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ON THE PULLBACK STABILITY OF A QUOTIENT MAP WITH
RESPECT TO A CLOSURE OPERATOR

LURDES SOUSA

ABSTRACT. There are well-known characterizations of the hereditary quotient maps
in the category of topological spaces, (that is, of quotient maps stable under pullback
along embeddings), as well as of universal quotient maps (that is, of quotient maps
stable under pullback). These are precisely the so-called pseudo-open maps, as shown
by Arhangel’skii, and the bi-quotient maps of Michael, as shown by Day and Kelly,
respectively. In this paper hereditary and stable quotient maps are characterized in the
broader context given by a category equipped with a closure operator. To this end, we
derive explicit formulae and conditions for the closure in the codomain of such a quotient
map in terms of the closure in its domain.

1. Introduction

In the category T op of topological spaces, a quotient map is just an epimorphism f :
X → Y for which B ⊆ Y is closed whenever p−1(B) is closed. A pseudo-open map is an
epimorphism f such that for each B ⊆ Y the closure of B in Y coincides with the image
by f of the closure of f−1(B) in X. Without any changes these concepts make sense in an
arbitrary category equipped with a Dikranjan-Giuli closure operator [10]. Hence there is
a natural notion of c-quotient map [8] and of c-pseudo-open map, which is known under
the name of c-final morphism (cf. [6] and [14]). Explicitly, a morphism f : X → Y is
c-final if cY (n) ∼= f(cX(f−1(n))) for all subobjects n of Y .

Our starting point in this paper is to consider the expression on the right of the
last formula as an operator F of n, and to characterize c-quotient maps in terms of this
operator (Theorem 3.1) which, in some sense, gives a measure of the distance between the
concepts of c-quotient and c-final morphism. In Section 4 we use this characterization to
show that the notion of c-quotient ascends along both c-closed or c-open monomorphism,
that is, if in the pullback diagram

✲

✲

❄ ❄
X Y

U V
f ′

f
p′ p

(1)

p′ is a c-closed or c-open monomorphism, then with f also f ′ is a c-quotient morphism.
This result follows the same pattern as other facts proved in [11] and [14] about properties
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ascending along special morphisms. In Section 5 we characterize hereditary c-quotients
as the c-final morphisms, provided that we deal with morphisms whose codomain has a
subobject lattice which is a Boolean algebra. Our main result concerns the characteri-
zation of universal c-quotient maps, that is, of those c-quotient maps preserved by any
pullback. In T op, with the usual Kuratowski closure, they were characterized by Michael
[16] and Day and Kelly [9] in terms of filters and open sets. Here we present another
characterization in terms of an inequality involving the closures in the domain and in the
codomain of the map in question (Theorem 6.3). The point of this inequality is that it
still gives at least a sufficient criterion for universality of a c-quotient in a fairly general
categorical context which is described in Theorem 6.10.

Acknowledgement. I thank Maria Manuel Clementino for valuable discussions on the
subject of this paper.

2. Preliminaries

Throughout this paper, we shall be working in a finitely complete category X with a
proper factorization system (E ,M) for morphisms (see, for example, [1, 13, 17]). We shall
further assume that X isM-complete, that is,M is pullback-stable and the intersection
of a (possibly large) family of morphisms inM with common codomain exists in X and
belongs toM. By a subobject of an object X we mean anM-morphism with codomain
in X. We use subX to indifferently denote the class of all subobjects of X or the usual
class of equivalence classes of isomorphic M-morphisms with codomain in X . The M-
completeness of X implies that, for every object X ∈ X , subX is a complete (pre)ordered
class.

2.1. Every morphism f : X → Y gives the image-preimage adjunction

f(−) � f−1(−) : subY −→ subX .

Thus, we have that:
(a) m ≤ f−1(f(m)) and f(f−1(n)) ≤ n, for all f : X → Y , m ∈ subX and n ∈ subY ;

(b) f−1

(∧
i∈I

ni

)
∼=

∧
i∈I

f−1(ni) and f

(∨
i∈I

mi

)
∼=

∨
i∈I

f(mi).

Moreover, we have the following properties (cf. [14]):
(c) m ∼= f−1(f(m)), if f is monic and E is stable under pullbacks;
(d) f(f−1(n)) ∼= n, if and only if every pullback of f along anM-morphism belongs to E .

2.2. Let the diagram (1) in Introduction be a pullback diagram. Then, for every m ∈
subX, by image-preimage adjunction, f ′(p′−1(m)) ≤ p−1(f(m)); we say that (1) satisfies
the Beck-Chevalley Property (BCP) if, moreover, we have f ′(p′−1(m)) ∼= p−1(f(m)). We
shall make use of the following result (cf. [15, 7]):

Every pullback in X satisfies (BCP) if and only if E is stable under pullback.
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2.3. A closure operator c of X with respect to (E ,M) is given by a family of functions
cX : subX → subX (X ∈ X ) such that, for m,n ∈ subX, m ≤ cX(m), cX(m) ≤ cX(n)
if m ≤ n, and all f : X → Y in X are c-continuous, that is, f(cX(m)) ≤ cY (f(m)). A
subobject m ∈ subX is c-closed if m ∼= cX(m) and the operator c is called idempotent if
cX(m) is c-closed for all m ∈ subX, X ∈ X . A morphism f : X → Y is said to be c-closed
if, for each m ∈ subX, f(cX(m)) ∼= cY (f(m)), and it is said to be c-open if, for each
n ∈ subY , f−1(cY (n)) ∼= cX(f−1(n)). A morphism f : X → Y is said to be a c-quotient
provided that it belongs to E and, for each n ∈ subY , the c-closedness of f−1(n) implies
the c-closedness of n. It is said to be c-final if, for each n ∈ subY , cY (n) ∼= f(cX(f−1(n))).

2.4. Recall that a commutative diagram as in (1) in Introduction is said to be a E-weak
pullback whenever the canonical morphism e : U → X ×Y V belongs to E . The (BCP)
property is enjoyed by all pullbacks in X iff it is enjoyed by all E-weak pullbacks (see
[15, 7, 14]). All results on pullbacks presented in sections 3 and 4 are also true for E-weak
pullbacks. This simply follows from the fact that all proofs work if, instead of pullbacks,
we have E-weak pullbacks.

3. A characterization of c-quotients

In this section we give a characterization of c-quotient which does not involve the notion
of c-closed subobject. Furthermore, it sheds light on the difference between c-quotient
morphisms and c-final morphisms.

Given a morphism f : X→Y in X , we have the function

F : subY −→ subY

which assigns to each n ∈ subY theM-subobject f(cX(f
−1(n))).

F is clearly extensive and monotone. Moreover, a morphism f : X→Y is c-final
exactly whenever cY ≤ F , that is, cY (n) ≤ F (n) for each n ∈ subY . We call F the c-final
function associated to f . We are going to show that c-quotient morphisms can also be
characterized by means of the corresponding c-final function.

We obtain an ascending ordinal chain of functions from subY into subY ,

(Fα)α∈Ord ,

by putting
F 0 = IdsubY

, Fα = FFα−1, F β =
∨

γ<β

F γ

for every successor ordinal α and for every limit ordinal β. We denote by F∞ the function
which, to each n ∈ subY , assigns

∨
α∈Ord

Fα(n).

3.1. Theorem. Let X beM-wellpowered. Then a morphism f : X → Y is a c-quotient
if and only if cY ≤ F∞.
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Proof. Let us assume that cY ≤ F∞. By definition of F α, it is clear that, for each ordinal
α, Fα(1Y ) ≤ f(1X). Thus, we have that 1Y

∼= cY (1Y ) ≤ F∞(1Y ) ≤ f(1X); consequently,
f(1X) is an isomorphism, so that f ∈ E . Let n ∈ subY be such that f−1(n) is c-closed, that
is, cX(f

−1(n)) ∼= f−1(n). Then, we have that F (n) = f(cX(f
−1(n)) ∼= f(f−1(n)) ≤ n.

From this, it immediately follows that Fα(n) ≤ n for each α. Thus cY (n) ≤ n, that is, n
is c-closed.

Conversely, let f : X → Y be a c-quotient. Since X is M-wellpowered, the chain
(F γ)γ∈Ord is stationary, that is, there is some ordinal α such that F β ∼= Fα for all β ≥ α.
Let n ∈ subY ; we are going to prove that cY (n) ≤ Fα(n). For that, we show that Fα(n)
is c-closed.

In fact, we have that

f−1(Fα(n)) ∼= f−1(Fα+1(n))
= f−1(f(cX(f

−1(Fα(n)))))
≥ cX(f−1(Fα(n))),

from what follows that f−1(Fα(n)) is c-closed. Thus, since f is a c-quotient, Fα(n) is
c-closed. Now, using the fact that n ≤ Fα(n), we obtain that cY (n) ≤ Fα(n).

3.2. Remark. Assume that X is M-wellpowered and that E is pullback stable along
M-morphisms. Then, as a consequence of the above theorem, we have that: If the
closure operator c is idempotent, then a morphism f : X → Y is c-quotient if and only
if cY ∼= F∞, if and only if there is some α ∈ Ord such that cY ∼= Fα. In fact, let c
be idempotent and let f : X → Y belong to E . Then, for each n ∈ subY and each
α ∈ Ord, we have that F (n) = f(cX(f−1(n)) ≤ f(f−1(cY (n)) ∼= cY (n) (by (c) of 2.1) and,
assuming Fα(n) ≤ cY (n), it follows that Fα+1(n) ∼= F (Fα(n)) ≤ f(cX(f−1(cY (n)))) ≤
f(f−1(c2Y (n))

∼= c2Y (n) ∼= cY (n). Thus, it it is clear that Fα(n) ≤ cY (n) for all α ∈ Ord.

4. Pullbacks of c-quotients

From now on, we assume that E is stable under pullback and so, by 2.2, that every
pullback in X satisfies (BCP).

4.1. Let

✲

✲

❄ ❄
X Y

U V
f ′

f

p′ p

(2)

be a pullback diagram. In [14] it was proved that:

If f is c-final and p′ c-initial then f ′ is c-final and p c-initial.

We are going to study the parallel situation corresponding to replacing c-final by
c-quotient and c-initial by c-closed or c-open monomorphism.
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4.2. First, we need the following definition:
By a chain of subobjects of X, we mean a family (ni)i∈I of subobjects of X such that

(I,≤) is a linear ordered set and ni ≤ nj whenever i ≤ j. Given a morphism g : X → Y ,
we say that M-unions of chains of subobjects of Y are preserved by the inverse image
under g provided that, for each chain (ni)i∈I of subobjects of Y , it holds that

g−1(
∨
i∈I

ni) ∼=
∨
i∈I

g−1(ni) .

We point out that the preservation by inverse images under monomorphisms ofM-unions
of chains is fulfilled by numerous categories; for instance, all monotopological categories
over Set forM the class of embeddings, the categories of vector spaces, groups and rings,
forM the injective homomorphisms.

Let us consider the pullback diagram (2), where p′ and p are monomorphisms. Then,
we prove the following two assertions:

4.3. Theorem. If f is a c-quotient and p′ c-closed, then f ′ is a c-quotient; furthermore,
p is c-closed if c is idempotent.

Proof. Let n ∈ subV be such that f ′−1(n) is a c-closed subobject of U . We show that
n is c-closed, thus f ′ is a c-quotient. Since p′ is a c-closed morphism, we obtain that
p′(f ′−1(n)) ∼= p′(cU(f ′−1(n)) ∼= cX(p′(f ′−1(n))) , that is, p′(f ′−1(n)) is c-closed.

Thus, since, by (BCP), p′(f ′−1(n)) ∼= f−1(p(n)), we conclude that f−1(p(n)) is c-
closed. As f is a c-quotient, it follows that p(n) is c-closed, i.e.,

cY (p(n)) ∼= p(n) . (3)

Then,
cV (n) ≤ p−1(p(cV (n))), by 2.1(a)

≤ p−1(cY (p(n))), by c-continuity
∼= p−1(p(n)), from (3)
∼= n, by 2.1(c)

Therefore, n is c-closed.

Now, if c is idempotent, in order to show that p is c-closed, it suffices to show that p
maps c-closed subobjects to c-closed subobjects (see [14]). Let n be a c-closed subobject
of V . The idempotency of c implies that, then, f ′−1(n) is also c-closed, since

cU(f
′−1

(n)) ∼= cU(f ′−1
(cV (n))) ≤ f ′−1

(c2V ((n)))
∼= f ′−1

(cV (n)) ∼= f ′−1
(n) .

Consequently, p′(f ′−1(n)) is c-closed and, from the (BCP) property, the same happens to
f−1(p(n)). So, the fact that f is c-quotient implies that p(n) is c-closed.

4.4. Theorem. Let X be M-wellpowered and let M-unions of chains of subobjects of
Y be preserved by inverse images under monomorphisms. If f is a c-quotient and p′ is
c-open, then f ′ is a c-quotient; furthermore, p is c-open if c is idempotent.
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Proof. We are going to make use of the characterization of c-quotients given in Section
2. Let F ′ be the c-final function associated to f ′. First we show that, for each n ∈ subY
and each ordinal β, we have that

p−1(F β(n)) ∼= F ′β(p−1(n)) . (4)

For β = 0, it is clear. Assuming the property for all ordinals less then β, we have:
For β = α+ 1,

p−1(F β(n)) = p−1(f(cX(f
−1(Fα(n)))))

∼= f ′(p′−1(cX(f
−1(Fα(n))))), by (BCP)

∼= f ′(cU(p′−1(f−1(Fα(n))))), since p′ is c-open
∼= f ′(cU(f ′−1(p−1(Fα(n))))), by (BCP)
∼= f ′(cU(f ′−1(F ′α(p−1(n))))), by inductive hypothesis

= F ′β(p−1(n))

For β a limit ordinal,

p−1(F β(n)) = p−1(
∨

γ<β F
γ(n))

∼= ∨
γ<β p

−1(F γ(n)), by the preservation of M-unions
of chains by inverse image

∼= ∨
γ<β F

′β(p−1(n)), by inductive hypothesis

Let now m ∈ subV ; we want to prove that, for some α ∈ Ord, cV (m) ≤ F ′α(m). We
have that

cV (m) ≤ p−1(p(cV (m))), by 2.1(a)
≤ p−1(cY (p(m))), by c-continuity
≤ p−1(Fα(p(m))), for some α ∈ Ord, since

f is c-quotient and X is M-
wellpowered,

∼= F ′α(p−1(p(m))), by (4)
∼= F ′α(m), by 2.1(c).

Therefore, F ′ is a c-quotient.

Let us now show that, assuming that c is idempotent, p is c-open. Since X is M-
wellpowered, and f and f ′ are c-quotients, there is some ordinal α such that cY ∼= Fα

and cV ∼= F ′α (see Remark 3.2). Thus, it follows that:

p−1(cY (n)) ∼= p−1(Fα(n))
∼= F ′α(p−1(n)), by (4)
∼= cV (p−1(n)) .
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4.5. Remark. The idempotency of c is necessary for p to be c-closed in Theorem 4.3.
The same happens to the c-openness of p in Theorem 4.4. To show that, let us consider
the topological category SGph of spatial graphs, that is, the category of graphs (X,E)
such that the relation E is reflexive, and maps which preserve the edges. LetM be the
class of embeddings of subgraphs and let c be the up-closure, that is, c =↑ with ↑X (M) =
{x ∈ X | (∃a ∈ M)a → x}, for each M ⊆ X. It is well-known that the up-closure is not
idempotent in SGph (cf. [11]). In the diagram (2), let U = V = X be the spatial graph
0 → 1 → 2 and let Y be the spatial graph obtained from X by joining the edge 0 → 2.
Let the underlying map of each one of the morphisms f , f ′, p and p′ be the identity.
This way, the diagram (2) is a pullback, f is ↑-quotient, p′ is simultaneously ↑-closed and
↑-open, but p is not ↑-closed since p(↑V ({0}) = {0, 1} �= {0, 1, 2} =↑Y (p({0, 1})); and p
is not ↑-open because p−1(↑Y ({0}) = {0, 1, 2} �= {0, 1} =↑V (p−1({0})).

5. Hereditary c-quotients

From now on, we assume that the closure operator c is hereditary, i.e., for all m :M → Y ,
y : Y → X in M, it holds that y ∧ cX(y · m) ∼= y · cY (m), or, equivalently, cY (m) ∼=
y−1(cX(y ·m)).

5.1. It is clear that the heredity of c is equivalent to every morphism inM being c-initial
(cf. [14]).

5.2. A hereditary c-quotient is a morphism whose pullback along any M-morphism is a
c-quotient. Clearly any hereditary c-quotient is a c-quotient. It is well-known that in
T op, for the Kuratowski closure k, the hereditary k-quotients coincide with the k-final
morphisms. In this section, we are going to show that this is a particular instance of a
general property. Indeed, next we prove that, under convenient conditions, the hereditary
c-quotients actually coincide with c-final morphisms.

5.3. Theorem. Let subY be a Boolean algebra. Then a morphism with codomain in Y
is a hereditary c-quotient if and only if it is c-final.

Proof. From 4.1 and 5.1, it immediately follows that every c-final morphism is a hered-
itary c-quotient.

Conversely, let f : X→Y be a hereditary c-quotient and let n : N→Y be a subobject
of Y . We want to prove that cY (n) ∼= f(cX(f−1(n))). Let m :M→Y be the complement
of f(cX(f

−1(n))) and put r = m ∨ n : R→Y . Let nr : N→R be the M-morphism for
which r · nr = n and consider the pullback

✲

✲

❄ ❄
X Y

f−1(R) R
g

f

f−1(r) r

.
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By hypothesis, g is a c-quotient; we show that g−1(nr) is c-closed, so that nr is c-closed.
To this end, since c is hereditary, it suffices to show that f−1(r) ∧ cX(f−1(r) · g−1(nr)) ∼=
f−1(r) · g−1(nr)), that is, that f

−1(r) ∧ cX(f−1(n)) ∼= f−1(n). In fact, this isomorphism
occurs since, on the one hand, it is clear that f−1(n) ≤ f−1(r) ∧ cX(f−1(n)); and, on the
other hand, we have that

f−1(r) ∧ cX(f−1(n)) ≤ f−1(r) ∧ f−1(f(cX(f
−1(n)))), by 2.1(a)

∼= f−1(r ∧ f(cX(f−1(n)))), by 2.1(b)
∼= f−1((m ∨ n) ∧ f(cX(f−1(n))))
∼= f−1(m ∧ f(cX(f−1(n))) ∨ (n ∧ f(cX(f−1(n)))))
∼= f−1(0X ∨ n), by 2.1(d)
∼= f−1(n) .

Therefore, cR(nr) ∼= nr and so, r ·cR(nr) ∼= n. Thus, since the heredity of c assures that
r∧ cY (n) ∼= r · cR(nr), we have that r∧ cY (n) ∼= n and, consequently, that m∧ cY (n) ≤ n.
Then, we obtain that

cY (n) ∧m ≤ n ∧m ≤ f(cX(f−1(n))) ∧m ∼= 0Y , (5)

and that
cY (n) ∨m ∼= f(f−1(cY (n))) ∨m ≥ f(cX(f−1(n))) ∨m ∼= 1Y . (6)

Since m is the complement of f(cX(f
−1(n))), it follows from (5) and (6) that cY (n) ∼=

f(cX(f
−1(n))).

6. On universal c-quotients

6.1. A morphism f : X→Y is said to be a universal c-quotient provided that every
pullback of f along an arbitrary morphism is a c-quotient.

6.2. A quotient map in the category of topological spaces is just a k-quotient, with k the
Kuratowski closure operator. The universal quotients in T op were characterized in [16]
and [9] as being just those continuous maps f : X→Y which fulfill one of the following
equivalent conditions:

(a) For each y ∈ Y and each open coverage (GI)i∈I of f−1(y), there is some finite
subset J of I such that y ∈ int(

⋃
j∈J

f(Gj)).

(b) For each filter base B in Y , if y ∈ Y adheres to B, then some x ∈ f−1(y) adheres
to f−1(B).

These two conditions do not give clear information about the behaviour of f with
respect to the closure operator. However several properties on the category of topological
spaces are particular cases of properties in a much general setting, namely a category
equipped with a closure operator. So, one natural question is: how to characterize uni-
versal quotients in T op by means of the closure operator? The answer is given by the
following theorem.
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6.3. Theorem. In T op, a morphism f : X→Y is a universal c-quotient, for c the Ku-
ratowski closure operator, if and only if, for each family (ni)i∈I of subobjects of Y , the
condition

(GF)
∧
J⊆I

Jfinite

cY (
∧
j∈J

nj) ≤ f(
∧
i∈I

cX(f
−1(ni)))

holds.

Proof. Along the proof, we denote the Kuratowski closure of a subset F of a space by
F . The condition (b) stated in 6.2 is clearly equivalent to the following condition:

(c) For each filter F in Y , ∩F∈FF ⊆ f(∩F∈Ff−1(F )).

We show that it is equivalent to (GF). Assume (GF) and let F be a filter in Y . Putting
F = {Fi : i ∈ I} and denoting by J the set of all finite subsets of I, we have that

∩J∈J ∩j∈JFi ⊆ f(∩i∈If−1(Fi)) . (7)

But, for all finite subsets J of I, ∩j∈JFi ∈ F ; then {∩j∈JFi, J ∈ J } = {Fi, i ∈ I} and
(c) follows.

Conversely, assume (c). Let (Ni)i∈I be a family of subsets of Y . If, for some finite
subset J of I, ∩j∈JNi = ∅, then (GF) is trivially verified. Otherwise, let F be the filter
generated by (Ni)i∈I . From (c), we have that

∩F∈F F ⊆ f(∩F∈Ff−1(F )) . (8)

But
∩F∈F F = ∩J∈J∩j∈JNi (9)

and
f(∩F∈Ff−1(F )) = f(∩J∈J f−1(∩j∈JNj) = f(∩J∈J∩j∈Jf−1(Nj)) . (10)

Since {∩j∈Jf−1(Nj), J ∈ J } ⊇ {f−1(Ni), i ∈ I}, we have that

∩J∈J ∩j∈Jf−1(Nj) ⊆ ∩i∈If−1(Ni) . (11)

Then, from (8), (9) (10) and (11), we conclude that ∩J∈J∩j∈JNi ⊆ f(∩i∈If−1(Ni)).

6.4. Remarks.

1. It is clear that in a category with a closure operator, any morphism f fulfilling the
condition (GF) is, in particular, c-final.

2. For the up-closure ↑ in the category of spatial graphs SGph, we have that:
The universal ↑-quotients coincide with the ↑-final morphisms.
To show this, first we recall that, in SGph, the ↑-final morphisms are just those
surjections f : X→Y which fulfill the following condition: y1 → y2 ⇔ ∃x1, x2 ∈
X (x1 → x2 and f(xi) = yi, i = 1, 2) (cf. [8]). Let
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✲

✲

❄ ❄
X Y

W Z
g

f
r s

be a pullback diagram, where f : X→Y is ↑-final and s is an arbitrary morphism.
We show that g is also ↑-final. Given (x1, z1) and (x2, z2) in W , (x1, z1)→(x2, z2)
is an edge in W iff x1 → x2 is an edge in X and z1 → z2 is an edge in Z. So,
let z1→z2 be an edge in Z; then s(z1)→s(z2) belongs to Y , from what follows that
there is some edge x1→x2 in X such that f(xi) = s(zi), i = 1, 2. Consequently,
(x1, z1)→(x2, z2) belongs to W with g(x1, z1) = z1 and g(x2, z2) = z2.

3. The condition (GF) does not give the desired characterization in the general setting.
In fact, it fails to be a necessary condition in the category SGph equipped with the
up-closure. To show that, consider the following example: Let X be the spatial
graph with underlying set

⋃
i∈IN

{xi, wi} and with non loop edges xi→wi, i ∈ IN, and

let Y be the spatial graph with underlying set
⋃
i∈IN

{yi} ∪ {y} and with non loop

edges yi→y, i ∈ IN; let f : X→Y be defined by f(xi) = yi and f(wi) = y. Then,
f is clearly ↑-final, so, from 2., a universal ↑-quotient. But it does not satisfy
condition (GF). To see that, consider the family of all subobjects of Y of the form
Ni = {yk | k ≥ i}; then y ∈

∧
J⊆I

Jfinite

↑Y (
∧
j∈J

Nj) but y /∈ f(
∧

i∈I ↑X (f−1(Ni))).

6.5. Next, we are going to show that in a suitable setting, which generalizes the one of
the category of topological spaces, the condition (GF) is sufficient. For this purpose, we
need to use the notion of point.

Let X have a terminal object 1; then, since E ⊆ Epi(X ), each morphism with domain
1, being a split monomorphism, belongs to M. The subobjects of an X -object X with
domain 1 are said to be points of X. The class of all points of X is denoted by ptX. The
notion of point, in a sense which generalizes the one used here, was studied in detail in
[4] (see also [5]). Let m : M → X be a subobject of X and let x ∈ ptX. By pt(m) we
denote the set of all points of X of the form mz, with z ∈ptM . We say that the category
X has enough points provided that, for each X ∈ X , 1X

∼= ∨
ptX. This is equivalent

to saying that, for each X -object X and each m ∈ subX, m ∼= ∨pt(m). In fact, it is
clear that the last assumption implies that X has enough points; conversely, we have that∨
pt(m) ∼= ∨

z∈ptM(mz) ∼= m(∨z∈ptM z) ∼= m(1M) ∼= m.
The following three lemmas will be useful to prove 6.10 below.

6.6. Lemma. In a category with enough points, let m, mi and n belong to subX and let
f : X → Y be a morphism. Then:

(a) m ≤ n⇔ pt(m) ⊆ pt(n); and, thus, m ∼= n⇔ pt(m) = pt(n).

(b) pt(
∧

i∈I mi) =
⋂

i∈I pt(mi).
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(c) pt(m) = ∅ ⇒ m ∼= oX ; furthermore, we have that pt(m) = ∅ ⇔ m ∼= oX whenever
oX �∼= 1X .

(d) x ∈ pt(m)⇒ f(x) ∈ pt(f(m)).
Proof. (a) and (b) are immediate.

(c) pt(m) = ∅ ⇒ ∨
pt(m) ∼= oX ⇔ m ∼= oX . To show that oX �∼= 1X ensures

that pt(oX) = ∅, let z ∈ pt(oX). Then z ≤ oX , and so, z ∼= oX . But then, OX
∼= 1

and, consequently, for each x ∈ ptX, it holds that x ∼= oX , from what follows that
1X
∼= ∨

ptX ∼= oX .
(d) Let m : M→X be a subobject of X and let z ∈ ptM and x ∈ ptX be such that

x = mz. Let f(m) · e be the (E ,M)-factorization of the morphism fm. Then, we have
that f(x) ∼= fx = fmz = f(m)ez; this means that f(x) ∈ pt(f(m)).

In the following, if subX is a Boolean algebra and m ∈ subX, we write m∗ to denote
the complement of m.

6.7. Lemma. In a category with enough points, let subX and subY be Boolean algebras
such that oY �∼= 1Y , and let f : X → Y be a morphism. Then, for m ∈ subX and
n, ni ∈ subY , we have that:

(a) y ∈ pt(n)⇔ y ∧ n∗ ∼= oY ⇔ y �∈ pt(n∗).
(b) pt(

∨
i∈I ni) =

⋃
i∈I pt(ni), for any finite set I.

(c) If complements are preserved under the inverse image by f , then:
(i) m ∧ f−1(n) ∼= oX ⇔ f(m) ∧ n ∼= oY .
(ii) pt(f(m)) = {f(x) : x ∈ pt(m)}.

Proof. (a) Let y ∈ ptY . Then y ∈ pt(n)⇔ y ≤ n⇔ y ∧ n∗ ∼= oY ⇔ pt(y ∧ n∗) = ∅ ⇔
pt(y) ∧ pt(n∗) = ∅ ⇔ y �∈ pt(n∗), the last but two equivalence being a consequence of 6.6
(c).

(b) Using (a) above and (b) and (c) of 6.6, we conclude that y ∈ pt(n1 ∨ n2) iff
y �∈ pt(n∗1)∩pt(n∗2). Again by (a), we get that the last condition is equivalent to y ∈ pt(n1)
or y ∈ pt(n2).

(c) (i) If m ∧ f−1(n) ∼= oX , then m ≤ (f−1(n))∗ ∼= f−1(n∗). Consequently, f(m) ≤ n∗
and, then, f(m)∧ n ∼= oY . Conversely, if m∧ f−1(n) �∼= oX , then, by 6.6(c), there is some
x ∈ pt(m ∧ f−1(n)). Using Lemma 6.6, one concludes that f(x) ∈ pt(f(m)) ∩ pt(n) and,
then, since oY �∼= 1Y , that f(m) ∧ n �∼= oY .

(c) (ii) The inclusion {f(x) : x ∈ pt(m)} ⊆ pt(f(m)) is clear, from 6.6 (d). On the
other hand, for y ∈ ptY , if y ∈ pt(f(m)) then y ∧ f(m) �∼= oY and, from (i), f−1(y)∧m �∼=
oX . Thus pt(f

−1(y)) ∩ pt(m) �= ∅. This means that, for some x ∈ ptX, x ∈ pt(f−1(y)) ∩
pt(m) and, thus, y ∈ {f(x) : x ∈ pt(m)}.
6.8. Lemma. For a subobject m : M → X of X, the following two first assertions are
equivalent and they are equivalent to (c) in a category with enough points.

(a) m :M → X is c-closed.
(b) m ∼= ∧{n ∈ subX : n c-closed and m ≤ n}.
(c) If x ∈ pt(X) is such that m ≤ n ⇒ x ∈ pt(n) for all c-closed subobjects n of X,

then x ∈ pt(m).
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Proof. (a)⇔ (b): This is straightforward.

(b)⇔ (c): This follows from (a) and (b) of Lemma 6.6.

6.9. Given a pullback

✲

✲

❄ ❄
X Y

Z W
g

f
r s

(12)

let N be the family of all subobjects of Z of the form n = r−1(n1) ∨ g−1(n2) for some
c-closed subobjects n1 ∈ subX and n2 ∈ subW . We say that the pullback (12) is c-initial,
provided that the c-closed subobjects of Z are just those m : M → Z in subZ such that
m ∼= ∧{n ∈ subX : n ∈ N and m ≤ n}. If X has enough points, this is equivalent to say
that m fulfills the following property: for any z ∈ ptZ, if z ∈ pt(n), for all n ∈ N such
that m ≤ n, then z ∈ pt(m).

We point out that for X = T op,M the class of embeddings and c the Kuratowski clo-
sure operator, the c-initiality for pullbacks coincides with the usual initiality of pullbacks
in T op.

6.10. Theorem. Let X have enough points and let c be an idempotent closure operator
in X such that any finite union of c-closed subobjects is a c-closed subobject. Moreover,
let the diagram (12) be a c-initial pullback, let subX, subY , subZ and subW be Boolean
algebras, with oY �∼= 1Y , and let all morphisms in (12) preserve complements under the
inverse image. Then, if f : X → Y fulfills condition (GF), it is a universal c-quotient.

Proof. If oX ∼= 1X or oW ∼= 1W , it is trivially concluded that g is a c-quotient. Thus,
besides the assumption oY �∼= 1Y , we also assume, without loss of generality, that oX �∼= 1X

and oW �∼= 1W . If f : X → Y fulfills condition (GF), then it is clearly a c-quotient; in
particular, it belongs to E and so g ∈ E . Let n : N → W be a subobject of W such that
g−1(n) is c-closed. In order to show that n is c-closed, we are going to use (c) of Lemma
6.8: we show that, for w ∈ ptW , if w �∈ pt(n), then there exists a c-closed subobject u of
W such that n ≤ u and w �∈ pt(u).

Suppose that w �∈ pt(n). Then, by (d) of Lemma 6.6, for each z ∈ pt(g−1(w)), we
have that z �∈ pt(g−1(n)). Consequently, using the c-initiality of the pullback (12), we
obtain that, for each z ∈ pt(g−1(w)), there are c-closed subobjects n1z and n2z of X and
W , respectively, such that

g−1(n) ≤ r−1(n1z) ∨ g−1(n2z) and z �∈ pt(r−1(n1z) ∨ g−1(n2z)) . (13)

Put I = pt(g−1(w)) and denote by J the class of all finite subsets of I. For each
z ∈ pt(g−1(w)), let

mz = (f(n∗1z))
∗ .

Then, by (GF), ∧
J∈J

cY (
∧
z∈J

mz) ≤ f(
∧
z∈I

cX(f
−1(mz)) . (14)
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First, we show that, for each z ∈ I, it holds that f−1(mz) ≤ n1z. Indeed,

mz = (f(n∗1z))
∗ ⇒ mz ∧ f(n∗1z)

∼= oY
⇔ f−1(mz) ∧ n∗1z

∼= oX , by 6.7(c)(i)
⇒ f−1(mz) ≤ n1z

Consequently, since n1z is c-closed, we have that cX(f
−1(mz)) ≤ n1z.

Now, we are going to show that s(w) �∈ pt(cY (
∧

z∈J mz)) for some J ∈ J . For each
z ∈ pt(g−1(w)), since z �∈ pt(r−1(n1z)), we have that z∧ r−1(n1z) ∼= oZ ; then, by 6.7(c)(i),
r(z) ∧ n1z

∼= oX . Since cX(f
−1(mz)) ≤ n1z, we obtain that r(z) ∧ cX(f−1(mz)) ∼= oX .

Consequently, for all z ∈ pt(g−1(w)), we have that r(z) ∧ (
∧

z∈I cX(f
−1(mz))) ∼= oX .

Then, by Lemma 6.7(c)(ii), we conclude that r(g−1(w)) ∧ (
∧

z∈I cX(f
−1(mz))) ∼= oX ,

that is, by (BCP), that f−1(s(w)) ∧ (
∧

z∈I cX(f
−1(mz))) ∼= oX . By 6.7(c)(i), it fol-

lows that s(w) ∧ f (∧z∈I cX(f
−1(mz))) ∼= oY and, consequently, using (14), that s(w) ∧

(
∧

J∈J (cY (
∧

z∈J mz))) ∼= oY . This implies that s(w) �∈ pt (cY (
∧

z∈J mz)), for some J ∈ J ,
and, thus, for this J , w �∈ pt (s−1(cY (

∧
z∈J mz))). On the other hand, for each z ∈ J ,

since z �∈ pt(g−1(n2z)), we have, by 6.6(c), that z ∧ g−1(n2z) ∼= oZ , what, combined with
6.7(c)(i) and the fact that g(z) ∼= w, assures that w∧n2z

∼= oW , that is, that w �∈ pt(n2z).
Now, using 6.7(b), we get that w �∈ pt (s−1(cY (

∧
z∈J mz))

∨
(
∨

z∈J n2z)).

The subobject s−1(cY (
∧

z∈J mz)) is c-closed, since c is idempotent. Then, the subob-
ject s−1(cY (

∧
z∈J mz))

∨
(
∨

z∈J n2z), being the finite union of c-closed subobjects of W , is,
by assumption, c-closed. We are going to show that it has n as its subobject, what
completes the proof. Let t ∈ pt(n). By (13) and using (BCP), we have that, for
each z ∈ J , t ≤ s−1(f(n1z)) ∨ n2z. If t ≤ n2z for some z ∈ J , then it is clear that
t ∈ pt (s−1(cY (

∧
z∈J mz))

∨
(
∨

z∈J n2z). Otherwise, since t is a point, for each z ∈ J , we get
that t∧n2z

∼= oW , and, by 6.6(d), that g−1(t)∧ g−1(n2z) ∼= oX . Consequently, as g−1(t) ≤
r−1(n1z) ∨ g−1(n2z), and we are working in a Boolean algebra, it follows that g−1(t) ≤
r−1(n1z). Thus, we have that r(g−1(t)) ≤ n1z, that is, f

−1(s(t)) ≤ n1z. This implies
that f−1(s(t)) ∧ n∗1z

∼= oX . Then, using Lemma 6.7(c)(i) twice, we obtain in succession,
that s(t) ∧ f(n∗1z)

∼= oY and t ∧ s−1 (f(n∗1z))
∼= oW . Hence, t ≤ (s−1 (f(n∗1z)))

∗
, and thus,

t ≤ s−1(mz). Consequently, one concludes that t ≤ ∧
z∈J s

−1(mz) ≤ s−1(cY (
∧

z∈J mz)).
Therefore, we have that t ∈ pt (s−1(cY (

∧
z∈J mz))

∨
(
∨

z∈J n2z).
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