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PURE MORPHISMS OF COMMUTATIVE RINGS ARE EFFECTIVE
DESCENT MORPHISMS FOR MODULES – A NEW PROOF

BACHUKI MESABLISHVILI
Transmitted by W. Tholen

ABSTRACT. The purpose of this paper is to give a new proof of the Joyal-Tierney
theorem (unpublished), which asserts that a morphism f : R → S of commutative rings
is an effective descent morphism for modules if and only if f is pure as a morphism of
R-modules.

Let R be a commutative ring with unit and R−mod the category of R-modules. Since,
for any R-module M , the group C(M) = HomAb(M, Q/Z) (where Ab is the category of
abelian groups and Q/Z is the rational circle abelian group) becomes an R-module with
the action of R on C(M) by (rf)(m) = f(rm) , we can define a functor C : (R−mod)op →
R−mod, given by C(M) = HomAb(M, Q/Z). Since the abelian group Q/Z is an injective
cogenerator in the category of abelian groups (see, for example, [1]), the functor C is
exact and reflects isomorphisms. We say that a morphism f : M → M ′ of R-modules is
pure if for any R-module N ,

1N ⊗R f : N ⊗R M → N ⊗R M ′

is monic. Let f : M → M ′ be a morphism of R-modules. The next lemma follows from
the commutativity of the diagram

HomR(C(M), C(M ′))

≈
��

HomR(C(M),C(f)) �� HomR(C(M,C(M)))

≈
��

C(C(M)⊗R M ′)
C(1C(M)⊗Rf)

�� C(C(M)⊗R M),

where the vertical morphisms are the canonical isomorphisms.

1. Lemma. Let f : M → M ′ be a morphism of R-modules. The following conditions are
equivalent:

(a) f is a pure morphism of R-modules.
(b) C(f) is a split epimorphism of R-modules.

Let f : R → S be a morphism of commutative rings. Recall that a descent datum on
an object M ∈ Ob(S−mod) can be described as an S-module morphism θ : M → S⊗RM
such that θ makes
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M

����������

����������
θ �� S ⊗R M

µ

��
M

and

M

θ
��

θ �� S ⊗R M

1⊗Rθ
��

S ⊗R M
1⊗RiM

�� S ⊗R S ⊗R M

commutative, where µ denotes the S-module structure on M , and iM : M → S ⊗R M is
an R-morphism given by iM(m) = 1⊗R m.

Let Des(f) denote the category of pairs (M, θ), θ descent datum on M ∈ Ob(S−mod),
in which morphisms (M, θ) → (M ′, θ′) are just morphisms g : M → M ′ in S−mod which
commute with descent data in the obvious sense (see, for example, [2]).

Any object f ∗(M) = (S ⊗R M, iM), M ∈ Ob(R−mod) can be equipped with descent
data in a canonical way, and this gives rise to a commutative diagram

R −mod

S⊗R− �������������
f∗

�� Des(f)

U
��

S −mod,

where U is the forgetful functor. f is said to be a descent morphism if f ∗ is full and
faithful, and an effective descent morphism if f ∗ is an equivalence.

The functor f ∗ has a right adjoint f∗ which is defined by requiring that

f∗(M, θ) e �� M
θ ��

iM
�� S ⊗R M

is an equalizer of S-modules for each (M, θ) ∈ Ob(Des(f)). The counit of this adjunction
is defined by δM = µ(1⊗R e). The unit εM : M → f∗f ∗(M) is obtained from the diagram

M
iM

��������������

εM

���
�
�
�
�
�
�

S ⊗R M
1S⊗RiM��

iS⊗RM

�� S ⊗R S ⊗R M.

f∗f ∗(M)

������������

It does exist because iM equalizes the two morphisms on the right hand side. From the
description of ε and δ we obtain immediately the two following propositions.
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2. Proposition. f : R → S is a descent morphism if and only if f is pure as a mor-
phism of R-modules.

3. Proposition. A descent morphism f is effective if and only if S ⊗R − preserves the
equalizer

f∗(M, θ) e �� M
θ ��

iM
�� S ⊗R M

for each (M, θ) ∈ Ob(Des(f)).

Let f : R → S be pure as a morphism of R-modules. Then by Lemma 1 there is an
R-module morphism g : C(R) → C(S) such that c(f)g = 1C(R).

If (M, θ) ∈ Ob(Des(f)), then we have a commutative diagram

f∗(M, θ) e �� M

iM
��

θ ��

iM
�� S ⊗R M

iS⊗RM

��
M

θ �� S ⊗R M
1S⊗Rθ��

1S⊗RiM
�� S ⊗R S ⊗R M,

in which the rows are equalizer diagrams.
Applying the functor C to this diagram, we obtain the commutative diagram

C(S ⊗R S ⊗R M)

C(iS⊗RM )

��

C(1S⊗Rθ)��

C(1S⊗RiM )
�� C(S ⊗R M)

C(iM )

��

C(θ) �� C(M)

C(S ⊗R M)
C(θ) ��

C(iM )
�� C(M)

C(e)
�� C(f∗(M, θ)),

in which the rows are coequalizer diagrams. Now, since for any R-module P we have
the isomorphism of functors C(P ⊗R −) → HomR(−, C(P )), we obtain the commutative
diagram

HomR(S ⊗R M,C(S))
−◦θ ��

−◦iM
��

−◦C(f)

��

HomR(M,C(S))

−◦C(f)

��
HomR(S ⊗R M,C(R))

−◦g
��

−◦θ ��

−◦iM
�� HomR(M,C(R))

−◦g
��

−◦e �� HomR(f∗(M, θ), C(R)).

Applying the above isomorphism of functors backwards, we deduce that there are R-
morphisms h and h′, such that the diagram

C(S ⊗R S ⊗R M)

C(iS⊗RM )

��

C(1S⊗Rθ) ��

C(1S⊗RiM )
�� C(S ⊗R M)

C(iM )

��

C(θ) �� C(M)

C(S ⊗R M)

h′
��

C(θ) ��

C(iM )
�� C(M)

h

��

C(e) �� C(f∗(M, θ))

k

���
�
�
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commutes. Since both left hand side squares commute, there is an R-morphism k :
C(f∗(M, θ) → C(M) such that C(θ)h = kC(e). It means that the bottom row becomes a
split coequalizer diagram [3] in the category of R-modules,which is split by the morphisms

C(f∗(M, θ)) k �� C(M) h �� C(S ⊗R M).

Since split coequalizers are preserved by any functor, its image under the functor Hom(S,−)
is a coequalizer diagram. So

HomR(S,C(S ⊗R M))
−◦C(θ)��

−◦C(iM )
�� HomR(S,C(M))

−◦C(e)�� HomR(S, f∗(M, θ))

is a coequalizer diagram, and hence so is

C(S ⊗R S ⊗R M)
C(1S⊗Rθ) ��

C(1S⊗RiM )
�� C(S ⊗R M)

C(1S⊗Re) �� C(S ⊗R f∗(M, θ)).

The functor C is exact and reflects isomorphisms. Therefore it also reflects coequaliz-
ers. It follows that

S ⊗R f∗(M, θ)
1S⊗Re�� S ⊗R M

1S⊗Rθ��

1S⊗RiM
�� S ⊗R S ⊗R M

is an equalizer. But

M
θ �� S ⊗R M

1S⊗Rθ��

1S⊗RiM
�� S ⊗R S ⊗R M

is also an equalizer diagram. Thus we have an isomorphism S ⊗R f∗(M, θ) → M .
We obtain

4. Theorem. f : R → S is an effective descent morphism for modules if and only if f
is pure as a morphism of R-modules.
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