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WITT VECTORS AND TRUNCATION POSETS

VIGLEIK ANGELTVEIT

Abstract. One way to define Witt vectors starts with a truncation set S ⊂ N. We
generalize Witt vectors to truncation posets, and show how three types of maps of
truncation posets can be used to encode the following six structure maps on Witt vectors:
addition, multiplication, restriction, Frobenius, Verschiebung and norm.

1. Introduction

Classically the theory of Witt vectors comes in two flavors, the p-typical Witt vectors
W (k; p) and the big Witt vectors W(k). Those are special cases of Witt vectors defined
using a truncation set S, and the extra flexibility coming from varying the truncation set
has proven quite useful.

In this paper we take the use of truncation sets one step further by introducing trun-
cation posets, and redevelop the foundations of Witt vectors from this point of view. The
existence of all the usual structure maps of Witt vectors is easy to establish using this
formalism. We give explicit formulas on ghost coordinates and isolate all the necessary
congruences in a single lemma due to Dwork (Lemma 3.1).

Recall that a truncation set is a set S ⊂ N = {1, 2, . . .} which is closed under division.
Given a truncation set S and a commutative ring k, one can define the ring WS(k) of Witt
vectors. As a set this is kS, and the addition and multiplication maps are determined
by requiring that the ghost map w : WS(k) → kS is a ring map, functorially in the ring
k. With S = {1, p, p2, . . .} this recovers the p-typical Witt vectors and with S = N it
recovers the big Witt vectors.

In recent work related to various algebraic K-theory calculations more general trun-
cation sets have come up. For example, when studying the algebraic K-theory of the
ring k[x1, . . . , xn]/(xa11 , . . . , x

an
n ) in [4] it turned out to be natural to consider certain sub-

sets of Nn, and in [2] where we calculate the algebraic K-theory of k〈x1, . . . , xn〉/ma,
the polynomial ring in n non-commuting variables modulo the a’th power of the ideal
m = (x1, . . . , xn), we were led to consider certain subsets of the set of words in n letters.

It is always possible to unpack truncation poset Witt vectors as a product of classical
Witt vectors in a unique way (up to permutations), and to describe the maps in terms of
the structure maps of classical Witt vectors. But this unpacking is messy, and naturally
defined maps of truncation poset Witt vectors have to be divided into cases when consid-

Received by the editors 2015-02-02 and, in final form, 2017-02-08.
Transmitted by Clemens Berger. Published on 2017-02-10.
2010 Mathematics Subject Classification: 13F35.
Key words and phrases: Witt vectors, truncation posets, Tambara functors.
c© Vigleik Angeltveit, 2017. Permission to copy for private use granted.

258



WITT VECTORS AND TRUNCATION POSETS 259

ering only the classical Witt vectors. We claim that by considering truncation posets the
above-mentioned K-theory calculations become somewhat easier to carry out, and the
results become significantly easier to state.

For example, when considering the truncation posets in Nn from [4], the Verschiebung
V i
r : WS/(1,...,r,...,1)(k)→WS(k) splits as a product of Verschiebung maps on each classical

Witt vector factor, but which Vj is used on which factor is somewhat complicated (compare
[4, Prop. 2.7]). We will return to another example in [2], where we calculate K∗(A,m)
for A = k〈x1, . . . , xn〉/ma when k is a perfect field of positive characteristic. We find that
the K-theory in degree 2q − 1 and 2q sit in an exact sequence

0→ K2q(A,m)→WSn(a,aq)(k)
V 1
a−→WSn(1,aq)(k)→ K2q−1(A,m)→ 0

for certain truncation posets Sn(a, aq) and Sn(1, aq) (see also Example 2.13 and 2.29 in
this paper). Compare this to the description in the case a = 2 found by Lindenstrauss
and McCarthy [8, Theorem 7.3 andf 7.4].

Given a truncation poset S as in Definition 2.3 below and a commutative ring k, we
will define the S-Witt vectors WS(k) to be kS as a set. We will then make the collection of
truncation posets into a category, and S 7→WS(k) into a functor, in a number of different
ways by considering three types of maps.

The first type of map, which we call an R-map, is most general. Given an R-map
f : S → T of truncation posets we get an induced map f ∗ : WT (k)→WS(k). By varying
S, T and f this recovers all composites of the classical restriction and Frobenius maps,
as well as diagonal maps. Classically the restriction and Frobenius maps are defined in
rather different ways, so it is perhaps surprising that the two definitions can be unified in
this way.

The second type of map, which we call a T -map, is an R-map satisfying certain
additional conditions. Given a T -map f : S → T of truncation posets we get an induced
map f⊕ : WS(k)→WT (k), and by varying S, T and f this recovers all composites of the
addition map and Verschiebung maps on the classical Witt vectors.

We can combine these two kinds of maps and define a category T PTR. An object of
T PTR is a truncation poset, and a morphism is an equivalence class of spans

S
f←− A

g−→ T

where f is an R-map and g is a T -map. This is similar to the definition of a G-Mackey
functor in terms of spans of finite G-sets for a finite group G. See Theorem 4.6 in the
body of the paper.

Finally, we define a third type of map of truncation posets that we call an N -map.
This is an R-map satisfying certain (stronger) additional conditions. Given an N -map
f : S → T we get an induced map f⊗ : WS(k)→WT (k) which encodes all composites of
the multiplication map and norm maps on the classical Witt vectors.

We can combine all three kinds of maps to define a category T PTNR of truncation
posets with transfer, norm and restriction. We then have the following result, which we
also restate as Theorem 5.14.
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1.1. Theorem. Let k be a commutative ring. There is a functor

W(k) : T PTNR → Set

given on objects by S 7→ WS(k) which encodes all addition, multiplication, restriction,
Frobenius, Verschiebung and norm maps of ordinary Witt vectors.

While one can argue that some category encoding all of this information must exist for
formal reasons, our category T PTNR has a very concrete description in terms of generators
and relations, and it is easy to perform calculations on ghost coordinates.

We make some remarks.

1.2. Remark. The norm map is perhaps less classical than the other maps encoded by
T PTNR. It can be thought of as a multiplicative version of the Verschiebung. Its existence
can be deduced from Brun’s paper [5], but see [1] for a concrete definition with explicit
formulas.

1.3. Remark. The machinery developed in this paper is similar in flavor to that of
Tambara functors (see [10] or [9]). In fact, Tambara called what has become known as a
Tambara functor a TNR-functor. But there are some differences.

First, there is no analogue of the restriction map in the context of equivariant stable
homotopy theory unless one is willing to consider cyclotomic spectra. What topologists
usually refer to as a restriction map corresponds to the Frobenius map of Witt vectors.
To avoid confusion we will avoid the conflicting terminology from algebraic topology in
this paper, although we do borrow the acronym TNR.

And second, a Tambara functor can be defined as a functor from the category of
bispans

X ← A→ B → Y,

of finite G-sets, and while the definition of composition of two bispans is somewhat com-
plicated it is possible to represent any composite of restrictions (which we should call
Frobenius), norms and transfers, in any order, as a bispan. In our case T PTNR is also
built from three types of maps, but it is not true that any map in T PTNR can be repre-
sented by a bispan.

One might argue that this indicates that our definition of a truncation poset is too
general. We remedy this by defining a subcategory T PTNRjoin containing only certain espe-

cially nice truncation posets, and show that any map in T PTNRjoin can indeed be represented
by a bispan. But note that the truncation posets that show up in K-theory calculations
are not usually in T PTNRjoin .

1.4. Outline. We start in Section 2 by defining the main new player, the truncation
poset. In Section 3 we describe how to generalize Witt vectors from ordinary truncation
sets to truncation posets, and explain how S 7→ WS(k) defines a functor out of each of
the three categories T PT , T PN and (T PR)op.

In Section 4 we combine the category T PT with (T PR)op by considering the category
freely generated by maps in T PT and (T PR)op, modulo certain explicit relations. Any
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map in T PTR can be described by a span of truncation posets where the first leg is in
T PR and the second leg is in T PT . Then S 7→WS(k) becomes a functor from T PTR to
sets. This is similar in flavor to the definition of a Mackey functor.

In Section 5, which is significantly more difficult both because of the difficulty with
commuting an R-map past an N -map and because of the combinatorics involved in defin-
ing an exponential diagram, we combine all three of the categories T PT , T PN and
(T PR)op and show that S 7→ WS(k) is a functor from T PTNR to sets. This is simi-
lar in flavor to the definition of a Tambara functor, but see Remark 1.3 above.

Finally, in Section 6 we show that if we restrict our attention to certain especially nice
truncation posets we can define a category T PTNRjoin where every morphism can in fact be
represented, in an essentially unique way, by a bispan of truncation posets. We finish by
comparing functors out of a particular subcategory of T PTNRjoin to Tambara functors for a
finite cyclic group.

1.5. Acknowledgements. The definition of a truncation poset was inspired by the
author’s joint work with Gerhardt, Hill and Lindenstrauss [4], and by our subsequent
attempt at finding a common generalization of the n-dimensional Witt vectors we intro-
duced in [4] and the Dress-Siebeneicher Witt vectors from [6]. One approach we outlined
contained a definition that was quite similar to the definition of a truncation poset pre-
sented here.

This paper was also inspired by the author’s joint work with Anna Marie Bohmann
on graded Tambara functors [3], and by conversations with Ayelet Lindenstrauss and
Lars Hesselholt about algebraic K-theory calculations. We have also borrowed some of
the Witt vector formalism from Hesselholt’s article [7]. The author would also like to
thank James Borger and Arnab Saha for interesting conversations about Witt vectors,
and Chuck Weibel for suggesting the name truncation poset.

This work was supported by the Australian Research Council grant DP120101399.

2. Truncation posets and maps between them

If S is a partially ordered set we write s | t rather than s ≤ t for the partial order. We
will consider N as a partially ordered set ordered by division.

2.1. Ordinary truncation sets and classical Witt vectors. We will refer to
anything defined in terms of ordinary truncation sets as “classical”. With the exception
of the norm map, this material is well known. See for example [7, Section 1]. Recall that
S ⊂ N is a truncation set if s ∈ S and t | s implies t ∈ S. For a commutative ring k, the
ring of S-Witt vectors WS(k) is defined to be kS as a set. The addition and multiplication
maps are defined by the requirement that the ghost map

w : WS(k)→ kS
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defined by

(as) 7→ 〈xs〉 xs =
∑
d|s

da
s/d
d

is a ring map, functorially in the ring k. We make the standing assumption that everything
in this paper is required to be functorial in k.

We will need the following constructions. If n ∈ N and S is a truncation set, let

S/n = {t ∈ N | nt ∈ S}.

This is another truncation set. The classical Frobenius map is defined as the map

Fn : WS(k)→WS/n(k)

which is given on ghost coordinates by 〈xs〉 7→ 〈yt〉 with yt = xnt.
There is also a map going the other way. The classical Verschiebung map is defined

as the map
Vn : WS/n(k)→WS(k).

which is given on Witt coordinates by (bt) 7→ (as) with as = bs/n if n | s and 0 if n - s.
Alternatively it can be defined on ghost coordinates by 〈yt〉 7→ 〈xs〉 with xs = nys/n if
n | s and 0 if n - s.

For n ∈ N we let 〈n〉 denote the truncation set of divisors of n. Given a truncation
set S we get another truncation set

〈n〉S = {t ∈ N | t = es for some e | n, s ∈ S}.

It follows immediately that (〈n〉S)/n = S, so in particular we have a Verschiebung map
Vn : WS(k)→W〈n〉S(k). But by [1] we also have a norm map (the “classical” norm)

Nn : WS(k)→W〈n〉S(k).

This can be defined on ghost coordinates by 〈xs〉 7→ 〈yt〉 where

yt = xgt/g, g = gcd(n, t).

Finally, if T ⊂ S is another truncation set there is a classical restriction map

RS
T : WS(k)→WT (k).

This can be defined either on Witt coordinates by (RS
T (as))t = at or on ghost coordinates

by (RS
T 〈xs〉)t = xt.

Note that specifying n ∈ N and the source WS(k) uniquely determines the target of
the norm map Nn but not the target of the Verschiebung map Vn. However, given a
truncation set T with T/n = S it is true that 〈n〉S ⊂ T , and that the diagram

WS(k)
Vn //

Vn %%

WT (k)

RT
〈n〉S
��

W〈n〉S(k)
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commutes. Given (as) ∈ WS(k), the image Vn(as) ∈ WT (k) is padded with zeroes. But
because the formula for Nn(an) is more complicated, padding with zeroes does not work
in this case. See Example 5.2 below for a concrete example of this problem with the norm
map.

2.2. Truncation posets. Inspired by [4] and subsequent discussions with Gerhardt,
Hill and Lindenstrauss we make the following definition.

2.3. Definition. A truncation poset is a partially ordered set S together with a function

| − | : S → N

satisfying the following properties.

1. If s | t then |s| | |t|.

2. If d | |s| then there is a unique t ∈ S with t | s and |t| = |s|/d. In particular there
is a unique t ∈ S with t | s and |t| = 1.

3. If s ∈ S and d ∈ N there is at most one t ∈ S with s | t and |t| = d|s|.
In fact all truncation posets split up as a disjoint union.

2.4. Lemma. Let S be a truncation poset. Then there is a unique splitting S =
∐
Si with

each Si isomorphic to an ordinary truncation set via | − |.
Proof. Let I = {i ∈ S | |i| = 1}. Then it is clear from the definition that S =

∐
i∈I
Si

with Si = {s ∈ S | i | s}.
We call each Si ⊂ S as in the above lemma a connected component of S. For ease of

notation we will sometimes write t/s for the natural number |t||s| and s/d for the unique

t ∈ S with t | s and |t| = |s|/d. If there is a possibility for confusion we will write |s|S for
|s|.

2.5. Remark. Suppose we are given a poset S and a natural number t/s for each s | t in
S. Then there is at most one way to define |−| in such a way that S becomes a truncation
poset. Indeed, we must have

|s| = max{s/t | t | s}.

It is not hard to translate the conditions in Definition 2.3 into conditions on the natural
numbers t/s for each s | t in a poset S.

2.6. Definition. Let S be a truncation poset and let k be a commutative ring. The
S-Witt vectors of k, denoted WS(k), is the set kS. The ghost map is the map

w : WS(k)→ kS

sending the vector (as) to the vector 〈xs〉 with

xs =
∑
t|s

|t|as/tt .
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2.7. Lemma. If S and T are truncation posets then so is S
∐
T , and there is a canonical

isomorphism
WS

∐
T (k) ∼= WS(k)×WT (k).

Moreover, this isomorphism is compatible with the canonical isomorphism kS
∐
T ∼= kS×kT

under the ghost map.

Proof. This is clear by inspection of the definitions.

We will describe the various structure maps that exist in Section 3 below. But first
we present a series of examples of truncation posets and define the maps of truncation
posets we will need.

2.8. Example. An ordinary truncation set S ⊂ N is a truncation poset with |− | defined
to be the identity map.

2.9. Example. Let n ∈ N. The subset nN ⊂ N is a truncation poset with |s|nN = s/n.
The multiplication by n map N→ nN is an isomorphism of truncation posets.

The next two examples appeared in [4], the first one explicitly and the second one
implicitly.

2.10. Example. We consider Nn as a partially ordered set where (t1, . . . , tn) | (s1, . . . , sn)
if there is some d ∈ N with (dt1, . . . , dtn) = (s1, . . . , sn). A subset S ⊂ Nn which is closed
under division in the sense that if (s1, . . . , sn) ∈ S and d | si for all 1 ≤ i ≤ n then
(s1/d, . . . , sn/d) ∈ S, is a truncation poset with |(s1, . . . , sn)| = gcd(s1, . . . , sn).

2.11. Example. Fix positive integers a1, . . . , an. A subset S ⊂ Nn which satisfies ai | si
for all (s1, . . . , sn) ∈ S and 1 ≤ i ≤ n, and which is closed under division by n-tuples
satisfying the same condition, is a truncation poset with |s1, . . . , sn| = gcd( s1

a1
, . . . , sn

an
).

2.12. Example. Put a partial order on the set of words in n letters by saying w1 | w2

if w2 = wd1 for some d ∈ N. Define |w2| = d if w2 = wd1 with w1 irreducible (meaning w1

is not a power of a shorter word). For example, |x1x2x1x2| = 2. Then a set S of words
which is closed under division is a truncation poset.

The next example is central to the calculation of the algebraic K-theory of a truncated
polynomial ring in non-commuting variables, see [2].

2.13. Example. Fix a positive integer a and consider words in n letters of length divisible
by a, modulo the equivalence relation given by cyclically permuting blocks of a letters.
A set of such words which is closed under division in the same sense as in the previous
example, and with | − | defined in the same way, is a truncation poset. For example, if
a = 1 the words x1x2x1x2 and x2x1x2x1 are equivalent but if a = 2 or a = 4 they are not.
If a = 1 or a = 2 then |x1x2x1x2| = 2 but if a = 4 then |x1x2x1x2| = 1.

We could go on, but we hope the above examples have convinced the reader that
truncation posets are in rich supply.
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2.14. Maps of truncation posets. The structure maps for Witt vectors will come
from maps of truncation posets. We make the following definition.

2.15. Definition. A map f : S → T of truncation posets is a map of sets such that if
s1 | s2 then f(s1) | f(s2) and |f(s2)|

|f(s1)| = |s2|
|s1| .

If S =
∐
i∈I
Si is a splitting into ordinary truncation sets as in Lemma 2.4 above with

i ∈ Si and |i| = 1, then f : S → T is uniquely determined by f(i) for i ∈ I.
For maximal similarity with the later definitions we will sometimes call a map of

truncation posets an R-map. It is clear that such maps compose and that we get a
category T PR of truncation posets and R-maps.

2.16. Example. Let f : T ⊂ S be an inclusion of ordinary truncation sets. Then f is a
map of truncation posets.

2.17. Example. Let S be an ordinary truncation set and let T = nN ∩ S ⊂ S. Then T
is a truncation poset as in Example 2.9 above and the inclusion f : T → S is a map of
truncation posets. Moreover, the map

1

n
: T → S/n

is an isomorphism of truncation posets. We will switch back and forth between thinking
about the inclusion nN ∩ S ⊂ S and the multiplication by n map S/n→ S.

2.18. Example. As a special case of the previous example, let S be an ordinary trunca-
tion set. Then the multiplication by n map S

n−→ 〈n〉S is a map of truncation posets.

2.19. Example. Let S be any truncation poset. Then the fold map ∇ : S
∐
S → S is a

map of truncation posets.

Any map of truncation posets will induce a map between Witt vectors, and some maps
will induce two or three different maps. For the extra maps we need additional conditions.

2.20. Definition. A map f : S → T of truncation posets is a T -map (T for transfer,
not for the target of the map) if it satisfies the following additional conditions.

1. For every s ∈ S and t′ ∈ T with f(s) | t′ there exists an s′ ∈ S with s | s′ and
f(s′) = t′.

2. For every t ∈ T the set f−1(t) is finite.

If f satisfies the first condition (but not necessarily the second) we say that f is a
fibration.

It is clear that we get a category T PT of truncation posets and T -maps. To get a
better understanding of T PT , we first consider ordinary truncation sets.
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2.21. Lemma. Suppose U and V are ordinary truncation sets. Then g : U → V is a
T -map if and only if U = V/n and g is multiplication by n as in Example 2.17.

Proof. Let n = g(1), and note that g is injective. We can define a map g′ : U → V/n by

g′(u) = g(u)
n

, and then g factors as U
g′−→ V/n

n−→ V . The map g′ is injective and satisfies
g′(1) = 1. Now condition (1) in Definition 2.20 implies that g′ is also surjective.

2.22. Lemma. Suppose f : S → T is a T -map of truncation posets. Decompose S and T
as S =

∐
i Si and T =

∐
j Tj with each Si and Tj isomorphic to an ordinary truncation

set as in Lemma 2.4. Then f is the coproduct of maps

Si
fi−→ Tj ⊂ T,

and each fi is isomorphic to a T -map of classical truncation sets of the form ni : Vj/ni →
Vj.

Proof. This follows immediately from Lemma 2.21.

We need one more version of a map of truncation posets.

2.23. Definition. A map f : S → T of truncation posets is an N -map (N for norm) if
it satisfies the following additional conditions.

1. For every s ∈ S and t′ ∈ T with t′ in the same connected component as f(s) there
exists an s′ ∈ S in the same connected component as s with t′ | f(s′).

2. For every t ∈ T the set

f̂−1(t) = minimal elements of {s ∈ S | t | f(s)}

is finite.

Here an s ∈ S with t | f(s) is minimal if there is no s′ ∈ S with s′ | s, s′ 6= s, and

t | f(s′). The set f̂−1(t) contains exactly one element in each connected component of S
that maps to the connected component of T containing t.

We note that being an N -map is a stronger condition than being a T -map. Indeed, if
f : S → T is an N -map and f(s) | t′ we get an s′′ in the same connected component as

s with t′ | f(s′′). But then f(s) | t′ | f(s′′) implies that s | s′′ and that d = |f(s′′)|
|t′| | |s

′′|.
Hence we can let s′ = s′′

d
. It follows that s | s′ and that f(s′) = t′.

The generalization f̂−1(t) of inverse image is compatible with composition in the fol-
lowing sense:

2.24. Lemma. Suppose we have a composite of N-maps S
f−→ T

g−→ U . Then the composite

subsets of U
ĝ−1

−−→ subsets of T
f̂−1

−−→ subsets of S

agrees with

subsets of U
̂(g◦f)−1

−−−−→ subsets of S.
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Proof. This is a straightforward verification. To show that ̂(g ◦ f)−1(u) is contained in

f̂−1(ĝ−1(u)), take s ∈ ̂(g ◦ f)−1(u). Then gcd(|s|, |g(f(s))||u| ) = 1. Now let t = f(s)
d

, where

d = gcd(|f(s)|, |g(f(s))||u| ). It follows that t ∈ ĝ−1(u) and that s ∈ f̂−1(t), so s ∈ f̂−1(ĝ−1(u)).
The opposite inclusion is similar.

We get a category T PN of truncation posets and N -maps. We note the following
consequence of the definition of an N -map.

2.25. Lemma. Suppose f : S → T is an N-map. Given t, t′ ∈ T with t | t′ and s ∈ f̂−1(t)
there is a unique s′ ∈ f̂−1(t′) with s | s′. Conversely, given s′ ∈ f̂−1(t′) there is a unique

s ∈ f̂−1(t) with s | s′. Moreover, |t||s| divides |t
′|
|s′| .

Proof. Given t′ ∈ T with t | t′, the definition of an N -map gives us some s′ in the same
connected component as s with t′ | f(s′). If we require s′ to be minimal then s′ is unique.

But then t | f(s′) and we get an element s′′ ∈ f̂−1(t) defined by s′′ = s′

d
with d =

gcd(|s′|, |f(s
′)|
|t| ). It follows that s = s′′ since they are in the same connected component

and satisfy the same minimality condition. Hence s = s′′ | s′.
For the converse, note that s′ ∈ f̂−1(t′) also satisfies t | f(s′). We can then define s

by requiring that s | s′ and t | f(s), and that s is minimal.

To get a better understanding of T PN , we first consider ordinary truncation sets.

2.26. Lemma. Suppose U and V are ordinary truncation sets. Then g : U → V is an
N-map if and only if V = 〈n〉U and g is multiplication by n as in Example 2.18.

Proof. Let n = g(1). Then g factors as U
n−→ 〈n〉U g′−→ V . Now g′ is automatically

injective, and condition (1) in Definition 2.23 implies that g′ is also surjective.

For an N -map of truncation posets we then get the following:

2.27. Lemma. Suppose f : S → T is an N-map. Decompose S and T as S =
∐

i Si and
T =

∐
j Tj with each Si and Tj isomorphic to an ordinary truncation set as in Lemma

2.4. Then f is the coproduct of maps

Si
fi−→ Tj ⊂ T,

and each fi is isomorphic to a map of the form Ui
ni−→ 〈ni〉Ui as in Example 2.18.

Moreover, only finitely many Si map to each Tj.

2.28. Example. Fix positive integers a1, . . . , an and b1, . . . , bn with each ai | bi. Also fix
N ∈ N ∪ {∞}. Let S ⊂ Nn be the following truncation poset:

S = {(s1, . . . , sn) ∈ Nn | ai | si and s1 + . . .+ sn ≤ N}

with
|(s1, . . . , sn)| = gcd

(s1
a1
, . . . ,

sn
an

)
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as in Example 2.11.
Similarly, let T ⊂ Nn be the truncation poset

T = {(t1, . . . , tn) ∈ Nn | bi | ti and t1 + . . .+ tn ≤ N}

with

|(t1, . . . , tn)| = gcd
( t1
b1
, . . . ,

tn
bn

)
.

Then the inclusion T ⊂ S is a T -map but not generally an N -map.

2.29. Example. Fix positive integers a and b with a | b. Also fix N ∈ N ∪ {∞}. Let S
be the following truncation poset:

S = {words in x1, . . . , xn of length ≤ N and word length divisible by a}/ ∼a

where ∼a is the equivalence relation given by cyclically permuting blocks of a letters as
in Example 2.13.

Similarly, let T be the truncation poset

T = {words in x1, . . . , xn of length ≤ N and word length divisible by b}/ ∼b .

Then there is a natural map T → S sending the equivalence class [w]∼b
of a word to [w]∼a ,

and this map is a T -map but not generally an N -map.

2.30. Remark. Note that we never require |f(s)| = |s|, and that in the interesting
examples |s| is not defined in the most obvious way.

3. Witt vectors as functors from T P
Before we say anything about how to combine the categories T PT , T PN and (T PR)op

we describe the Witt vectors as a functor from each individual category. We will use
the following result, which Hesselholt [7] attributes to Dwork in the case of an ordinary
truncation set.

3.1. Lemma. Let S be a truncation poset and let k be a commutative ring. Suppose that
for every prime p, there exists a ring homomorphism φp : k → k such that φp(a) ≡ ap

mod p. Then 〈xs〉 is in the image of the ghost map if and only if xs ≡ φp(xs/p) mod pνp(|s|)

for every p and every s ∈ S with p | |s|.

This is a direct consequence of the ordinary Dwork Lemma and the fact that Witt
vectors for truncation posets decompose as products of classical Witt vectors.

3.2. Restriction and Frobenius maps. The maps in T PR will do triple duty, encod-
ing restriction and Frobenius maps as well as diagonal maps. We start with the following
definition, which we justify below.
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3.3. Definition. Let f : S → T be a map of truncation posets. Then

f ∗ : WT (k)→WS(k)

is defined to be the unique map of sets, natural in k, such that the diagram

WT (k) w //

f∗

��

kT

f∗w
��

WS(k) w // kS

commutes. Here f ∗w is defined by (f ∗w〈xt〉)s = xf(s).

It is clear that if this defines a map on Witt vectors then (g ◦ f)∗ = f ∗ ◦ g∗ because
this holds on ghost coordinates, and that we get a functor W(k) : (T PR)op → Set.

3.4. Lemma. Given an R-map f : S → T , the composite f ∗w ◦w is contained in the image
of the ghost map.

Proof. We use Dwork’s Lemma, compare [7, Lemma 1.4]. First assume that A = Z[at]t∈T
and φp(at) = apt , and that (at) is the “canonical Witt vector” in WT (A). It then suffices to
check that (f ∗w◦w)(at) is in the image of w. Let 〈xt〉 = w(at) ∈ AT and 〈ys〉 = f ∗w〈xt〉 ∈ AS.
This means we have to verify that

ys ≡ φp(ys/p) mod pνp(|s|)

whenever p | |s|. We have ys = xf(s) and ys/p = xf(s/p) = xf(s)/p, so because 〈xt〉 is in the
image of the ghost map we can conclude that ys ≡ φp(ys/p) mod pνp(|f(s)|). But then the
result follows, because |s| | |f(s)| and so νp(|f(s)|) ≥ νp(|s|).

Now the result follows for any k and any element of WT (k) by naturality. Given
(a′t) ∈ WT (k), let g : A → k be the ring homomorphism that sends at to a′t. Then the
only way to define f ∗(a′t) in a way that is natural in k is as WS(g)(f ∗(as)), and because
the ghost map is natural in the ring this does indeed make the diagram in Definition 3.3
commute.

It follows that Definition 3.3 does indeed define a map f ∗ : WT (k) → WS(k). It
is unique because it is unique on the “universal Witt vector” (at) in the “representing
ring” k = Z[at]t∈T . Next we discuss how f ∗ generalizes the diagonal map, the classical
restriction map, and the classical Frobenius map.

3.5. Lemma. Let S be any truncation poset and let ∇ : S
∐
S → S be the fold map.

Then
∇∗ : WS(k)→WS

∐
S(k) ∼= WS(k)×WS(k)

is the diagonal map.

Proof. This is immediate from the definition.
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3.6. Lemma. Suppose S ⊂ T is an inclusion of ordinary truncation sets and let i : S → T
denote the inclusion. Then

i∗ : WT (k)→WS(k)

is the classical restriction map RT
S .

Proof. This is immediate from the definition, using that the restriction map can be
defined on either Witt coordinates or ghost coordinates.

3.7. Lemma. Let n ∈ N and let S be an ordinary truncation set. Then

f ∗ : WS(k)→WS/n(k)

induced by the multiplication by n map f : S/n→ S is the classical Frobenius map Fn.

Proof. In this case Definition 3.3 reduces to the usual definition of the Frobenius.

Given any R-map f : S → T , the induced map f ∗ : WT (k) → WS(k) factors as
a composite of an iterated diagonal map, a classical Frobenius map on each connected
component, and a classical restriction map on each connected component. Because each
of these maps is well defined on Witt coordinates by the classical theory of Witt vectors,
it is possible to prove Lemma 3.4 by piecing together these classical results.

3.8. Addition and Verschiebung maps. The maps in T PT will encode addition and
Verschiebung maps. Again we make the definition first and justify it later.

3.9. Definition. Let f : S → T be a T -map of truncation posets. Then

f⊕ : WS(k)→WT (k)

is defined to be the unique map of sets, natural in k, such that the diagram

WS(k) w //

f⊕
��

kS

fw⊕
��

WT (k) w // kT

commutes. Here fw⊕ is the map defined by

(fw⊕ 〈xs〉)t =
∑

s∈f−1(t)

|t|
|s|
xs.

Note that we needed the finiteness condition in Definition 2.20 to define fw⊕ .

3.10. Lemma. Given a T -map f : S → T , the composite fw⊕ ◦w is contained in the image
of the ghost map.
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Proof. First let A = Z[as]s∈S and let (as) ∈WS(A) be the “canonical Witt vector”. As
in the proof of Lemma 3.4, let 〈xs〉 = w(as) and 〈yt〉 = fw⊕ 〈xs〉. Also, let φp : A → A be
the ring map defined by mapping as to aps.

Suppose νp(|t|) ≥ 1. We need to verify that yt ≡ φp(yt/p) mod pνp(|t|). We have

yt =
∑
f(s)=t

|t|
|s|
xs =

∑
f(s)=t

|t|
|s|
∑
u|s

|u|as/uu

and

yt/p =
∑

f(s′)=t/p

|t|/p
|s′|

xs′ =
∑

f(s′)=t/p

|t|/p
|s′|

∑
v|s′
|v|as′/vv .

Hence

φp(yt/p) =
∑

f(s′)=t/p

|t|/p
|s′|

∑
v|s′
|v|aps′/vv .

Each term in φp(yt/p) labelled by s′ and v corresponds to a term in yt labelled by
s = ps′ and u = v. Note that here we used the fibration condition in Definition 2.20. The
terms of yt that do not correspond to a term of φp(yt/p) all correspond to terms labelled

by (s, u) with νp(|u|) = νp(s). But in those cases the coefficient |t||s| · |u| of a
s/u
u is divisible

by pνp(|t|), so the result follows.
Now the result follows for any k and any element of WS(k) by naturality, using the

same argument as in the proof of Lemma 3.4.

It follows that Definition 3.9 does indeed define a unique map f⊕ : WS(k)→WT (k).

3.11. Lemma. Let S be an ordinary truncation set and let ∇ : S
∐
S → S be the fold

map. Then

WS(k)×WS(k) ∼= WS
∐
S(k)

∇⊕−−→WS(k)

is the classical addition map on WS(k).

Proof. This follows immediately from Definition 3.9 because in this case each |t|
|s| = 1

and the classical addition map on Witt vectors is defined by using the addition on ghost
coordinates.

Of course the fold map also furnishes WS(k) with an addition map when S is a
truncation poset, in the same way. By another application of Dwork’s Lemma we find
that −w(as) is in the image of the ghost map, and this implies that WS(k) has additive
inverses. Hence WS(k) is indeed an abelian group.

3.12. Lemma. Let f : S → T be an R-map of truncation posets. Then f ∗ : WT (k) →
WS(k) is a group homomorphism.
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Proof. It suffices to prove that the diagram

WT (k)×WT (k)
f∗×f∗//

∇⊕
��

WS(k)×WS(k)

∇⊕
��

WT (k)
f∗ //WS(k)

commutes on ghost coordinates, which is clear because (〈xt〉, 〈yt〉) maps to 〈xf(s) + yf(s)〉
both ways.

3.13. Lemma. Let f : S → T be a T -map of truncation posets. Then f⊕ : WS(k) →
WT (k) is a group homomorphism.

Proof. This is clear because the diagram

S
∐
S

f
∐
f //

∇
��

T
∐
T

∇
��

S
f // T

commutes in T PT .

3.14. Lemma. Let S be an ordinary truncation set, let n ∈ N, and let f : S/n → S be
the multiplication by n map. Then

WS/n(k)
f⊕−→WS(k)

is the classical Verschiebung map Vn.

Proof. In this case f is injective and each |t|
|s| = n, so Definition 3.9 says that on ghost

coordinates we have

(fw⊕ 〈xs〉)t =

{
nxt/n if n | t
0 if n - t

But this is one equivalent definition of Vn.

Any T -map factors as a composite of addition maps and Verschiebung maps, so it is
possible to combine the existence of addition and Verschiebung maps on classical Witt
vectors to prove Lemma 3.10.

3.15. Multiplication and Norm maps. Finally, the maps in T PN will encode mul-
tiplication and norm maps. Once again we start with the definition. Recall the definition

of f̂−1(t) from Definition 2.23.
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3.16. Definition. Let f : S → T be an N-map. Then

f⊗ : WS(k)→WT (k)

is defined to be the unique map of sets, natural in k, such that the diagram

WS(k) w //

f⊗
��

kS

fw⊗
��

WT (k) w // kT

commutes. Here fw⊗ is the map defined by

(fw⊗ 〈xs〉)t =
∏

s∈f̂−1(t)

x|t|/|s|s .

Note that we needed the strong finiteness condition in Definition 2.23 to make sense
of the map fw⊗ .

3.17. Lemma. Given an N-map f : S → T , the composite fw⊗ ◦ w is contained in the
image of the ghost map.

Proof. First let A = Z[as]s∈S, (as) ∈ WS(A), 〈xs〉 = w(as) and 〈yt〉 = fw⊗ 〈xs〉 as in the
proof of Lemma 3.10 above, and let φp be the ring map defined by as 7→ aps. To unclutter
the notation we write t/s for |t|/|s|.

Suppose νp(|t|) ≥ 1. We need to verify that yt ≡ φp(yt/p) mod pνp(|t|). We have

yt =
∏

s∈f̂−1(t)

xt/ss =
∏

s∈f̂−1(t)

(∑
u|s

|u|as/uu
)t/s

and

yt/p =
∏

s′∈f̂−1(t/p)

x
t/ps
s′ =

∏
s′∈f̂−1(t/p)

(∑
v|s′
|v|as′/vv

)t/ps′
.

It follows that

φp(yt/p) =
∏

s′∈f̂−1(t/p)

(∑
v|s′
|v|aps′/vv

)t/ps′
.

To proceed we need to understand the relationship between f̂−1(t) and f̂−1(t/p).

Consider s′ ∈ f̂−1(t/p). Then we get an s ∈ f̂−1(t) as in the following two cases.

1. p - |f(s
′)|

|t/p| . Then s = ps′ ∈ f̂−1(t).

2. p | |f(s
′)|

|t/p| . Then s = s′ ∈ f̂−1(t).
Note that for this we had to use the strong fibration condition in Definition 2.23.

In each case it is straightforward to verify that the factor corresponding to s′ in φp(yt/p)
and the factor corresponding to s in yt are congruent mod pνp(|t|).

Once again the result follows for any k by naturality.
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As for the other types of maps it follows that Definition 3.16 defines a unique map
f⊗ : WS(k)→WT (k).

3.18. Lemma. Let S be an ordinary truncation set and let ∇ : S
∐
S → S be the fold

map. Then

WS(k)×WS(k) ∼= WS
∐
S(k)

∇⊗−−→WS(k)

is the classical multiplication map on WS(k).

Proof. This is clear because the classical multiplication map is defined via the multipli-
cation map on ghost coordinates.

Of course the fold map also furnishes WS(k) with a multiplication map when S is a
truncation poset, in the same way. And it is clear that multiplication distributes over
addition because this holds on ghost coordinates, so our definitions make WS(k) into a
commutative ring.

3.19. Lemma. Let f : S → T be an R-map of truncation posets. Then f ∗ : WT (k) →
WS(k) is multiplicative.

Proof. This is similar to the proof of Lemma 3.12.

It follows that f ∗ : WT (k)→WS(k) is a ring homomorphism.

3.20. Lemma. Let f : S → T be an N-map of truncation posets. Then f⊗ : WS(k) →
WT (k) is multiplicative.

Proof. This is similar to the proof of Lemma 3.13.

3.21. Lemma. Let S be an ordinary truncation set, let n ∈ N, and let f : S → 〈n〉S be
the multiplication by n map. Then

WS(k)
f⊗−→W〈n〉S(k)

is the “classical” norm map Nn.

Proof. A comparison of the map fw⊗ with the formula for Nn on ghost coordinates from
[1] shows that they agree.

4. Combining T -maps and R-maps

In this section we define a category T PTR by combining the categories T PT and (T PR)op.
The following definition is more complicated than it needs to be; we present it this way
in anticipation of the category T PTNR.
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4.1. Definition. The category T PTR has objects the truncation posets, and a morphism
S → T in T PTR is an equivalence class of diagrams

S
f1−→ A1

f2−→ A2
f3−→ . . .

fn−→ An
fn+1−→ T

where each fi is a map in one of T PT and (T PR)op. The equivalence relation on such
diagrams is generated by the following types of relations:

1. Isomorphism of diagrams.

2. Insertion of an identity morphism.

3. Composition if fi and fi+1 are in the same category T PT or (T PR)op.

4. Commuting an R-map past a T -map as in Definition 4.2 below.

Given an R-map f : S → T we abuse notation and write f ∗ : T → S for the
corresponding map in T PTR, and given a T -map f : S → T we write f⊕ : S → T for the
corresponding map in T PTR. (Hence with our notation the functor W(k) takes f ∗ to f ∗

and f⊕ to f⊕.) We need to explain how to commute an R-map past a T -map.

4.2. Definition. Given a diagram

S
f−→ A

g←− T

with f ∈ T PT and g ∈ T PR, we declare the composite g∗ ◦f⊕ to be equal to the composite
f ′⊕ ◦ (g′)∗, where

S
g′←− f ∗⊕T

f ′−→ T

and f ∗⊕T is defined by

f ∗⊕T =
{

(s, t, ξ) | f(s) = g(t) and ξ ∈ Cm, m = gcd
( |f(s)|
|s|

,
|g(t)|
|t|

)}
.

Here f ′ : f ∗⊕T → T and g′ : f ∗⊕T → S are the obvious maps, sending (s, t, ξ) to t and s,
respectively. The norm on f ∗⊕T is defined by

|(s, t, ξ)| = gcd(|s|, |t|),

and we say (s1, t1, ξ1) | (s2, t2, ξ2) if s1 | s2, t1 | t2, and ξ1 = ξ2. Here we identify Cm1 and
Cm2, using that |f(s2)|/|s2| = |f(s1)|/|s1| and |g(t2)|/|t2| = |g(t1)|/|t1|.

In other words, we take the usual pullback S ×A T = f ∗T but count each (s, t) with
multiplicity to account for the fact that |(s, t)| = gcd(|s|, |t|) rather than the expected
|f(s)| = |g(t)|. The cyclic group can be thought of as a bookkeeping device.

4.3. Lemma. With notation as above, f ∗⊕T is a truncation poset, g′ : f ∗⊕T → S is an
R-map, and f ′ : f ∗⊕T → T is a T -map.
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Proof. This is straightforward. For example, given (s, t, ξ) ∈ f ∗⊕T and t′ ∈ T with t | t′
we need to find (s′, t′, ξ′) ∈ f ∗⊕T with (s, t, ξ) | (s′, t′, ξ′). Because f is a T -map, so in
particular a fibration, there is some s′ ∈ S with s | s′ and f(s′) = g(t′). Upon identifying

Cm with Cm′ , where m = gcd
( |f(s)|
|s| ,

|g(t)|
|t|

)
as before and m′ = gcd

( |f(s′)|
|s′| ,

|g(t′)|
|t′|

)
, we can

take ξ′ = ξ and (s′, t′, ξ′) is the required element of f ∗⊕T .

Because we can always commute an R-map past a T -map it follows that the category
T PTR has a much simpler description:

4.4. Proposition. Any map in the category T PTR defined above can be written uniquely,
up to isomorphism of spans, as a composite f ′⊕ ◦ (g′)∗ where g′ is an R-map and f ′ is a
T -map for a diagram

S
g′←− A′

f ′−→ T.

Proof. Given a map from S to T as in Definition 4.2, we can commute all the R-maps
past the T -maps and compose to obtain a description of the map as (f ′)⊕ ◦ (g′)∗ for some
R-map g′ and T -map f ′.

It is possible to give a direct proof that the category T PTR does not collapse further,

but it also follows, after using Lemma 4.5 below, because inequivalent spans S
g1←− A1

f1−→ T

and S
g2←− A2

f2−→ T give different maps WS(k)→WT (k) for k = Z.
To see that inequivalent spans give different maps WS(Z) → WT (Z), it suffices to

show that given a map h : WS(Z) → WT (Z) which on ghost coordinates is given by

h(〈xs〉)t =
∑
cs,txs there is at most one span S

g←− A
f−→ T with h = f⊕ ◦ g∗. To do this,

we observe that we must have A =
∐
At where At = {a ∈ A | f( a

|a|) = t}, and that

we can describe each At explicitly. If |t| = 1, we must have

At = {das,t,ξ | cs,t > 0, ξ ∈ Ccs,t , d ∈ N with dt ∈ T}.

Here d1as1,t,ξ1 | d2as2,t,ξ2 if d1 | d2, s1 = s2 and ξ1 = ξ2, and the maps are given by
f(das,t,ξ) = dt and g(das,t,ξ) = ds.

For |t| > 1, we can define At similarly after taking into account the map h<t induced

by the span S ←
∐

t′|t, t′ 6=t

At′ → T .

Definition 4.2 is justified by the following result.

4.5. Lemma. Witt notation as in Definition 4.2 the composite

WS(k)
f⊕−→WA(k)

g∗−→WT (k)

is equal to the composite

WS(k)
(g′)∗−−→Wf∗⊕T

(k)
f ′⊕−→WT (k).
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Proof. It suffices to prove this on ghost coordinates. Take 〈xs〉 ∈ kS, and suppose the
first composite maps this to 〈yt〉 and the second composite maps it to 〈y′t〉. Then we get

yt =
∑

s∈f−1(g(t))

|g(t)|
|s|

xs

=
∑

s∈f−1(g(t))

|t|
gcd(|s|, |t|)

· gcd
( |f(s)|
|s|

,
|g(t)|
|t|

)
xs

=
∑

(s,t,ξ)∈f∗⊕T

|t|
gcd(|s|, |t|)

xs

= y′t,

which proves the result.

We have now incorporated restriction maps, Frobenius maps, addition maps and Ver-
schiebung maps in one category of truncation posets. Putting it all together we have
proved the following:

4.6. Theorem. Let k be a commutative ring. There is a functor

W(k) : T PTR → Set

sending S to WS(k), such that the composite (T PR)op → T PTR → Set agrees with the
functor in Definition 3.3 and the composite T PT → T PTR → Set agrees with the functor
in Definition 3.9.

5. Combining T -maps, N -maps and R-maps

Finally we define a category T PTNR by combining T PT , T PN and (T PR)op.

5.1. Definition. The category T PTNR has objects the truncation posets, and a mor-
phism S → T in T PTNR is an equivalence class of diagrams

S
f1−→ A1

f2−→ A2
f3−→ . . .

fn−→ An
fn+1−→ T

where each fi is a map in one of T PT , T PN and (T PR)op. The equivalence relation on
such diagrams is generated by the following:

1. Isomorphism of diagrams.

2. Insertion of an identity morphism.

3. Composition if fi and fi+1 are in the same category T PT , T PN or (T PR)op.

4. Commuting an R-map past a T -map as in Definition 4.2 above.
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5. Commuting an R-map past an N-map as in Definition 5.7 below if the pullback f ∗⊗T
exists as in Definition 5.4 below.

6. Commuting an N-map past a T -map as in Definition 5.10 below.

Given an N -map f : S → T we write f⊗ : S → T for the corresponding map in
T PTNR. Note that it is not always possible to commute an R-map past an N -map, as
the following example shows.

5.2. Example. Let f : {1, 3} → {1, 2, 3, 6} be the multiplication by 2 map and let
g : {1, 2, 3} → {1, 2, 3, 6} be the inclusion. Then the composite

W{1,3}(k)
f⊗−→W{1,2,3,6}(k)

g∗−→W{1,2,3}(k)

is given on ghost coordinates by

〈x1, x3〉 7→ 〈x1, x21, x3, x23〉 7→ 〈x1, x21, x3〉.

But it is impossible to define this map as a composite of an R-map followed by an N -map.
With an R-map we can make as many copies as we want of 〈x1, x3〉, 〈x1〉 and 〈x3〉, using
the truncation set

∐
i1
{1, 3}

∐
i2
{1}

∐
i3
{3}. But this truncation set only maps to {1, 2, 3}

via an N -map if i1 = i2 = i3 = 0.

The analogue of the additive pullback f ∗⊕T considered in Definition 4.2 above is the
following:

5.3. Definition. Given a diagram

S
f−→ A

g←− T,

with f ∈ T PN and g ∈ T PR, let

f ∗⊗T =
{

(s, t, ξ) | g(t) | f(s), s minimal, t maximal, ξ ∈ Cm
}
.

Here m = gcd
( |f(s)|
|s| ,

|g(t)|
|t|

)
as before, s minimal means that there is no s′ | s with s′ 6= s

and g(t) | f(s′) (for t fixed), and t maximal means that there is no t | t′ with t 6= t′ and
g(t′) | f(s) (for s fixed).

This is not necessarily a good definition, because if we try to carry this out in the
situation in Example 5.2 we find that the obvious maps f ′ : f ∗⊗T → T and g′ : f ∗⊗T → S
are not maps of truncation posets.
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5.4. Definition. We say the pullback f ∗⊗T from Definition 5.3 exists (as a truncation
poset) if the following additional condition is satisfied. For any (s1, t1, ξ1) and (s2, t2, ξ2)
in f ∗⊗T with s1 and s2 in the same connected component of S and t1 and t2 in the same
connected component of T we have |s1||t2| = |s2||t1|. We then define

|(s, t, ξ)| = gcd(|s|, |t|)

and
(s1, t1, ξ1) | (s2, t2, ξ2) if s1 | s2, t1 | t2 and ξ1 = ξ2,

where as usual we have identified Cm1 and Cm2.

The pullback f ∗⊗T often exists. For example, the following gives a sufficient condition.

5.5. Definition. We say a truncation poset T has joins if t | t1 and t | t2 implies that
there exists t′ with t1 | t′ and t2 | t′.

For example, for any n ∈ N the truncation set 〈n〉 has joins. The truncation set
{1, 2, 3} does not have joins.

5.6. Lemma. Suppose g : T → A is an R-map and suppose T has joins. Then the
pullback f ∗⊗T exists for any N-map f : S → A.

Proof. Suppose we have (s1, t1, ξ1) and (s2, t2, ξ2) in f ∗⊗T with s1 and s2 in the same
connected component of S and t1 and t2 in the same connected component of T . Then
we need to show that |s1||t2| = |s2||t1|. Let t′ be the join of t1 and t2.

Because f is an N -map, there are s′i ∈ S for i = 1, 2 with si | s′i and g(t′) | f(s′i), and
with s′i minimal. But because s′1 and s′2 are in the same connected component of S and
satisfy the same minimality condition we must have s′1 = s′2. It follows that

|f(s1)|
|g(t1)|

=
|f(s′1)|
|g(t′)|

=
|f(s′2)|
|g(t′)|

=
|f(s2)|
|g(t2)|

and we are done.

5.7. Definition. Let
S

f−→ A
g←− T

be a diagram with f ∈ T PN and g ∈ T PR, and suppose the pullback f ∗⊗T exists. Then
we declare the composite g∗ ◦ f⊗ to be equal to the composite f ′⊗ ◦ (g′)∗.

We justify the above definition with the following two results.

5.8. Lemma. Let f : S → A be an N-map, let g : T → A be an R-map, and suppose the
pullback f ∗⊗T exists. Then f ′ : f ∗⊗T → T is an N-map.

Proof. Suppose (s, t, ξ) ∈ f ∗⊗T and that t̄ ∈ T is in the same connected component as t.
We need to find (s′, t′, ξ′) ∈ f ∗⊗T in the same connected component as (s, t, ξ) with t̄ | t′.

Because f is an N -map, we get an s′ ∈ S with g(t̄) | f(s′). We can assume that s′ is
minimal. Then we define t′ to be maximal with the property that t̄ | t′ and g(t′) | f(s′).
Then (after identifying Cm and Cm′), (s′, t′, ξ) ∈ f ∗⊗T is the desired element.

Verifying the finiteness condition is straightforward and we omit it.
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5.9. Lemma. With assumptions as in Lemma 5.8, the composite

WS(k)
f⊗−→WA(k)

g∗−→WT (k)

is equal to the composite

WS(k)
(g′)∗−−→Wf∗⊗T

(k)
f ′⊗−→WT (k).

Proof. It suffices to show that the two maps agree on ghost coordinates. Suppose the
first composite sends 〈xs〉 to 〈yt〉 and the second composite sends it to 〈y′t〉. We find that

yt =
∏

s∈f̂−1(g(t))

x|g(t)|/|s|s ,

while
y′t =

∏
(s,t′,ξ)∈(̂f ′)−1(t)

x|t|/|(s,t
′,ξ)|

s

The point is that if (s, t′, ξ) is in (̂f ′)−1(t) then s ∈ f̂−1(g(t)), and conversely, if s ∈
f̂−1(g(t)) then there is a unique t′ ∈ T with (s, t′, ξ) ∈ (̂f ′)−1(t) for any ξ ∈ Cm. Hence

y′t =
∏

s∈f̂−1(g(t))

[
x|t|/ gcd(|s|,|t

′|)
s

]gcd(|f(s)|/|s|,|g(t)|/|t|)
.

Hence it suffices to show that

st gcd
( |f(s)|
|s|

,
|g(t)|
|t|

)
= |g(t)| gcd(|s|, |t′|).

But this is easily verified using that gcd(|f(s)|/|g(t)|, |s|) = 1 and gcd(|s|, |t′|) = gcd(|s|, |t|).

This finishes our discussion of the composite of an N -map followed by an R-map.
There is one more thing to do, namely to describe the composite of a T -map followed by
an N -map. If we think of a T -map as addition and an N -map as multiplication this can
be thought of as a distributivity law. This is somewhat combinatorial.

5.10. Definition. Suppose f : S → A is a T -map and g : A → T is an N-map. Then
we declare the composite g⊗ ◦ f⊕ to be equal to the composite t⊕ ◦ n⊗ ◦ r∗, where the maps
t, n and r are defined by the exponential diagram

S

f
��

Eroo n // D

τ
��

A
g // T
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It remains to say what we mean by an exponential diagram. Our definition is dictated
by the proof of Lemma 5.13 below. We start with some auxiliary definitions. First, let

Â =
∐
t∈T

∐
a∈ĝ−1(t)

{(t, a, ξ) | ξ ∈ Ct/Ca}

and let Ât ⊂ Â be the subset whose first coordinate is t. Similarly, let

Ŝ =
∐
t∈T

∐
f(s)∈ĝ−1(t)

{(t, s, ζ) | ζ ∈ Ct/Cs}

and let Ŝt be the subset whose first coordinate is t. Let π : Ŝ → S be the projection onto
S.

We say (t′, a′, ξ′) | (t, a, ξ) in Â if the following conditions hold. First, t′ | t. Second,
a′ | a. And third, ξ 7→ ξ′ under the quotient map Ct/Ca → Ct′/Ca′ . (Recall from Lemma

2.25 that for each a ∈ ĝ−1(t) there is exactly one a′ ∈ ĝ−1(t′) with a′ | a, and that |t
′|
|a′|

divides |t||a| ; this last condition gives the quotient map Ct/Ca → Ct′/Ca′ .)

Similarly, we say that (t′, s′, ζ ′) | (t, s, ζ) in Ŝ if the following conditions hold. First,
t′ | t. Second, s′ | s. And third, ζ 7→ ζ ′ under the quotient map Ct/Cs → Ct′/Cs′ .

We have a map
f̂ : Ŝ → Â (t, s, ζ) 7→ (t, f(s), ζ̄),

where ζ̄ is the image of ζ ∈ Ct/Cs under the quotient map Ct/Cs → Ct/Cf(s). Let

D′ = {(t, σ) | t ∈ T, σ : Ât → Ŝt section of f̂ |Ŝt
}

and let D′t be the subset whose first coordinate is t.
We say that (t′, σ′) | (t, σ) in D′ if the following conditions hold. First, t′ | t. And

second, if (t′, a′, ξ′) | (t, a, ξ) in Ât then σ′(t′, a′, ξ′) | σ(t, a, ξ) in Ŝt.
Note that on ghost coordinates the composite g⊗ ◦ f⊕ is given on the t’th coordinate

by a sum indexed over D′t as in the proof of Lemma 5.13 below. But this sum is too

big, because the map t⊕ : WD(k)→WT (k) also has a coefficient of |t|
|(t,σ)| . We fix this by

letting Ct act on D′t by conjugating the section and defining

D =
∐
t∈T

D′t/Ct.

We say that (t′, [σ′]) | (t, [σ]) in D if (t′, σ′) | (t, σ) in D′ for some choice of representatives,
and we say that (t, [σ]) ∈ D is divisible by e if a representative (t, σ) ∈ D′ is divisible by

e in the sense that there is some (t′, σ′) in D′ with (t′, σ′) | (t, σ) and |t|
|t′| = e. We then

define |(t, [σ])| to be the largest e such that (t, [σ]) is divisible by e.

5.11. Lemma. With the above definitions, D is a truncation poset and the map τ : D → T
given by projection onto the first coordinate is a T -map.
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Proof. The hardest part is verifying that τ : D → T is a T -map. Given (t, [σ]) ∈ D

and t′ ∈ T with t | t′ we need to produce a section σ′ : Ât′ → Ŝt′ with (t, [σ]) | (t′, [σ′]).

Pick a representative σ for [σ]. For a ∈ ĝ−1(t), let a′ ∈ ĝ−1(t′) be the corresponding
element as in Lemma 2.25. For each ξ′ ∈ Ct′/Ca′ , let ξ ∈ Ct/Ca be the image of ξ′ and
let s = π(σ(a, ξ)). Since f is a T -map, we get an s′ ∈ f−1(a′) with s | s′. We can then
define σ′(a′, ξ′) = (s′, ζ ′) where ζ ′ ∈ Ct′/Cs′ is the pullback of ξ′ and ζ in the diagram

Ct′/Cs′ //

��

Ct/Cs

��
Ct′/Ca′ // Ct/Ca

(To verify that this is a pullback diagram, use that gcd( |t
′|/|a′|
|t|/|a| ,

|a|
|s| ) = 1.)

The definition of E is similar. We start with

E ′ = {(t, σ, a, ξ) | (t, σ) ∈ D′, a ∈ ĝ−1(t), ξ ∈ Ct/Ca}.

As usual let E ′t be the subset whose first coordinate is t. Let Ct act on E ′t by ξt ·(t, σ, a, ξ) =
(t, ξtσ, a, ξt · ξ) and define E =

∐
t∈T E

′
t/Ct. Then the map r′ : E ′ → S defined by

r′(t, σ, a, ξ) = π(σ(a, ξ)) induces a well defined map r : E → S, and of course we have a
map n : E → D that forgets (a, ξ).

5.12. Lemma. With the above definitions, E is a truncation poset, the map r : E → S
is an R-map, and the map n : E → D is an N-map.

We omit the proof as it is a tedious but straightforward verification.

5.13. Lemma. Suppose we are given an exponential diagram as above. Then the compos-
ite

WS(k)
f⊕−→WA(k)

g⊗−→WT (k)

is equal to the composite

WS(k)
r∗−→WE(k)

n⊗−→WD(k)
t⊕−→WT (k).

Proof. We can compute using ghost coordinates. Suppose the first composite sends 〈xs〉
to 〈yt〉 and the second composite sends 〈xs〉 to 〈y′t〉. Also let 〈ze〉 = r∗w〈xs〉. We compute

yt =
∏

a∈ĝ−1(t)

( ∑
s∈f−1(a)

|a|
|s|
xs

)|t|/|s|
=

∏
(a,ξ)∈Ât

∑
(s,ζ)∈f̂−1(a,ξ)

xπ(s,ζ)

=
∑

σ:Ât→Ŝt

∏
(a,ξ)∈Ât

z(t,σ,a,ξ)

=
∑
[σ]

|t|
|(t, [σ])|

∏
(a,ξ)∈Ât

z(t,σ,a,ξ),
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and this last expression is equal to y′t by inspection.

Putting all of this together we have proved the following, which is a restatement of
Theorem 1.1:

5.14. Theorem. Let k be a commutative ring. There is a functor

W(k) : T PTNR → Set

sending S to WS(k), such that the composite T PTR → T PTNR → Set agrees with the
functor in Theorem 4.6 and the composite T PN → T PTNR → Set agrees with the functor
in Definition 3.16.

6. The subcategory T PTNR
join and bispans

Motivated by Lemma 5.6 we define a subcategory of T PTNR as follows.

6.1. Definition. Let T PTNRjoin be the category whose objects are truncation posets with
join, and whose morphisms are generated by equivalence classes of morphisms of trunca-
tion posets with join in the same way as in Definition 5.1.

To make sense of this we should verify that the composite of two morphisms in T PTNRjoin

is still in T PTNRjoin . In other words, we should check that starting with truncation posets
with joint, the truncation posets f ∗⊕T and f ∗⊗T , as well as the truncation posets in the
definition of an exponential diagram, all have join as well. This is straightforward and we
omit it.

6.2. Proposition. Any map in T PTNRjoin can be written uniquely, up to isomorphism of
bispans, as a composite h⊕ ◦ g⊗ ◦ f ∗ for a diagram

S
f←− A

g−→ B
h−→ T,

where A and B are in T PTNRjoin and f ∈ T PR, g ∈ T PN and h ∈ T PT .

Proof. The only thing left to prove is that the category does not collapse further. This
follows as in the proof of Proposition 4.4 by noting that inequivalent bispans give different
maps on Witt vectors of Z.

Finally, we compare our construction to “classical” Tambara functors for cyclic groups.

6.3. Definition. Let T PTNF〈n〉 be the subcategory of T PTNRjoin whose objects are finite dis-
joint unions of 〈m〉 for m | n and whose morphisms are given by equivalence classes of
bispans

S
f←− A

g−→ B
h−→ T

of such, with the following additional requirement: Suppose we decompose A and S as∐
Ai and

∐
Sj, respectively, and write f as a coproduct of maps Ai

fi−→ Sj ⊂ S. If
Ai = 〈mi〉 and Sj = 〈mj〉 then mi | mj and fi is multiplication by mj/mi.



284 VIGLEIK ANGELTVEIT

Note that the maps g : A→ B and h : B → T automatically satisfy the condition in
Definition 6.3.

We obviously have a functor

W(k) : T PTNF〈n〉 → Set

obtained by restricting the functor W(k) from Theorem 5.14. Now we can compare this
to Tambara functors because of the following.

6.4. Proposition. There is an equivalence of categories between T PTNF〈n〉 and the cate-
gory of bispans of finite Cn-sets.

Proof. The equivalence is given on objects by sending the truncation poset 〈m〉 to the
finite Cn-set Cn/Cm and sending disjoint unions to disjoint unions. We send a map
m2

m1
: 〈m1〉 → 〈m2〉 to the quotient map Cn/Cm1 → Cn/Cm2 .
To finish the proof we should verify that the composition laws for the two types of

bispans agree. This is straightforward and we omit it.
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
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