any
sm-distributive subset A of S, we claim that ηS(

∨
A) =

∨
a∈A

ηS(a). It is easy to see that ηS(a)⊆

ηS(
∨

A) for all a ∈ A. Let B ∈R(S) with ηS(a)⊆ B for all a ∈ A. Then A⊆ B. Since B ∈R(S)
and A is sm-distributive, we have that

∨
A ∈ B and ηS(

∨
A) ⊆ B, which implies ηS(

∨
A) =∨

a∈A
ηS(a). Thus, ηS is a sm-distributive join homomorphism. In what follows we shall prove

that ηS : S→R(S) has the universal property.
Let f : S → Q be a sm-distributive join homomorphism into a quantale Q. We let f̄ =

(ηQ)
−1 ◦ Ff . First, we shall prove f̄ ◦ ηS = f . By Remark 3.12 and Lemma 4.4, we have

that f̄ is a quantale homomorphism. For all x ∈ S, we have f̄ ◦ηS(x) = (ηQ)
−1 ◦Ff (x ↓) =

(ηQ)
−1( f (x)↓) = f (x). Next, we shall prove the uniqueness of f̄ . Suppose that g : R(S)→ Q

is another quantale homomorphism such that g◦ηS = f , then g(x↓) = f̄ (x↓) for any x ∈ S. By

Lemma 4.4(2), we have that for any X ∈R(S), f̄ (X) = f̄ (
R(S)∨
x∈X

x↓) =
Q∨

x∈X
f̄ (x↓) =

Q∨
x∈X

g(x↓) =

g(
R(S)∨
x∈X

x↓) = g(X), which implies that g = f̄ .

4.6. COROLLARY. Quant is a full reflective subcategory of Posgr∨.
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