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CLOSURE OPERATORS IN EXACT COMPLETIONS

MATÍAS MENNI

ABSTRACT. In analogy with the relation between closure operators in presheaf toposes
and Grothendieck topologies, we identify the structure in a category with finite limits
that corresponds to universal closure operators in its regular and exact completions. The
study of separated objects in exact completions will then allow us to give conceptual
proofs of local cartesian closure of different categories of pseudo equivalence relations.
Finally, we characterize when certain categories of sheaves are toposes.

1. Introduction

It is well known that many interesting locally cartesian closed categories (even toposes)
arise as solutions to universal problems of adding quotients of equivalence relations to
categories with finite limits and to regular categories [6, 17, 12, 2]. Moreover, using the
characterization of the categories with finite limits whose exact completions is locally
cartesian closed given in [5] it was shown in [2] that if an exact completion E is locally
cartesian closed then so are many interesting subcategories of E.

In the context of these results and studying the reasons why some exact completions
are toposes we were led to investigate universal closure operators in exact completions in
analogy with the situation for presheaf toposes, where for a small category C, universal
closure operators in SetCop

are in correspondence with Grothendieck topologies on C. We
will present the results of this investigation and a couple of applications that show that
it is both conceptually and practically useful to understand closure operators in exact
completions in this way.

We will assume that the reader is familiar with the notions of regular and exact
categories, with regular and exact completions of categories with finite limits [3] and with
exact completions of regular categories [3, 6, 12]. We nevertheless quickly review these
constructions in Section 2. For a category with finite limits C we denote the regular
and exact completions respectively by Creg and Cex. For a regular category D we denote
its reflection into the 2-category of exact categories by Dex/reg and call it the “ex/reg
completion”. We also assume familiarity with universal closure operators and related
notions such as separated objects and sheaves [1, 4].

In Section 3 we introduce a notion of topology on locally small categories C with finite
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limits and show, in Proposition 3.5, that they are in bijective correspondence with the
universal closure operators in Cex.

In Section 4 we start to study separated objects and sheaves for universal closure
operators in exact completions.

Under mild conditions on a category C with finite limits it is possible to define a
largest topology on C that makes every object of C separated in Cex. We show that in
this case, the category of separated objects for the induced universal closure operator in
Cex is equivalent to Creg. The fact that for certain C, Creg is a category of separated
objects for a universal closure operator in Cex has been observed in concrete cases. For
example, in the context of realizability toposes [3] and in the context of equilogical spaces
[19]. Our result provides a simple conceptual explanation for this phenomenon.

We then observe that regular categories D have a largest topology that makes every
object of D a sheaf in Dex. We call this topology the canonical topology. The main
result of Section 4 is the characterization of the sheaves for the induced universal closure
operator in Dex as the equivalence relations in D with a strong “completeness” property.
It turns out that these equivalence relations have already been used in other contexts.
Most notably, in Higgs’ construction of localic toposes as categories of sets valued on a
locale [7] and also, more abstractly, in Tripos theory [9].

The last two sections discuss applications of our results.
In Section 5 we give a conceptual proof of a result related to the one in [2] men-

tioned in the beginning about the local cartesian closure of certain subcategories of exact
completions.

In Section 6 we give a characterization of the locally cartesian closed regular categories
D whose associated category of sheaves for the canonical topology (identified in Section 4)
is a topos. In this case, the category of sheaves is equivalent to Dex/reg. So we are able
to provide a novel perspective on how realizability toposes and toposes of sheaves on a
locale arise ex/reg completions [6, 12].

All the results of the paper are part of the author’s thesis [13] and we will usually
reference this work for details.

2. Completions

In this section we quickly review the constructions of regular and exact completions of
categories with finite limits and of ex/reg completions of regular categories (see [3] for an
expository presentation).

A relation from Y to X is a subobject of Y ×X. We usually work with a pair of maps
rY : R ✲ Y and rX : R ✲ X such that 〈rY , rX〉 : R ✲ Y ×X is mono and induces
the given relation.

Given relations S and R from Y to X we write S ≤ R if S and R are so related as
subobjects of Y ×X. Also, we write S◦ for the relation from X to Y which is the given
S from Y to X seen as a subobject of X × Y .

Let 〈e0, e1〉 : E✲ ✲ X ×X be a relation from X to X. We say that E is reflexive if
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there exists a map r : X ✲ E satisfying e0.r = e1.r and we say that E is symmetric if
there exists a map s : E ✲ E such that e0.s = e1 and e1.s = e0.

Now let E×X E the pullback of e0 along e1. We say that E is transitive if there exists
a map t : E ×X E ✲ E such that e0.t = e0.π0 and e1.t = e1.π1 (here π0 and π1 are the
projections of the pullback E ×X E).

An equivalence relation on X is a relation from X to X that is reflexive, symmetric
and transitive. Notice that this definition makes sense in any category with finite limits.
For example, kernel pairs are equivalence relations.

In order to define the exact completion of a category with finite limits we need a slightly
more relaxed notion. A pseudo equivalence relation E on X is a (not necessarily jointly
monic) pair of maps e0, e1 : E ✲ X satisfying reflexivity, symmetry and transitivity as
in the definition of equivalence relation above.

We say that an object P is projective if for every regular epi q : X ✲✲ Q and map
f : P ✲ Q there exists a map g : P ✲ X such that q.g = f . We say that a
category has enough projectives if for every object X there exists a projective object P
and a regular epi P ✲✲ X.

Let C be a category with finite limits, the exact completion Cex of C has objects the
pseudo equivalence relations in C.

Let us denote a pseudo equivalence relation e0, e1 : E ✲ X by X/E. For any other
pseudo equivalence relation d0, d1 : D ✲ Y , a map [f ] : Y/D ✲ X/E in Cex is an
equivalence class of maps f : Y → X such that there exists an f ′ : D → E and such
that the two squares e0.f

′ = f.d0 and e1.f
′ = f.d1 commute. Two such maps f and g are

equivalent if there exits an h : X0 → Y1 such that e0.h = f and e1.h = g.

The category Cex is exact, it has enough projectives and C embeds into Cex as the
full subcategory of projectives. For any exact category E this embedding C ✲ Cex

induces an equivalence between the category of functors C ✲ E preserving finite limits
and the category of exact functors Cex

✲ E.

The regular completion Creg of C can be defined to be the full subcategory of Cex

given by the equivalence relations in C that arise as a kernel pair. The category Creg is
regular and the embedding C ✲ Cex factors through Creg. For any regular category
D this factorization induces an equivalence between the category of functors C ✲ D
that preserve finite limits and the category of exact functors Creg

✲ D.

In order to explain the construction of the exact completion Dex/reg of a regular cate-
gory D, we need to review some more results and definitions concerning relations.

In a regular category, relations can be composed as follows, if 〈fY , fX〉 : R✲ ✲ Y ×X
and 〈gZ , gY 〉 : S✲ ✲ Z×Y are relations from Y to X and Z to Y respectively then their
composition 〈hZ , hX〉 : SR✲ ✲ Z ×X from Z to X is defined as the mono part of the
regular-epi/mono factorization of the rightmost map below.
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S ×Y R
πR ✲ R S ×Y R S ×Y R

S

πS

❄

gY

✲ Y

fY

❄
SR

reg

❄❄

Z ×X

〈hZ , hX〉
❄

❄

Z ×X

〈gZ .πS, fX .πR〉

❄

Given equivalence relations D on Y and E on X we say that a relation F from Y to
X is defined from D to E if DFE = F .

A relation F defined from D to E is total if D ≤ FF ◦ and it is single valued if
F ◦F ≤ E. A functional relation from D to E is a relation F defined from D to E that is
total an single valued.

For example, for any D and E as above and a map [f ] : Y/D ✲ X/E in Dex, the
relation DfE is a functional relation from D to E. Actually, DfE can be characterized
as the unique functional relation F from D to E such that f ≤ F .

The category Dex/reg has the equivalence relations in D as objects and the functional
relations between them as maps. Dex/reg is exact and there is an exact full and faithful
functor D ✲ Dex/reg such that, for every exact category E, it induces an equivalence
between the category of exact functors from D to E and that of exact functors from
Dex/reg to E.

So the assignment of maps to functional relations mentioned above is an injective
function Dex(Y/D,X/E) ✲ Dex/reg(Y/D,X/E).

Finally, the embedding of D into Dex/reg preserves subobjects in the following sense.
A functor F : D ✲ D′ preserves subobjects if it preserves monos and moreover, for

every X, the induced map Sub(X) ✲ Sub(FX) is an isomorphism.

3. Topologies in categories with finite limits

In this section we introduce the notion of topology on a category with finite limits C (all
categories are assumed to be locally small) and then show that it corresponds to universal
closure operators in the exact completion of C. (Recall the a universal closure operator
on a category with finite limits is a natural (in X) transformation Sub(X) ✲ Sub(X)
such that it is idempotent, monotone and inflationary with respect to the usual partial
order of subobjects.)

3.1. Definition. Let C be a category with finite limits. A quasi-topology is a function
J such that for every X in C, JX is a class of morphisms with codomain X subject to
the following axioms:
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(T1) every split epi with codomain X is in JX

(T2) for f : Y ✲ X, if g ∈ JX then the pullback f ∗g of g along f is in JY

(T3) let f : Y ✲ X in JX and g : Z ✲ X. If f ∗g ∈ JY then g ∈ JX

Equivalently, a quasi-topology can be described by the set of axioms below.

(T1’) every identity idX ∈ JX

(T2) for f : Y → X, if g ∈ JX then f ∗g ∈ JY

(T3’) if the composite g.h is in JX then g ∈ JX

(T4’) if f : Y ✲ X ∈ JX and g ∈ JY then f.g ∈ JX

In order to characterize universal closure operators, we need an extra axiom which
requires the following definition.

3.2. Definition. A map h : Z → X is closed with respect to a quasi-topology J if the
following holds: for every f : Y → X, f ∗h ∈ JY implies that f factors through h.

Closed maps are closed under pullback and the following is also worth noting.

3.3. Lemma. Let J be a quasi-topology. Then the following are equivalent.

1. h is closed for J

2. for every commutative square as below,

✲

g

❄
f

✲

h

❄

g in J implies that f factors through h

3. f ∗h in J implies that f ∗h is a split epi

Proof. Routine.
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The definition of closed map allows us to formulate the notion of topology.

3.4. Definition. A quasi-topology J is a topology if it holds that

(T) for every arrow f : Y → X there exists an g : V → W ∈ JW and a closed h : W → X
such that f factors through h.g and h.g factors through f .

The main fact about topologies is the following.

3.5. Proposition. Let D be a regular category with enough projectives, such that the
full subcategory P of projectives is closed under finite limits. Then there is a bijective
correspondence between topologies on P and universal closure operators in D.

Proof. Assume first that we have a topology J on P. Any subobject U✲ ✲ X in D of
an object X in P appears as the image of some map f : Y ✲ X in P. Axiom (T) gives
a closed map h : W ✲ X and we can define the closure of U to be the image of h. It is
not difficult to show that this is well defined. As J-closed maps are closed under pullback
we obtain a universal closure operator “on subobjects of objects from D”. We can then
extend this restricted closure operator to an honest one using Barr-Kock’s Theorem as
stated for example in Lemma 25.24 of [12].

In this way we obtain a universal closure operator in D such that for every projective
X and U✲ ✲ X, U is dense if and only if for some/any projective cover Y ✲✲ D, the
composite Y ✲ X is a map in J . And also, U is closed if and only if Y ✲ X is
J-closed.

Conversely, given a universal closure operator in D, we let J be the collection of maps
in P whose image (in D) is dense. It is not difficult to show that a map in P is J-closed
if and only if its image (in D) is closed for the given closure operator and that J is a
quasi-topology.

To prove axiom (T), let f : X → Y and consider the following diagram in D where
every square is a pullback.

V
reg ✲✲ A✲ dense ✲ W

X

reg

❄❄

reg
✲✲ Im(f)

reg

❄❄
✲
dense

✲ Im(f)

reg

❄❄

X

id

❄

reg
✲✲ Im(f)

id

❄
✲ ✲ Y

closed

❄

❄

Having in mind that the bottom line is the regular-epi/mono factorization of f , one
should look at this diagram from the bottom right corner where we have the familiar facts
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that the closure of an object is closed and that the embedding of an object in its closure
is dense.

The regular epi W ✲✲ Im(f) is a chosen projective cover. The remaining squares are
explained by the facts that, in D, regular epis and dense monos are closed under pullback.

Now, V is a pullback of arrows between projectives so it is projective because the
embedding P ✲ D preserves finite limits.

Let g : V → W be the top composition and let h : W → Y be the right hand
composition. So we have the needed arrows and the fact that h.g factors through f . As
the map V ✲✲ X is a regular epi between projectives in D, it splits. So f factors through
h.g.

To show that the constructions are one the inverse of the other one uses the fact that
in the result of both cases the universal closure operator and the topology are related by
the facts that a map is in the topology (resp. is J-closed) if and only if its image is dense
(resp. is closed).

See Chapter 9 in [13] for details of the proof.

Let us instantiate this result to our main examples of regular categories with enough
projectives.

3.6. Corollary. For any category with finite limits C there is a bijective correspon-
dence between topologies on C and universal closure operators in Cex and in Creg.

The most immediate examples of topologies are the ones induced by stable factor-
ization systems (E ,M) satisfying T3’. For example, stable epi/regular-mono and stable
regular-epi/mono factorizations induce topologies that we will study in more detail in
Section 4. On the other hand, the axiom for a topology is weaker than the usual factor-
ization property. We now present a class of examples that, in general, do not arise from
factorization systems.

3.7. Oracle topologies. In [8] (section 17) it is attributed to Powell the observation
that there is a connection between notions of degree and the forcing of decidability in recur-
sive realizability. This observation finds a nice expression in the fact that the ∨-semilattice
of Turing degrees embeds into the Heyting algebra of Lawvere-Tierney topologies in the
effective topos Eff.

As Eff is the exact completion of the category PAss(K1) of partitioned assemblies [17],
it follows by Corollary 3.6 that the Lawvere-Tierney topologies in Eff can be presented in
terms of topologies in our sense on the category PAss(K1). We now show some examples
of this. These examples also show non-trivial cases of the axiom (T) of Definition 3.4.
First, let us quickly recall the definition of the category of partitioned assemblies.

3.8. Definition. For a partial combinatory algebra A, the category PAss(A) of parti-
tioned assemblies is defined as follows.

Objects are pairs X = (|X|, ‖ ‖X) such that |X| is a set and ‖ ‖X : |X| → A is a
function valued in the underlying set of the partial combinatory algebra. We usually omit
subscripts.
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Morphisms f : Y → X of partitioned assemblies are functions f : |Y | → |X| for which
there exists an a ∈ A such that, for every y ∈ |Y |, a‖y‖ is defined and a‖y‖ = ‖fy‖. (Here
juxtaposition of elements of the partial combinatory algebra denotes the corresponding
application in the algebra.)

For any subset A ⊆ N of the natural numbers we can consider the class of partial
A-recursive functions [18], intuitively, those that in their process of computation can “ask
an oracle whether a number is or not in A”.

For each X, let JA(X) be the class of maps with codomain X that have an A-recursive
section. That is, g : Z ✲ X is in JA(X) if and only if there exists a function s :
|X| ✲ |Z| that can be realized by a partial A-recursive function and such that |g|.s = id.

For every subset A ⊆ N, JA is a topology on PAss(K1). The proof that it is a quasi-
topology is easy. On the other hand, one can prove axiom (T) using the ideas present
in [8, 15, 14] where the associated closure operators are also discussed using different
mechanisms to present them.

4. Separated objects and sheaves

Recall [1] that and object A is separated with respect to a universal closure operator if
for every dense u : U✲ ✲ X and map t : U ✲ A there exists at most one map
k : X ✲ A such that k.u = t. We say that A is a sheaf if for every u and t as above,
there exists a unique k such that k.u = t. Of course, every sheaf is separated.

We now explain how to identify separated objects and sheaves in Cex using just the
information in the topology.

4.1. Lemma. Let J be a topology on C and consider the universal closure operator in-
duced in D where D is either Creg or Cex.

1. A is separated if and only if for every map f : Y ✲ X in J and every pair of
maps g, h : X ✲ A, g.f = h.f implies that g = h (that is, A believes that maps
in J are epi in D).

2. A is a sheaf if and only if for every map f : Y ✲ X in J with kernel pair
f0, f1 : K ✲ Y and map g : Y ✲ A such that g.f0 = g.f1 there exists a unique
map g′ : X ✲ A such that g′.f = g (that is, A believes that maps in J are regular
epis in D).

Proof. First one proves that an object is separated if and only if the condition holds
for dense subobjects of projectives (i.e. of objects from C). Then it is easy to show that
separatedness “with respect to projectives” is equivalent to the condition in the statement.
The case for sheaves is analogous.
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Universal closure operators are sometimes denoted by the letter j. For any category
D equipped with such a j, we denote by Sepj(D) and Shj(D) the full categories of D
given by separated objects and sheaves respectively.

Let us now give a concrete description of the categories of separated objects. Given a
topology J on a category C, we say that a pseudo equivalence relation p0, p1 : X1

✲ X0

is J-closed if the map 〈p0, p1〉 : X1
✲ X0×X0 is closed with respect to J (Definition 3.2).

For any topology J we say that a subclass S of the class of J-closed maps is sufficient
if for every J-closed h : Y ✲ X there exists a map h′ : Y ′ ✲ X in S such that h
factors through h′ and h′ factors through h. Moreover, we say that a pseudo equivalence
relation p0, p1 : X1

✲ X0 is S-closed if the map 〈p0, p1〉 : X1
✲ X0 ×X0 is in S.

We can now state a convenient way to describe categories of separated objects.

4.2. Lemma. Let J be a topology on a category C and let j be the induced universal
closure operator in Cex. Moreover, let S be a sufficient class of J-closed maps. Then
Sepj(Cex) is equivalent to the full subcategory of Cex given by the S-closed pseudo equiv-
alence relations.

Proof. Use Lemma 4.1 plus the observation that every J-closed pseudo equivalence
relation is isomorphic (as an object of Cex) to an S-closed one.

We say that a topology on C is sep-subcanonical if every object of C is separated in
Cex (or equivalently in Creg) with respect to the induced universal closure operator. We
say that the topology is subcanonical if every object of C is a sheaf in Cex (or Creg).

4.3. Sep-canonical topologies. Let us here characterize sep-subcanonical topologies
and relate them to regular completions.

4.4. Corollary. A topology J on C is sep-subcanonical if and only if every map in J
is epi in C. Moreover, if C has stable epi/regular-mono factorizations then it has a largest
sep-subcanonical topology.

Proof. Use Lemma 4.1 for the first part of the statement. For the second let JX be the
class of all epi maps with codomain X. The stable factorizations imply axiom (T).

In the latter case, we call this topology the sep-canonical topology.

We say that an equivalence relation e0, e1 : E ✲ X is regular if the induced mono
〈e0, e1〉 : E✲ ✲ X ×X is regular.

4.5. Corollary. If C has stable epi/regular-mono factorizations then the category of
separated objects in Cex for the sep-canonical topology is equivalent to the full subcategory
of Cex given by the regular equivalence relations.

Proof. It is not difficult to show that, in this case, the regular monos form a sufficient
class of closed maps. Then the result follows by Lemma 4.2.
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In [3] the category of separated objects for the ¬¬-topology in the Effective topos [8]
is shown to be the regular completion of the category of partitioned assemblies. Similarly,
in [19] it is shown that the category Equ of equilogical spaces is equivalent to (T0)reg, the
regular completion of the category of T0 topological spaces, and that it is also a category of
separated objects of (T0)ex. The fact that in these cases the regular completion appears as
a category of separated objects of the exact completion is well explained by the following
corollary.

4.6. Corollary. Let C have stable epi/regular-mono factorizations and be such that
every regular equivalence relation is a kernel pair. Then Creg is the category of separated
objects in Cex for the sep-canonical topology.

Proof. This follows from the characterization of the category of separated objects for the
sep-canonical topology given in Corollary 4.5 and the description of Creg as the category
of kernel pairs in C (see [3]).

This may also be suggesting that, in general, it may be useful to consider the category
of separated objects in Cex for the sep-canonical topology rather than Creg because, as a
category of separated objects of an exact completion it will inherit better properties.

4.7. Canonical topologies. Regular epis on any locally small regular category induce
a topology in our sense. In this section we study this topology and also characterize the
sheaves in Dex for it.

4.8. Corollary. A topology J on C is subcanonical if and only if every map in J is a
regular epi in C. So, if D is a regular category then it has a largest subcanonical topology.

Proof. Use Lemma 4.1.

In the latter case, we call this topology the canonical topology and we denote it by
can. It is easy to show that monos are closed and that the class of monos is sufficient.
Then, by Lemma 4.2, Sepcan(Dex) is equivalent to the full subcategory of Dex given by
the equivalence relations. But let us concentrate on the characterization of sheaves for
this topology.

We will now introduce two definitions that characterize sheaves for the canonical topol-
ogy on a regular category (see Section 6 for an explanation of the terminology).

4.9. Definition. An equivalence relation 〈e0, e1〉 : E✲ ✲ X × X is Higgs-complete
if for every equivalence relation 〈d0, d1〉 : D✲ ✲ Y × Y and every functional relation
〈fY , fX〉 : F✲ ✲ Y ×X from D to E there exists a map f : Y ✲ X such that f ≤ F
(i.e. f induces F ).

In other words, for F and f as above, there exists f ′ : D ✲ E such that the following
diagrams commute and such that DfE = F (here juxtaposition means composition of
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relations).

D
f ′

✲ E

Y

d0

❄

d1

❄

f
✲ X

e0

❄

e1

❄

Also, E on X is Higgs-complete if for every equivalence relation D, the inclusion
Dex(Y/D,X/E) ✲ Dex/reg(Y/D,X/E) is actually an isomorphism.

(I believe the notion of Higgs-completeness is related to that of Cauchy-completeness
as discussed in [10] and [20] but we will not pursue this here.)

4.10. Definition. An equivalence relation 〈e0, e1〉 : E✲ ✲ X × X is complete if for
every exact sequence d.d0 = d.d1 and maps f, f such that f.d0 = e0.f and f.d1 = e1.f as
in the left diagram below

D
f ✲ E Y

k ✲ E

Y

d0

❄

d1

❄

f
✲ X

e0

❄

e1

❄
Y × Z

〈id, d〉
❄

f × f ′
✲ X ×X

〈e0, e1〉
❄

❄

Z

d

❄❄

there exist maps f ′ : Z ✲ X and k : Y ✲ E such that e0.k = f and e1.k = f ′.d as
in the right diagram above. In other words, f and f ′.d induce the same morphism from
D to E in the exact completion of the underlying category.

Notice that there are no functional relations involved in this definition. In order to
motivate it let us say that an objectQ is a quasi-sheaf if for every dense monom : U✲ ✲ Y
and map f : U ✲ Q there exists a (not necessarily unique) f ′ : Y ✲ Q such f ′.m = f .

By the descriptions of exact completions and of canonical topologies, a map from a
dense subobject of an object in D is given by a diagram as in Definition 4.10. It is easy
to check that an equivalence relation E on X in D is a quasi-sheaf as an object in Dex if
and only if it is complete.

4.11. Lemma. Let D be a regular category. Then an equivalence relation in D (seen
as an object Q in Dex) is a sheaf for the canonical topology on D if and only if Q is a
quasi-sheaf.
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Proof. One direction is trivial. To show that Q a quasi-sheaf implies that Q is a sheaf
we need only show that Q is separated. This is equivalent (see [1]) to the fact that
∆ : Q✲ ✲ Q×Q is closed. We now show that this is the case.

Let E✲ ✲ X × X be the equivalence relation (in D) whose effective quotient is
X ✲✲ Q. We then have the following pullback diagram in Dex.

E ✲✲ Q

X ×X
❄

❄

q × q
✲✲ Q×Q

∆

❄

❄

As D is regular, monos form a sufficient class of closed maps for the canonical topology,
so E✲ ✲ X ×X is closed. As the square is a pullback and q × q is a regular epi, ∆ is
also closed.

One of the key results in the paper is the following.

4.12. Proposition. Let D be a regular category. Then the following categories are
equivalent.

1. Shcan(Dex)

2. the full subcategory of Dex given by the complete equivalence relations

3. the full subcategory of Dex given by the Higgs-complete equivalence relations

Proof. As sheaves are separated, every sheaf for the canonical topology is iso in Dex to
an equivalence relation (see remark below Corollary 4.8).

Lemma 4.11 is the equivalence between 1 and 2.

Now suppose that the equivalence relation E on X is complete and suppose that
F = 〈fY , fX〉 : F ✲ Y × X is a functional relation as in Definition 4.9. It is easy to
show that fX induces a map in Dex from the object induced by the kernel pair of fY to
that given by E. Completeness then provides a map f ≤ F .

Conversely, assume that E onX is Higgs-complete and suppose that the exact sequence
d.d0 = d.d1 and maps f and f are as in Definition 4.10. The objects induced by Z and by
D on Y are iso in Dex/reg so the map f induces a functional relation from Z to E on X.
By Higgs-completeness there exists a map f ′ : Z ✲ X inducing the functional relation.
It follows that f and f ′.d induce the same map from D to E.

See Corollary 10.4.8 in [13] for the details of the proof.
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The definition of Higgs-completeness (Definition 4.9) implies that the full subcategories
of Dex and of Dex/reg induced by the Higgs-complete equivalence relations are equivalent.
Let us denote any of these equivalent categories by Ceq(D). So that we have embeddings
Ceq(D) ✲ Dex/reg and Ceq(D) � Shcan(Dex) ✲ Dex.

We now briefly discuss the category Ceq(D) from the perspective of its embedding
into Dex/reg.

4.13. Definition. Let D be a subcategory of D′. A map q : Y ✲ Q in D′ is D-
projecting if for every X in D and map g : X ✲ Q there exists a map f : X ✲ Y
such that q.f = g.

The following lemma relates this notion with the sheaves for the canonical topology.

4.14. Lemma. An object Q in Dex/reg is in Ceq(D) if and only if there exists an X in
D and a D-projecting quotient X ✲✲ Q.

Proof. Let q : X ✲✲ Q be a regular epi and let e0, e1 : E ✲ X be its kernel pair
(an equivalence relation in D). So Q is the equivalence relation E seen as an object of
Dex/reg. It is not difficult to show that if E is Higgs-complete then q is D-projecting.

On the other hand, it is also not difficult to show that if q is D-projecting then E is
complete. See Lemmas 10.5.2 and 10.5.3 in [13].

The following sums up some good properties of the category Ceq(D).

4.15. Proposition. If D is a regular category then Ceq(D) is regular and the embed-
ding Ceq(D)✲ ✲ Dex/reg is exact and preserves subobjects.

Proof. Using Lemma 4.14 and the fact that D✲ ✲ Dex/reg preserves subobjects one
proves that Ceq(D)✲ ✲ Dex/reg preserves subobjects. Using this and the facts that
D✲ ✲ Dex/reg preserves finite limits and that projecting quotients are closed under
pullback one shows that Ceq(D)✲ ✲ Dex/reg preserves finite limits. Again, using ex-
actness of D✲ ✲ Dex/reg and preservation of subobjects of both D✲ ✲ Dex/reg and
Ceq(D)✲ ✲ Dex/reg, one shows that Ceq(D) has stable regular-epi/mono factorizations
and that the embedding into Dex/reg preserves them. See Section 10.5 in [13].

Notice that as the embedding D ✲ Dex/reg also preserves subobjects we obtain that
the embedding D ✲ Ceq(D) does too.

The strong properties of the embedding Ceq(D) ✲ Dex/reg have the following
consequence.

4.16. Corollary. Ceq(D) is exact if and only if it is equivalent to Dex/reg.

5. Local cartesian closure

We show how to derive local cartesian closure of certain subcategories of exact completions
and relate this result to that in [2]. We recall very briefly here the fundamental result in
the area.
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5.1. Definition. Given maps f : X → J and α : J → I, a weak dependent product of
f along α consists of a map ζ : Z ✲ I and a natural epi C/I( , ζ) ✲✲ C/J(α∗( ), f).
(See also Remark 3.2 in [5].)

The result in [5], specialized as in [2] to the setting where strong finite limits are
assumed, is the following.

5.2. Proposition. Cex is locally cartesian closed if and only if C has weak dependent
products.

In [2], the authors were interested to apply this result to get local cartesian closure of
many subcategories of Cex. In particular, of the regular completion of the category of T0

topological spaces.

We will now show how to obtain a related result using the machinery described in
this paper. The idea is to use Lemma 4.2 and obtain local cartesian closure as a general
property of categories of separated objects.

Let j be a universal closure operator in a category with finite limits C. Then, for any
X in C, j induces a universal closure operator j/X in the slice category C/X such that
the following holds.

5.3. Lemma. If X is separated for j in C then Sep(j/X)(C/X) ∼= (SepjC)/X. Moreover,
if X is a sheaf then Sh(j/X)(C/X) ∼= (ShjC)/X.

Proof. This is well known but we give a sketch of the proof (see Lemma 10.6.1 in [13]
for details). For any map f : Y ✲ X in C, we denote the corresponding object of C/X
by (Y, f). It is easy to see that m : (Y ′, g) ✲ (Y, f) is mono in C/X if and only if
m : Y ′ ✲ Y is mono in C. Then we can define (j/X)m = jm ∈ SubC/X(Y, f). It is
not difficult to show that (j/X) is a universal closure operator in C/X.

To show that Sep(j/X)(C/X) is embedded in (SepjC)/X one shows that if a : A ✲ X
is separated for (j/X) in (C/X) then A is separated in C for j. On the other hand, to show
that (SepjC)/X embeds into Sep(j/X)(C/X) one shows that for any separated A in C and
any a : A ✲ X, a is separated for (j/X) in C/X. It is easy to show that the induced
embeddings are inverse to each other so one obtains that Sep(j/X)(C/X) ∼= (SepjC)/X.
The case for sheaves is analogous.

It is well known (see for example the proof of Lemma V.2.1 in [11]) that if a category is
cartesian closed then the categories of sheaves and of separated objects for any universal
closure operator are also cartesian closed. In the case of separated objects for a universal
closure operator this also follows from the preservation of products of the reflection functor
[1] (this reflection functor does not exist in general for categories of sheaves).

5.4. Corollary. Let C have weak dependent products. Then for any topology J on C,
the category of J-closed pseudo equivalence relations is locally cartesian closed.

Proof. By Proposition 5.2, Cex is locally cartesian closed and by Lemma 4.2 the J-
closed pseudo equivalence relations form a subcategory of separated objects of Cex.
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This, in turn can be used to prove the local cartesian closure of regular completions.
Indeed, if C has weak dependent products and satisfies the hypothesis of Corollary 4.6,
it follows that Creg is locally cartesian closed.

Let us compare these results with the approach in [2] to prove local cartesian closure
of certain categories of pseudo equivalence relations. In their work, topologies in the sense
of Definition 3.4 are not considered and results on categories of separated objects are not
exploited. For any stable factorization system (E ,M) in C they introduce the full subcat-
egory PER(C,M) of Cex given by the pseudo equivalence relations r1, r2 : X1

✲ X0

such that 〈r1, r2〉 : X1
✲ X0 × X0 is in M. Then they show that the embedding of

PER(C,M) into Cex has a left adjoint which preserves products and commutes with
pullbacks along maps in the subcategory. From this, it follows that if Cex is locally
cartesian closed then PER(C,M) also is.

Notice that when (E ,M) satisfies T3’ then the factorization system is an exam-
ple of our topologies and PER(C,M) is the associated category of separated objects
by Lemma 4.2. Then the existence of the left adjoint satisfying the properties men-
tioned above follows from general facts about categories of separated objects (see [1]) and
Lemma 5.3.

On the other hand, left adjoints to embeddings of categories of sheaves are not as easy
to construct as in the case of separated objects. Indeed, enough injectives are usually
required [1]. But we can still use our argument to prove the following.

5.5. Corollary. If D is a regular category with weak dependent products then Ceq(D)
is locally cartesian closed.

Proof. Recall from Section 4.7 that Ceq(D) is equivalent to Shcan(Dex). So the result
follows by the remark below Lemma 5.3.

This result will let us show the local cartesian closure of certain ex/reg completions in
Section 6.

6. Complete equivalence relations and toposes

We will give, after some motivation and history, a characterization of when is Ceq(D) a
topos.

It is well known that toposes of sheaves on a locale and realizability toposes arise
non-trivially as ex/reg completions [6, 3, 12]. The topos of sheaves on a locale H is the
ex/reg completion of the category H+ of H-valued sets which is, in turn, the coproduct
completion of H (see 2.3.1 in [13] for a more concrete presentation). Realizability toposes
are the ex/reg completions of the categories Ass of assemblies [3].

The strategy for the proofs of these facts given in [6] is simple: build the ex/reg
completion and prove that it is a topos by showing that it has finite limits and power
objects. No attempt is made to give conditions on a regular category for its ex/reg
completion to be a topos.
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In [12] there is an attempt to simplify the presentation. McLarty shows that in order
to prove that the ex/reg completion of a regular category D is a topos it is enough to
show that every object in D has a power object in Dex/reg (actually, something slightly
weaker). That is, in order to prove that Dex/reg is a topos, one does not need to build all
power objects, just a good class of them. This is a good simplification, yet, to use this
fact, one still has to build the ex/reg completion and construct objects in it.

We will present a result that allows one to show that Dex/reg is a topos merely by
looking at the category D itself.

In order to motivate our proof, let us first briefly review Higgs’ construction of the
category of sheaves on a locale [7].

Let H be a frame and consider the category S(H) defined as follows. Its objects are
pairs X = (|X|, δX) with |X| a set and δX a function from |X| × |X| to H such that
δX(x, x′) = δX(x′, x) and δX(x0, x1) ∧ δX(x1, x2) ≤ δX(x0, x2).

A map Y ✲ X between two such objects is a function f : |Y | × |X| ✲ H such
that the following hold.

1. f(y, x) ∧ δY (y, y
′) ≤ f(y′, x) and f(y, x) ∧ δX(x, x′) ≤ f(y, x′)

2. f(y, x) ∧ f(y, x′) ≤ δX(x, x′)

3.
∨

x∈X f(y, x) = δY (y, y)

It turns out that this category is equivalent to the category of sheaves on the frame
H. Let us outline a sketch of the proof. We use the terminology of [7]. We say that a
map f : Y ✲ X is represented by a function f0 : |Y | ✲ |X| if f(y, x) ≤ δX(f0y, x)
for all y ∈ Y and x ∈ X.

Now define an object X to be ample if every map to X is represented by a function.
There is functor from the category of sheaves on H to the category S(H) that assigns

to each sheaf an ample object. This property is used to prove that the functor is full and
faithful. Then it is proved that every object in S(H) is isomorphic to one in the image of
the embedding of sheaves.

In [9], this presentation of sheaves is used to motivate the definition of a tripos. In
their treatment of geometric morphisms they introduce the notion of a weakly complete
object which is very similar to the notion of an ample object. They prove is that every
object in the topos induced by a tripos is isomorphic to a weakly complete one.

The resemblance of Higgs-completeness with ampleness (and also with weak complete-
ness [9]) is evident.

We are going to borrow this idea from Higgs in order to prove our result. But first we
need the following definition.

6.1. Definition. A generic mono in a category D is a mono τ : Υ✲ ✲ Λ such that
every mono u : U✲ ✲ A in D arises as a pullback of τ (along a not necessarily unique
map).

The following is a generalization of Higgs’ main idea about ampleness.
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6.2. Lemma. If D is regular, locally cartesian closed and has a generic mono then every
equivalence relation in D is isomorphic (as an object in Dex/reg) to a complete one. That
is, Dex/reg � Ceq(D).

Proof. The proof is essentially that of Proposition 3.3 in [9]. There is a more external
version proved in the context of this paper in [13].

As the canonical embedding D ✲ Dex/reg preserves finite limits, then the universal
property of Dex induces an exact functor a : Dex

✲ Dex/reg � Shcan(Dex). This functor
is easily seen to be left adjoint to the embedding Shcan(Dex) ✲ Dex. So we have easily
obtained an associated sheaf functor. Notice that as this functor preserves finite limits,
we have another proof of local cartesian closure of Dex/reg � Shcan(Dex) � Ceq(D).

6.3. Proposition. Let D be a locally cartesian closed regular category. Then Ceq(D) is
a topos if and only if D has a generic mono. Moreover, in this case, Ceq(D) is equivalent
to Dex/reg.

Proof. Consider first the if direction. Our characterization of complete equivalence
relations as a category of sheaves gives a cheap proof that Ceq(D) is locally cartesian
closed (Corollary 5.5). So we need only prove that Ceq(D) has a subobject classifier.
Given a generic mono τ : Υ ✲ Λ we think of Λ as a space of “propositions”. By
Lemma 6.2, Ceq(D) is equivalent to Dex/reg and so Ceq(D) is exact. We can then
quotient Λ by the equivalence relation that relates two propositions if and only if they are
equivalent. Denote this quotient by Ω. Using that Ω can be covered by a D-projecting
quotient (Lemma 4.14) one proves that Ω is a subobject classifier.

For the only if direction let � : 1 ✲ Ω be the subobject classifier in Ceq(D).
By Lemma 4.14 there exists a D-projecting quotient ρ : Λ ✲✲ Ω with Λ in D. Let
τ = ρ∗� : Υ✲ ✲ Λ. As D ✲ Ceq(D) preserves subobjects, Υ is in D. As ρ is
D-projecting it is easy to see that τ is a generic mono in D.

By Corollary 4.16, Ceq(D) is equivalent to Dex/reg.

It is very easy to check that the categories Ass of assemblies for a partial combinatory
algebra and H+ of H-valued sets satisfy the premises of Proposition 6.3. This gives very
simple presentations of realizability and localic toposes.

Realizability toposes can also be presented using exact completions [17, 13]. It is
worth mentioning that those presentations require the axiom of choice in Set while the
presentation using ex/reg completions does not.

It may be interesting to notice that, in general, it can be the case that Ceq(D) �
Dex/reg is a topos while Dex is not.

The reader should compare Proposition 6.3 with Theorem 4.2 in [16] which gives a
characterization of the first order hyperdoctrines (over categories with finite products)
whose associated category of partial equivalence relations is a topos. Using this result it
is not difficult to prove the if direction of our Proposition 6.3 in the form: if D is a locally
cartesian closed regular category with a generic mono then Dex/reg is a topos.
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Andrew Pitts, University of Cambridge: Andrew.Pitts@cl.cam.ac.uk
Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca, Managing Editor
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
James Stasheff, University of North Carolina: jds@math.unc.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Insubria: walters@fis.unico.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


