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A NOTE ON EXACTNESS AND STABILITY
IN HOMOTOPICAL ALGEBRA

MARCO GRANDIS

ABSTRACT.
Exact sequences are a well known notion in homological algebra. We investigate here the
more vague properties of “homotopical exactness”, appearing for instance in the fibre
or cofibre sequence of a map. Such notions of exactness can be given for very general
“categories with homotopies” having homotopy kernels and cokernels, but become more
interesting under suitable “stability” hypotheses, satisfied - in particular - by chain
complexes. It is then possible to measure the default of homotopical exactness of a
sequence by the homotopy type of a certain object, a sort of “homotopical homology”.

Introduction

The purpose of this work is to investigate the notion of “homotopically exact” sequence
in categories equipped with homotopies, pursuing a project of developing homotopical
algebra as an enriched version of homological algebra [6, 7]. Well known instances of such
sequences are:

(a) the cofibre sequence of a map f :A→ B, or Puppe sequence [18], for topological spaces
or pointed spaces

A→ B → Cf → ΣA→ ΣB → ΣCf → . . . (1)

(Cf is the h-cokernel of f , or standard homotopy cokernel, or mapping cone; Σ denotes
the suspension) where every map is, up to homotopy equivalence, an h-cokernel of the
preceding one;

(b) the fibre sequence of a map of pointed spaces, which has a dual construction and
properties;

(c) the fibre-cofibre sequence of a map f :A→ B of chain complexes (Kf is the h-kernel)

. . . → ΩA→ ΩB → Kf → A→ B → Cf → ΣA→ ΣB → . . . (2)

where both the aforementioned exactness conditions are satisfied, and each three-term
part is homotopy equivalent to a componentwise-split short exact sequence of complexes.
The drastic simplification of exactness properties in the last example is a product of the
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homotopical stability of chain complexes: the suspension and loop endofunctor (which in
general just form an adjunction Σ � Ω), are inverse and take the sequence (2) to itself,
by a three-step shift forward or backward, so that the properties of its left part reflect on
the right part and vice versa. Triangulated categories abstract these facts in the notion
of “exact triangle” [19, 20, 21, 11].

For the sake of simplicity, let us go on considering this simple but relevant situa-
tion: the category of chain complexes Ch∗D over an additive category, even though the
following notions are studied below in a much more general frame. An h-differential se-
quence (f, g;α) consists of two consecutive maps of chain complexes f, g together with a
nullhomotopy α of their composite (represented by a dotted arc)

B
f ��

α

A
g �� C α: 0 � gf :B → C. (3)

This sequence (f, g;α) will be said to be h-exact if the h-kernel of g is homotopically
equivalent to the h-kernel of the h-cokernel of f , or equivalently if the dual condition is
satisfied; other conditions, of left and right h-exactness, are equivalent to the previous one
in the stable case (thm. 2.3). One can measure the default of exactness by the homotopy
type of a chain complex H(f, g;α), called the homotopical homology of the sequence (2.5,
3.4).

The construction is a homotopical version of an obvious construction of ordinary ho-
mology (in an abelian category), as presented in the left diagram below for a differential
sequence (f, g); the construction only uses kernels and cokernels, and the sequence is exact
if and only if H(f, g) = 0

B

��

B ��

f
��

0

��

B

uα

��

B ��

f
��

α��

0

��
Kerg ��

��

A
g ��

��

C Kg
kg

��

cuα

��

A g
��

cf
��

C

H(f, g) �� Cokf �� C H(f, g;α)
kvα

�� Cf vα
�� C

(4)

In a similar way, we can construct in Ch∗D the right diagram above, replacing
(co)kernels with standard homotopy (co)kernels: we start now from the h-differential
sequence (f, g;α), construct the h-kernel Kg (with a structural nullhomotopy 0 � g ·kg),
the h-cokernel Cf , two canonical maps uα:B → Kg and vα:Cf → C (coherently with
all previous maps and homotopies), and, rather surprisingly, find that there is one chain
complex which is at the same time the h-kernel ofCf → C and the h-cokernel of B → Kg,
namely:

(H(f, g;α))n = Bn−1 ⊕ An ⊕ Cn+1,
∂(b, a, c) = (−∂b,−fb+ ∂a,−αb+ ga− ∂c).

(5)

Now, the sequence (f, g;α) is h-exact if and only if H(f, g;α) is contractible. Note
that, in contrast with ordinary homology, all this requires the additive structure of D,
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instead of its kernels and cokernels; moreover, monics are replaced with fibrations and
epis with cofibrations.

The abstract frame we will use for “categories with homotopies” is a notion of homo-
topical category, developed in previous papers and recalled in Subsections 1.1, 1.2: it is a
sort of lax 2-category with suitable comma and cocomma squares. The main reference,
[7], is cited as Part I (and I.7 means Section 7 therein).

The links of this setting with triangulated categories or the Freyd embedding are dealt
with in [8, 10], respectively; its parallelism with homological algebra in [6]. Finally, it can
be noted that the Freyd embedding of a stable homotopy category into an abelian category
[3, 4, 5] provides a notion of exactness for a sequence (f, g) of maps with gf � 0, which
is too weak for the present purposes (1.5, 2.1).

Outline. Section 1 introduces our notions of homotopical exactness of an h-differential
sequence. Then, in Section 2, various properties of stability are considered (2.1, 2.2), with
their links with h-exactness of sequences (2.3) and the introduction of the “homotopical
homology” (2.5). Section 3 deals with the categories of chain complexes (a stable case)
and positive complexes (left h-stable); these homotopical categories have a homotopical
homology, which characterises h-exactness in both cases (3.4-3.6). The last two sections
are devoted to bounded complexes between fixed degrees: Chp0D is an h-semistable homo-
topical category. In Section 4 we consider the very particular case Ch1

0D = D2 of maps
of D, viewed as chain complexes and equipped with chain homotopies; again, homotopi-
cal homology measures the default of h-exactness. Finally, Section 5 studies the general
bounded case Chp0D on an abelian basis D; here, similar results hold up to weak equiva-
lences (the chain maps which induce isomorphism in homology): the weak homotopy type
of H(f, g;α) measures the weak exactness of the sequence.

1. Exactness in homotopical categories

After a study of homotopy (co)kernels and of homotopical exactness of sequences (1.5),
we prove that the fibre and cofibre sequences of a map are, respectively, left and right
h-exact (1.7).

1.1. Homotopical categories. In the whole paper, A is a pointed homotopical cat-
egory, as defined in I.7 (i.e., Section 7 of [7]); we just review its main aspects, also to fix
the (slightly different) notation used here.

To begin with, A is a sort of lax 2-category, quite different from bicategories. It
has objects, maps, and homotopies (2-cells) α: f → g:A → B, with part of the usual
structure of 2-dimensional categories, plus an equivalence relation α �2 α

′ between parallel
homotopies α, α′: f → g, called 2-homotopy (and corresponding to the relative homotopy
of paths, with fixed endpoints). The vertical composition of homotopies (or concatenation)
will be written additively, α+β: f → h (for β: g → h); thus, the vertical identity (or trivial
homotopy) of a map is written as 0: f → f or 0f , and a reverse homotopy as −α: g → f .
The vertical structure behaves categorically (“groupoidally”) up to 2-homotopy. There
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is no assigned horizontal composition of cells, but only a whisker composition v ·α ·u for
homotopies and maps, with reduced interchange property up to �2. (A strict interchange
would allow us to derive one horizontal composition from the previous operations; but,
even for chain complexes, this is not the case.)

The homotopy relation f � g (meaning that there is some homotopy α: f → g) is a
congruence; the quotient HoA = A/� is the homotopy category, while Ho2A = A/�2

(same objects, same maps, and classes of homotopies up to 2-homotopy) is the track 2-
category of A, with invertible cells. Generally, one cannot reduce the study of homotopy
to Ho2A, somehow in the same way as higher dimensional category theory cannot be
reduced to 2-categories.

Homotopies can usually be represented by a cylinder functor, or dually by a path
functor; often by both via their adjunction I � P ; then, all higher homotopies are auto-
matically produced by their powers. This gives a more powerful abstract frame, studied
in [9] in a form which will be marginally used here.

1.2. Homotopy kernels. As a second main aspect, the pointed homotopical category
A is assumed to have regular homotopy kernels and homotopy cokernels, with respect to
a zero object 0. The latter is defined by a 2-dimensional universal property: every object
X has precisely one map t:X → 0 and one homotopy t→ t (necessarily 0t); and dually.

Also to fix the present notation, the standard homotopy kernel, or h-kernel, of the map
f :A → B is a triple hkerf = (Kf, kf, κf), as in the left diagram below, determined up
to isomorphism by the following universal property (of comma squares)

A
f �� B 0 �� B

Kf ��

kf

��

κf��

0

��

ΩB ��

��

ωB��

0

��

(6)

for every similar triple (X, x, ξ), where x:X → A and ξ: 0 → fx:X → B, there is a
unique u:X → Kf such that kf ·u = x and κf ·u = ξ.

In particular, for A = 0 (as in the right diagram above), we obtain the loop-object
ΩB = K(0→ B), with a structural homotopy ωB: 0→ 0: ΩB → B.

The h-kernel is assumed to be regular, i.e. to satisfy also the following 2-dimensional
property (called h4-regularity in I.2.5): given two maps u, v:X → Kf and a coherent
homotopy β: kf ·u→ kf ·v (κf ·u+ fβ �2 κf ·v), there is some homotopy α:u→ v which
lifts β (i.e., kf ·α = β)

X �� 0

���
��

��
��

κf

��

0
κf ·u �� f ·kf ·u

fβ
��

X
u ��
v

�� Kf

���������

kf ���
��

��
� B �2

0
κf ·v

�� f ·kf ·v
X

β
		 A

f



������

(7)
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The dual universal properties define the h-cokernel hcokf = (Cf, cf, γf)

A
f ��

��

B

cf

��

A ��

��

0

��
0 ��

γf ��

Cf 0 ��

σA ��

ΣA

(8)

which reduces to the suspension ΣA when B = 0.
The h-kernel of A → 0 is 1:A → A. But note that f � 0 does not imply that

kf :Kf → A be a homotopy equivalence, as shown by ΩB = K(0→ B). If f :A→ B is a
homotopy equivalence, then Kf and Cf are contractible, i.e. homotopy equivalent to 0
(I.3.7; the converse holds under stability hypotheses, 2.3). Thus, for every object A, the
cocone KA = K(idA) and the cone CA = C(idA) are contractible

A A A

��

A

cA

��
KA ��

kA

��

κA��

0

��

0 ��

γA ��

CA

(9)

1.3. Elements and coelements. The kernel-cokernel adjunction of abelian categories
corresponds here to an adjunction given by h-kernels and h-cokernels. We consider first
its strict version, then - in the next subsection - its coherent version.

Let us work in the categoryA2 of morphisms ofA: an object is anA-map x:X ′ → X ′′,
a morphism f = (f ′, f ′′):x→ y is a commutative square of A (as in the diagram below);
the composition is obvious: a pasting of commutative squares.

By h-kernels and h-cokernels, the morphism f :x → y yields a commutative diagram
in A

Kx
kx ��

K(f)
��

X ′ x ��

f ′
��

X ′′ cx ��

f ′′
��

Cx

C(f)
��

Ky
ky

�� Y ′
y

�� Y ′′
cy

�� Cy

(10)

where K(f) and C(f) are defined by

ky ·K(f) = f ′ ·kx, κy ·K(f) = f ′′ ·κx,
C(f)·cx = cy ·f ′′, C(f)·γx = γy ·f ′.

(11)

This gives two adjoint endofunctors c � k:A2 → A2, whose action on maps is ob-
vious (and displayed in the diagram above): k(f) = (K(f), f ′): kx → ky and c(f) =
(f ′′,C(f)): cx→ cy. The unit and counit are determined as follows

(ux, 1):x→ kcx, (1, vy): cky → y, (12)
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• x ��

ux

��

A
cx �� Cx Ky

ky �� A
y ��

cky 

�
��

��
��

� •

Kcx

kcx

�����������
Cky

vy

��

kcx·ux = x, κcx·ux = γx, vy ·cky = y, vy ·γky = κy. (13)

(The action of the functors c, k on arrows - c(f), k(f) - is written with parentheses, to
avoid ambiguity with the structural morphisms cx, ky.) Keeping fixed the object A, all
this restricts to an adjunction between the slice categories of elements and coelements of
A, denoted as

ElA = A/A = (A ↓ A), ClA = A\A = (A ↓ A), (14)

c : ElA �� ClA : k,�� ux:x→ kcx, vy: cky → y, (15)

where (with the usual abuse of notation) c takes the morphism f = (f, 1A):x → x′ to
c(f) = C(f, 1A): cx→ cx′, and k takes g = (1A, g): y → y′ to k(g) = K(1A, g): ky → ky′

X
x ��

f
��

A
cx �� Cx

C(f,1)
��

KY
ky ��

K(1,g)
��

A
y �� Y

g
��

X ′
x′

�� A
cx′

�� Cx′ KY ′
ky′

�� A
y′

�� Y ′
(16)

For A = 0, we get El(0) = A = Cl(0) and (15) becomes the classical suspension-loop
adjunction Σ � Ω

Σ : A �� A : Ω,�� uX :X → ΩΣX, vY : ΣΩY → Y. (17)

1.4. Homotopy elements. The previous point just requires “1-dimensional homo-
topical properties” of A (I.7.1). But the fact that A is homotopical allows for a more
interesting version of elements, “up to homotopy” (cf. [12, 13], for coherent categories of
objects over a space).

Let us replace A2 = (2,A) with the coherent homotopy category of morphisms [2,A]:
an object is still an A-map x:X ′ → X ′′, but a morphism [f ] = [f ′, f ′′;φ] : x → y derives
from a triple f = (f ′, f ′′;φ) forming a homotopy-commutative square φ: f ′′x � yf ′

X ′ x ��

f ′

��
φ��

X ′′

f ′′

��
Y ′ y �� Y ′′

(18)

up to identifying [f ′, f ′′;φ] = [g′, g′′;ψ] when there exists a coherent pair of homotopies
α′: f ′ → g′, α′′: f ′′ → g′′, as in the diagram below
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X ′

g′

��
α′��

X ′ x ��

f ′

��
φ��

X ′′

f ′′

��
�2

X ′ x ��

g′

��
ψ��

X ′′

g′′

��
α′′��

X ′′

f ′′

��
Y ′ Y ′ y �� Y ′′ Y ′ y �� Y ′′ Y ′′

(19)

As a relevant fact, well known for the coherent category of objects over a fixed space
([12], 1.3), and related to a classical theorem of Dold ([2], 6.1), the map [f ′, f ′′;φ]:x→ y
is an isomorphism if and only if f ′ and f ′′ are homotopy equivalences. In fact, in this
case, one can choose an h-adjoint equivalence for f ′

α′: 1→ g′f ′, β′: f ′g′ → 1 (f ′α′ + β′f ′ �2 0f ′ , α
′g′ + g′β′ �2 0g′),

(by Vogt’s Lemma [22]: given an arbitrary equivalence, replace the homotopy β′ with
(−β′f ′g′ − f ′αg′) + β′ and verify the triangle identities); and similarly for f ′′. Finally,
one constructs an inverse [g′, g′′, ψ] with a suitable homotopy ψ: g′′y → xg′; namely, ψ =
(−g′′yβ′ − g′′φg′)− α′′xg′.

Replacing the diagram (10) with the following one, where f = (f ′, f ′′;φ), K(f) is
defined below, and C(f) is similarly defined

Kx
kx ��

K(f)

��

X ′ x ��

f ′

��
φ��

X ′′ cx ��

f ′′

��

Cx

C(f)

��
Ky

ky
�� Y ′

y
�� Y ′′

cy
�� Cy

(20)

ky ·K(f) = f ′ ·kx, κy ·K(f) = f ′′ ·κx+ φ·kx, (21)

we have two adjoint endofunctors c, k: [2,A]→ [2,A], with (strict) unit and counit defined
essentially as above, [ux, 1; 0]:x→ kcx and [1, vy; 0]: cky → y.

For a fixed A, we have a restricted adjunction between h-elements x: • → A and
h-coelements y:A→ •

c : hElA �� hClA : k,�� [ux]:x→ kcx, [vy]: cky → y; (22)

and again, for A = 0, this reduces to a suspension-loop adjunction (induced by (17)), for
the homotopy category HoA = hEl(0) = hCl(0)

Σ : HoA �� HoA : Ω,�� [uX ]:X → ΩΣX, [vY ]: ΣΩY → Y. (23)

1.5. Homotopical exactness. An h-differential sequence (f, g;α) consists of a nullho-
motopy α: 0 � gf . The properties we want to investigate concern a diagram constructed
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via h-kernels and h-cokernels; the vertical maps are defined below

B

uα

��

uf
��

f

���
��

��
��

�� C
α

•
kcf

��

u
��

A

g �����������

ckg
��

cf ��	
		

		
		

		
•

vg

��

α: 0 � gf :B → C

Kg
kg

��









Cf

v

�� vα

��

u = K(vα), v = C(uα),

(24)

kg ·uα = f, κg ·uα = α, vα ·cf = g, vα ·γf = α,
kcf ·uf = f, κcf ·uf = γf, vg ·ckg = g, vg ·γkg = κg,
kg ·u = kcf, κg ·u = vα ·κcf, v ·cf = ckg, v ·γf = γkg ·uα,

(25)

and the diagram commutes: u·uf = uα, vg ·v = vα. (Note that uf = uγf , vf = vκf ).

We say that the h-differential sequence (f, g;α) is:

(a) left h-exact if the map [uα]: f → kg (in hElA) determined by the universal property
of the h-kernel is an isomorphism; or, equivalently, if uα:B → Kg is a homotopy
equivalence in A;

(b) right h-exact if, dually, vα:Cf → C is a homotopy equivalence;

(c) strongly h-exact if it is both left and right h-exact;

(d) h-exact if k[vα]: kcf → kg and c[uα]: cf → ckg are isomorphisms; or, equivalently, if
K(vα):Kcf → Kg and C(uα):Cf → Ckg are homotopy equivalences of A.

Strong h-exactness implies h-exactness. The condition (c) is often too strong to be of
interest, but is of use in the stable case (2.3); we shall see that the last condition becomes
simpler, and is implied by left (or right) h-exactness, as soon as A is homotopically
“semistable” (2.3a).

It is interesting to note what happens when the middle object is zero: in this case
(which would be trivial in homological algebra), our data reduce to a triple (X,Y ;α),
formed of two objects and a nullhomotopy α

X

uα

��

uX�� ��	
		

		
		

	 Y
α

ΩΣX ��

u

��

0

��







 ��



�
��

��
��

� ΣΩY

vY

��

α: 0 � 0:X → Y

ΩY

����������
ΣX

v

�� vα

��

u = Ω(vα), v = Σ(uα).

(26)

The typical left h-exact sequence of this type is (ΩY, Y ;ωY ) and the typical right h-
exact one is (X,ΣX;σX). This case also shows that a right h-exact sequence (X,ΣX;σX)
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need not be h-exact: in the homotopical category Top∗ of pointed spaces, take X = S0;
then ΣX = S1 is not homotopy equivalent to ΣΩS1 (apply H1).

Marginally, we shall also consider a condition of pseudo exactness, meaning that gf � 0
and cf·kg � 0, which just concerns a pair (f, g) of consecutive arrows; any h-exact sequence
is also pseudo exact, but the converse is far from being true: a sequence X → 0 → Y is
trivially pseudo exact, but (for any choice of α) cannot be left h-exact unlessX is homotopy
equivalent to ΩY . In the stable case, this notion will be shown to be equivalent to ordinary
exactness within the associated Freyd’s abelian category (2.1).

1.6. Definition and Theorem. (Coherence)
Two h-differential sequences (f, g;α) and (x, y; β) will be said to be coherently equiv-

alent if there is a coherent diagram linking them

A′ f ��

u′

��
φ��

α

A
g ��

u

��
ψ��

A′′

u′′

��

α: 0 � gf, β: 0 � yx,

φ:uf � xu′, ψ:u′′g � yu,

B′
x

��

β

B y
�� B′′ βu′ − yφ �2 u′′α+ ψf,

(27)

where the vertical arrows u, u′, u′′ are homotopy equivalences.
In these hypotheses, the upper row is left h-exact if and only if the lower row is so (and

similarly for all the h-exactness conditions considered in 1.5).

Proof. Let us assume, for instance, that the upper row is left h-exact and prove that
also the lower one is so. The map [u, u′′;ψ]: g → y is iso in [2,A], whence k[u, u′′;ψ] is
iso, and w = K(u, u′′;ψ) is a homotopy equivalence. We form the diagram

A′ s ��

u′
��

φ′��

Kg
kg ��

w
��

κg

A
g ��

u

��
ψ��

A′′

u′′
��

B′
t

�� Ky
ky

��

κy

B y
�� B′′

(28)

ky ·w = u·kg, κy ·w = u′′ ·κg + ψ ·kg,
kg ·s = f, κg ·s = α, ky ·t = x, κy ·t = β,

(29)

where s = uα is a homotopy equivalence, by hypothesis, and we want to prove that also
t = uβ is so; plainly, it suffices to prove the existence of a homotopy φ

′:ws → tu′, which
can be derived from the 2-dimensional property of the h-pullback hker(y) = (Ky, ky, κy).
In fact, the maps ws, tu′:A′ → Ky have a homotopic projection on B, coherently with
κy: 0 � y ·ky (as a consequence of the coherence hypothesis, in (27))

ky ·ws = u·kg ·s = uf, ky ·tu′ = xu′, φ: ky ·ws→ ky ·tu′,
κy ·ws+ yφ = (u′′ ·κg + ψ ·kg)·s+ yφ = (u′′α+ ψf) + yφ

�2 βu′ = κy ·tu′.
(30)
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1.7. Theorem. (The fibre and cofibre sequences of a map)
If A is pointed homotopical, the cofibre sequence of a map f :A→ B

A
f ��

γf

B
cf ��

0

Cf δ ��

σf

ΣA
Σf ��

γ′f

ΣB
Σ(cf) �� ΣCf �� . . .

(31)

is right h-exact at any point, with non-canonical nullhomotopies

σf : 0 � Σf ·δ, γ′f : 0 � Σ(cf)·Σf

and so on. In the stronger assumption of a pointed IP4-homotopical structure for A [9],
there are canonical nullhomotopies σf,Σ(γf),... having that effect.

Dually, the fibre sequence of a map is left h-exact

. . . �� ΩKf
Ω(kf) ��

κ′f

ΩA
Ωf ��

ωf

ΩB
∂ ��

0

Kf
kf ��

κf

A
f �� B (32)

Proof. The first part of the statement is essentially proved in I.5 (and only needs a
right homotopical category). To begin with, it is proved (I.5.4.11) that there exists some
nullhomotopy σf satisfying

σf : 0 � Σf ·δ:Cf → ΣB, σf ·cf = σB: 0 � 0:B → ΣB. (33)

Then, applying the homotopy invariant functor Σ (I.4.5) we obtain, again in a non-
canonical way, the subsequent nullhomotopies γ′f ,... We have now the contracted cofibre
diagram (I.5.6.3)

A
f �� B

cf �� Cf δ �� ΣA
Σf ��

�

ΣB
Σ(cf) ��

�

ΣCf �� . . .

A
f

�� B x1

�� B2 x2

�� B3 x3

��

u0

��

B4 x4

��

u1

��

B5

u2

��

�� . . .

(34)

linking the cofibre sequence of f to the sequence of its iterated h-cokernels

x1 = cf, xi+1 = cxi,
hcok(xi) = (Bi+1, xi+1, γxi: 0 � xi+1 ·xi) (i ≥ 1).

(35)

All squares are h-commutative, all vertical arrows are homotopy equivalences. More-
over, the diagram is coherent (as in (27)), with respect to the nullhomotopies of the upper
row (as in (31) and the structural nullhomotopies γxi of the lower one: this follows from
the construction of ui’s in I.5.4-6.

Finally, ifA is pointed IP4-homotopical, in the sense of [9], the cone functorC:A → A
inherits an induced monad (as proved more in detail in [8], 3.7)
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c: 1→ C, g:C2 → C (g·cC = id = g·Cc), (36)

whose operation g (induced by a “connection” of the cylinder functor) represents a natural
nullhomotopy of the cone CX, via gX ·γCX: 0 � 1:CX → CX. We can now deduce a
structural nullhomotopy σf : 0 � Σf ·δ; in fact, Σf ·δ factors through CB, as proved by
the following (canonical) diagram

B

���
�
�
� B ��

cB

���
�
�
� 0

��

γB

��

 � �

A f ��

��

f ������
B ��
cf

��

����
����

0

��

�����
�����

0 �������� CB p
�������� ΣB

0 ��

���
�

γf ��

Cf
δ ��

m



�
�

ΣA
Σf



�����

(37)

In the left cube, the front and back face are h-pushouts (the h-cokernels of f and 1B);
in the right cube, the front and back face are ordinary pushouts, so that the front and
back rectangle are h-pushouts, by the pasting property I.2.2: σA = δ·γf and σB = p·γB;
thus Σf ·δ = (Cf → CB → ΣB) = pm, and we can define

σf = p·gB ·γCB ·m: 0 � pm,
σf ·cf = p·gB ·γCB ·m·cf = p·gB ·γCB ·cB = p·gB ·CcB ·γB

= p·γB = σB.
(38)

Finally, Σ:A → A has a canonical extension to homotopies (as proved for the cylinder
functor, in [10], 2.9).

2. The links between stability and exactness

Under suitable stability hypotheses (2.1, 2.2), the exactness properties behave in a simple
way (2.3) and the default of h-exactness can be measured by the homotopy type of suitable
objects (2.5).

2.1. Stability. Homotopical stability essentially requires that the suspension-loop ad-
junction be an equivalence. As in Part I, we will use a stronger definition, better related
with (co)fibre sequences. Let A be pointed homotopical and f :A → B a map. Its fibre-
cofibre sequence can be inserted as the central row of a homotopy-commutative adjunction
fibre-cofibre diagram (I.7.5)

. . . �� ΣΩ2B ����

vΩB

��

ΣΩKf ��

vKf

��

ΣΩA
ΣΩf��

vA

��

ΣΩB
Σ∂ ��

vB

��
�

ΣKf
Σkf ��

Vf

��
�

ΣA
Σf �� . . .

. . . Ωf �� ΩB
∂ ��

�

Kf
kf ��

Uf

��
�

A
f ��

uA

��

B
cf

��

uB

��

Cf
δ

��

uCf

��

ΣA
Σf ��

uΣA

��

. . .

. . .
Ωf

�� ΩB
ΩCf

�� ΩCf
Ωδ

�� ΩΣA
ΩΣf

�� ΩΣB �� ΩΣCf �� ΩΣ2A �� . . .

(39)
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whose upper and lower rows are obtained by letting the functors Σ and Ω operate on the
original sequence, and shifting the result of three steps. The vertical arrows consist of the
(co)units u, v of the adjunction Σ � Ω, together with the adjoint maps Uf , Vf provided
by the following structural nullhomotopy ρf

Uf :Kf → ΩCf, Vf : ΣKf → Cf,
ρf = cf ·κf − γf ·kf : 0→ 0: Kf → Cf.

(40)

A is defined to be h-stable (I.7.8) if all these maps Uf , Vf are homotopy equivalences.
Then also the (co)unit-maps uA and vA are so: in fact (I.7.6)

uA � Uf (f :A→ 0), vA � Vg (g: 0→ A), (41)

with coincidence whenever the trivial homotopies are strict identities for concatenation,
as it happens within chain complexes. (Ch∗D is even strictly stable: all the vertical arrows
of (39) are isos and all the squares commute.)

In the h-stable case, the homotopy category HoA has a canonical embedding in an
abelian category F = Fr(HoA), introduced by Freyd [3, 4, 5]; this provides a notion of
exactness which coincides with pseudo exactness, as defined at the end of 1.5: the sequence
(f, g) of A is pseudo exact if and only if ([f ], [g]) is exact in F.

(We only sketch the proof of this fact, which will not be used here. The last property
means that ImF[f ] = KerF[g]; but kernels in F derive from weak kernels in HoA, and the
latter from h-kernels of A, so that KerF[g] = ImF[kg]. Finally, subobjects in F amount to
weak subobjects in HoA [10]; thus, ImF[f ] = ImF[kg] means that [f ] factors through [kg]
in HoA, i.e. gf � 0 in A, and conversely, i.e. cf ·kg � 0.)

2.2. Other stability properties. The adjunction c � k between h-elements f : • →
A and g A→ • (1.4) yields other stability conditions, which we prove below to be weaker
than h-stability (2.4). The pointed homotopical category A will be said to be:

(a) left h-stable if, for every object A, the adjunction c � h (c: hElA → hClA) is a
coreflection, i.e. all components uf : Dom(f)→ Kcf are homotopy equivalences;

(b) right h-stable if the dual condition holds, i.e. all components vg:Ckg → Cod(g)
are homotopy equivalences (if both conditions hold, the adjunction c � h is an
equivalence);

(c) h-semistable if, for every object A, the adjunction c � h is idempotent, i.e. the
following equivalent conditions hold:

- all components C(uf ):Cf → Ckcf are homotopy equivalences,

- all components vcf :Ckcf → Cf are homotopy equivalences,

- all components ukg:Kg → Kckg are homotopy equivalences,
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- all components K(vg):Kckg → Kg are homotopy equivalences.

The equivalence comes from a general result (of 2-category theory): in an adjunc-
tion, the four natural transformations which appear in the triangle identities are invert-
ible whenever any of them is so ([16], Part 0, Lemma 4.3); such adjunctions are called
“idempotent” (or “exact”) because they are also characterised by the idempotence of the
associated monad, cf. [1], Section 6. (Any adjunction between ordered sets is so, as well
as any reflection or coreflection between categories.)

Plainly, left (or right) h-stable implies h-semistable. There are parallel strict notions
(left stable, etc.), for strict elements and coelements, where these components are required
to be isos.

Recall that the adjunction Σ � Ω is a particular instance of the adjunction c � k
(22); therefore, if A is left h-stable (resp. left and right h-stable, h-semistable), then, at
the level of the homotopy category HoA, the ΣΩ-adjunction is a coreflection (resp. an
endoequivalence, an idempotent adjunction).

(We shall see that Ch∗D, being stable, is also left and right h-stable. Its subcategory
of positive complexes is just left h-stable (3.6); negative complexes yield a right h-stable
case and the bounded ones an h-semistable category.)

2.3. Theorem. (Stability and exactness)

(a) If A is h-semistable, the two conditions defining h-exactness (1.5d) are equivalent:
K(vα) is a homotopy equivalence iff C(uα) is so; therefore, left or right h-exact implies
h-exact.

(b) If A is left h-stable a sequence is h-exact iff it is left h-exact. A is left h-stable iff
all sequences (f, cf ; γf) are strongly h-exact, iff every right h-exact sequence is strongly
h-exact. If A is left h-stable, a map f is a homotopy equivalence iff the object Cf is
contractible, and this implies that Kf is also so.

(c) A is left and right h-stable iff all the conditions of h-exactness of 1.5 are equivalent. In
this case, any fibre-cofibre sequence is strongly h-exact; a map f is a homotopy equivalence
iff Kf is contractible, iff Cf is so.

Proof. It suffices to prove (a) and (b). We use the notation of diagram (24); recall the
relations u·uf = uα, vg ·v = vα.

(a) By hypothesis, C(uf ) is a homotopy equivalence; if also u is so, the same is true of
v = C(uα) = C(u)·C(uf ). And dually.
(b) If A is left h-stable, uf :B → Kcf is a homotopy equivalence; then, uα = u·uf shows
that the sequence (f, g;α) is h-exact if and only if it is left h-exact. Thus, also by (a),
if A is left h-stable, right h-exact implies strongly h-exact. In this case, any sequence
(f, cf ; γf) is strongly h-exact. But, if this holds, the canonical map uf :B → Kcf is a
homotopy equivalence and A is left h-stable.

Finally, let A be h-stable; if f is a homotopy equivalence, we know that Cf is con-
tractible (1.2); conversely, in this case, the invariance of h-exactness (1.6) shows that kcf
is a homotopy equivalence, whence also f = kcf.uf is so.
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2.4. Corollary. If the pointed homotopical category A is h-stable, then it is also left
and right h-stable.

Proof. Let A be h-stable. Because of this, the fibre-cofibre sequence of f is strongly
h-exact, as follows from the adjunction fibre-cofibre diagram (39), the invariance of h-
exactness (1.6), and the fact that Σ and Ω, being quasi-reciprocal, preserve left and right
h-exactness. Thus, the sequences (f, cf ; γf) and (kf, f ;κf) are strongly h-exact, which
implies the thesis, by 2.3c.

2.5. Homotopical homology. The default of h-exactness of h-differential sequences
can be measured by the homotopy type of suitable objects. Starting from an h-differential
sequence (f, g;α), there is a commutative, coherent diagram (for i, see below)

B

uα

��

B ��

f

��
α��

0

��
γuα

γf

α: 0 � gf

Kg
kg ��

cuα

��

κg
A

g ��

cf

��

C κg: 0 � g ·kg
γf : 0 � cf ·f

Cuα i
����

κvα: 0 � vα ·kvα
Kvα

kvα ��

κvα

Cf
vα �� C γuα: 0 � cuα ·uα.

(42)

It provides the left homotopical homology and the right homotopical homology of the
sequence

H−(f, g;α) = Cuα, H+(f, g;α) = Kvα, (43)

linked by a non-canonical comparison i satisfying the following relations

kvα ·i·cuα = cf ·kg, kvα ·i·γuα = γf, κvα ·i·cuα = κg; (44)

(its existence is proved below; a precise determination is possible in the stronger setting
of IP4-homotopical categories [10]).

In the left h-stable case, the homotopy type of H−(f, g;α) measures the default of
h-exactness of (f, g;α): the sequence is h-exact iff it is left h-exact (2.3c), iff uα is a
homotopy equivalence, iff Cuα is contractible (2.3c, again). Dually, in the right h-stable
case, the objectH+(f, g;α) measures the same default of h-exactness (which coincides now
with right h-exactness). Finally, if A is left and right h-stable, both objects H−(f, g;α)
and H+(f, g;α) measure the default of h-exactness.

It is therefore of interest to study the property that the canonical map i be a homotopy
equivalence. When this is the case,H(f, g;α) will denote the homotopy type ofH−(f, g;α)
and H+(f, g;α); or their isomorphism type, if i is an iso, as happens for chain complexes
(3.4, 3.5).

Now, to prove the existence of i, consider first that there is one map x:Kg → Kvα
such that kvα·x = cf ·kg, κvα·x = κg. Second, xuα � 0, by the 2-dimensional property of
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the h-kernel (Kvα, kvα, κvα); in fact, kvα ·xuα = cf ·kg ·uα = cf ·f, and the nullhomotopy
γf : 0 � cf ·f is (strictly) coherent with κvα: 0 � vα ·kvα, in the sense that κvα ·xuα =
κg ·uα = α = vα ·γf (and κvα ·0 is the trivial endohomotopy).

There is thus some homotopy ρ: 0 � xuα such that kvα·ρ = γf . (In the IP4-homotopical
case, we may determine ρ via a double homotopy produced by the homotopy κvα ·xuα =
vα·γf together with a connection of the cylinder or path functor.) Finally, this homotopy
ρ produces a map i:Cuα → Kvα such that i·cuα = x, i·γuα = ρ, and (44) holds.

3. Stability and homotopical exactness for chain complexes

This section deals with the usual homotopical structure of the category Ch∗D of un-
bounded chain complexes over an additive categoryD; positive chain complexes are briefly
considered (3.5).

3.1. Notation. A morphism f :
⊕
Ai → ⊕

Bj between two finite biproducts in the
additive category D is determined by its components fji:Ai → Bj and can be written as
a matrix f = (fji). But we prefer to write it as an “expression in m variables”, as one
would do in a category of modules

f(a1, a2, . . . , am) = (
∑
f1iai,

∑
f2iai, . . . ,

∑
fniai). (45)

(Viewing ai as the i-th projection of A =
⊕
Ai, the expression is correct: (a1, a2, . . . , am)

is the identity of A, with specified names for projections.)

3.2. The homotopical structure. The category Ch∗D of (unbounded) chain com-
plexes over the additive category D is equipped with the usual homotopies of chain maps

α = (f, g, (αn)): f → g:A→ B,
αn:An → Bn+1, −fn + gn = αn−1∂n + ∂n+1αn.

(46)

These come from an IP4-homotopical structure, based on well known cylinder and path
functors (cf. [9], 6.5-6.8). The opposite structure is isomorphic to Ch∗Dop; this duality
provides a choice of h-kernels and h-cokernels which reduces the structural isomorphisms
to identities.

Let f :A → B be a map of chain complexes. The left homotopical structure of Ch∗D
is computed as follows (note that any “shift of degree” leads to a change of sign)

(Kf)n = An ⊕Bn+1, ∂(a, b) = (∂a, fa− ∂b),
k:Kf → A, k(a, b) = a,
κ: 0 � fk:Kf → B, κ(a, b) = b,

(47)

ΩA = K(0→ A), (ΩA)n = An+1, ∂Ω
n = −∂n+1. (48)

Analogously, the right homotopical structure is described by:
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(Cf)n = An−1 ⊕Bn, ∂(a, b) = (−∂a,−fa+ ∂b),
c:B → Cf, c(b) = (0, b),
γ: 0 � cf :A→ Cf, γ(a) = (−a, 0),

(49)

ΣA = C(A→ 0), (ΣA)n = An−1, ∂Σ
n = −∂n−1. (50)

3.3. Stability. This homotopical structure is strictly stable, as is well known (for the
fact that Σ and Ω are inverse) or follows easily from the previous expressions (for the
additional condition in 2.1). Thus, Ch∗D is also left and right h-stable (2.4); note, how-
ever, that it is not left stable in the strict sense: the previous computations show that
uf :A→ Kcf is not an isomorphism, generally.

By 2.3, the fibre-cofibre sequence of the map f is strongly h-exact and sent to itself
by Σ and Ω. Each h-exact sequence is thus coherently equivalent to a sequence B →
Cf → ΣA, which means a componentwise-split short exact sequence of complexes (as in
the triangulated structure).

3.4. Theorem. (Homotopical homology of chain complexes)
In the category Ch∗D of chain complexes over an additive category, the left and the

right homotopical homology of an h-differential sequence (2.5) coincide, yielding a chain
complex whose homotopy type vanishes if and only if the sequence is h-exact (or, equiva-
lently, strongly h-exact)

(H(f, g;α))n = Bn−1 ⊕ An ⊕ Cn+1,
∂(b, a, c) = (−∂b,−fb+ ∂a,−αb+ ga− ∂c).

(51)

Proof. It is an easy computation, based on 3.2.

3.5. Positive chain complexes. Let the additive category D have finite limits. The
category ChpD of positive chain complexes (null in negative degree) is also homotopical
(actually IP4-homotopical).

The h-cokernel of the chain map f :A → B in ChpD is computed as in Ch∗D, since
(Cf)n = An−1 ⊕ Bn is null in negative degree; the h-kernel is computed by coreflection
and differs in degree 0, where we get a pullback

(Kf)n = An ⊕Bn+1 (n > 0), (Kf)0 = pb(f, ∂). (52)

ChpD is left h-stable but not right h-stable, as we prove below (3.6). The relation
Cuα = Kvα providing the homotopical homology H(f, g;α) of an h-differential sequence
(2.5) holds also here, with

H0(f, g;α) = (Kg)0 = (Cuα)0 = (Kvα)0
= pb(g0 : A0 → C0 ← C1 : ∂1).

(53)

From left h-stability, we deduce that the h-differential sequence (f, g;α) is h-exact iff
it is left h-exact, iff H(f, g;α) is contractible (2.3b).

But being right h-exact is a stronger condition (even up to weak equivalence). For
instance, the typical left h-exact sequence ΩA → 0 → A (with nullhomotopy ωA) is
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right h-exact iff the counit vA: ΣΩA→ A is a homotopy equivalence, which requires that
H0(A) = H0(ΣΩA) = 0. On the other hand, the homotopical homology H(ΩA,A;ωA) of
that sequence consists of the h-cokernel of id: ΩA → ΩA, i.e. the cone C(ΩA), which is
always contractible, independently of right h-exactness.

3.6. Proposition. ChpD is left h-stable. It is not right h-stable, unless D is trivial.

Proof. Given f :X → A, we show that uf :X → Kcf is a deformation retract, where
K = Kcf is computed below, as a pullback in degree 0 (and Cf in 3.2.4)

Kn = An ⊕Xn ⊕ An+1 (n > 0),
K0 = pb((cf)0, ∂1) ⊂ A0 ⊕X0 ⊕ A1,
∂(a, x, a′) = (∂a, ∂x, a− ∂a′ + fx),
k(a, x, a′) = a, κ(a, x, a′) = (x, a′), uf (x) = (fx,−x, 0),

(54)

X
f ��

uf
��

A
cf �� Cf γ = γf : 0 � cf ·f :X → Cf,

Kcf

u′
���
�

k

��������
κ = κcf : 0 � cf ·k:K → Cf.

Now, take u′:K → X, u′(a, x, a′) = −x. It is a chain map, with u′uf = 1; and there is
a homotopy σ:ufu

′ � 1K , namely σ(a, x, a
′) = (a′, 0, 0).

On the other hand, ChpD is not right h-stable: the coreflexive adjunction Σ � Ω (ΩΣ =
1) is not an equivalence, even up to homotopy, since (ΣΩA)0 = 0 and H0(ΣΩA) = 0.

3.7. Negative and bounded chain complexes. Dually, the category of negative
chain complexes, on an additive category D with finite colimits, is pointed homotopical
and right h-stable.

A sequence (f, g;α) (as in 2.5) is h-exact iff it is right h-exact, iff H(f, g;α) is con-
tractible; left h-exactness is a stronger condition. The homotopical homology is computed
as a pushout in degree 0

H0(f, g;α) = (Cf)0 = (Cuα)0 = (Kvα)0 = po(B−1 ← B0 → A0). (55)

If D is finitely complete and cocomplete, the category Chp0D of chain complexes con-
centrated in degrees n ∈ [0, p] (p ≥ 1) is homotopical and h-semistable, as it follows from
computations similar to the previous ones. The object H(f, g;α) = Cuα = Kvα is still
well-defined, and computed by a pullback in degree 0 and a pushout in degree p

H0(f, g;α) = pb(A0 → C0 ← C1),
Hp(f, g;α) = po(Bp−1 ← Bp → Ap).

(56)

The particular case p = 1 (where a complex is reduced to a map) will be treated
in detail in the next section, where we show that the homotopy type of H(f, g;α) still
measures the default of h-exactness of the sequence. For p > 1, this holds in a weaker
sense, as we show in Section 5.
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Finally, let us also consider the “degenerate” case A = Ch0
0D = D, where homotopies

are trivial (i.e., identities), and h-(co)kernels are ordinary (co)kernels. If D is pointed,
with kernels and cokernels, the adjunction c � k between elements and coelements is
always idempotent (and induces the usual duality between normal subobjects and normal
quotients): in other words, A is h-semistable. If D is abelian (but, actually, much more
generally), left and right homology coincide and determine exact sequences; the present
analysis of homotopical exactness reduces to pure homological algebra.

4. Categories of morphisms

The case Ch1
0D = D2 gives a simple h-semistable category having homotopical homology.

4.1. The homotopy structure. In this section, D is always an additive category
with finite limits and colimits. A = Ch1

0D = D2 is the category of morphisms of D,
equipped with chain homotopies, as already considered above (3.7) and examined below;
this makes it a pointed homotopical category.

(D can be an abelian category, or the category of topological abelian groups, or Banach
spaces, etc. Note also that Ab2 is equivalent to the category of internal categories in
abelian groups, by the Dold-Kan theorem [14]; one can show that,in this case, the present
analysis of h-exactness agrees with notions recently introduced for symmetric cat-groups,
in [15].)

An object will be written as A = ∂A:A
′ → A′′ and a morphism as f = (f ′, f ′′):A→ B.

A nullhomotopy a: 0 � f is determined by a diagonal map α:A′′ → B′

A′ f ′ ��

∂

��

B′

∂

��

f ′ = α∂,

A′′
f ′′

��

α

���
�

�
�

B′′ f ′′ = ∂α,

(57)

while a homotopy α: f � g:A → B is given by a nullhomotopy α: 0 � −f + g (i.e.
−f ′ + g′ = α∂, −f ′′ + g′′ = ∂α). As an exception in the family Chp0D, we have here
a 2-category (essentially because 2-dimensional homotopies vanish, being produced by
morphisms of degree 2): given two consecutive nullhomotopies α: 0 � f and β: 0 � g,
the reduced interchange holds strictly: gα = βf (both homotopies are determined by the
same diagonal g′α = β∂α = βf ′′:A′′ → C ′′).

Plainly, an object ∂A:A
′ → A′′ is contractible if and only if ∂A is an isomorphism, if

and only if H∗(A) = 0 (where H∗ is the graded homology group, with two components).
Thus, a homotopy equivalence need not be an iso; however, there is a relevant case where
the two notions coincide.

4.2. Lemma. If, in the morphism f :A → B, either f ′ or f ′′ is an iso, then f is a
homotopy equivalence if and only if it is an isomorphism.
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Proof. Let f ′ = 1Z (Z = A′ = B′) and choose an adjoint equivalence between A and B

Z

∂A

��

Z
g′ ��

��

Z

��

Z

∂B

��

α: 1A � gf, β: fg � 1B,

A′′
f ′′

��

α

����������
B′′

g′′
��

β

����������
A′′

f ′′
�� B′′ fα+ βf = 0, αg + gβ = 0.

(58)

Then f ′′ admits an inverse mapping: h = g′′ + ∂Aβ. In fact, f
′′h = f ′′g′′ + f ′′∂Aβ =

1−∂Bβ+∂Bβ = 1 and hf ′′ = g′′f ′′+∂Aβf ′′ = 1+∂Aa−∂Aa = 1 (use the triangle identity
fα + βf = 0). Similarly, if f ′′ = 1Z (Z = A′′ = B′′), then f ′ has an inverse mapping,
namely g′ − a∂B:B

′ → A′.

4.3. Homotopy kernels and cokernels. If f :A → B is the commutative square
(57), form the pullback K of (f ′′, ∂B) and the pushout C of (∂A, f ′); this yields an inner
bicartesian square

A′′

γ ���
��

�� f ′′

�����
����

����
����

A′ k′ ��

∂
  ���������������

f ′ !!���
����

����
���� K

k′′

�������

κ



�
��

��
C c′′ �� B′′

B′

c′ ������� ∂

  ���������������

(59)

from which the h-kernel and the h-cokernel of f are constructed

A′

k′
��

A′ f ′ ��

��

B′ c′ ��

��

C

c′′
��

Kf = k′, kf = (1, k′′), κf = κ,

K
k′′

��

κ

""�������
A′′

f ′′
��

γ

""�������
B′′ B′′ Cf = c′′, cf = (c′, 1), γf = γ.

(60)

Now, the h-cokernel of kf (the h-normal coimage of f) is ckf = (k′, 1):A → k′′, and
its h-kernel is again kf : k′ → A (left solid diagram below). This shows that the adjunction
between h-elements and h-coelements of A is exact (2.2c), and A is h-semistable

A′

k′
��

A′ f ′ ��

��

K
κ �������

k′′
��

B′

c′
��

B′ c′ ��

��

C

c′′
��

K
k′′

��
1

���������
A′′ A′′

γ
������� C

c′′
��

1

����������
B′′ B′′

(61)

Symmetrically, the right solid diagram shows how the h-kernel of cf (the h-normal
image of f) is kcf = (1, c′′): c′ → B, whose h-cokernel is again cf :B → c′′. Inserting the
dotted morphism in the middle, the three central squares are a factorisation of f :A→ B,
the h-normal factorisation (much in the same way as for the ordinary normal factorisation,
in a pointed category with kernels and cokernels).
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4.4. Left and right exactness. Given an h-differential sequence (f, g;α)

X ′ f ′ ��

∂
��

A′ g′ ��

��

Y ′

∂
��

α: 0 � gf :X → Y,

X ′′
f ′′

��

α

����������
A′′

g′′
�� Y ′′

(62)

its properties of h-exactness are characterised as follows, up to coherent equivalence (1.6)

(a) in the typical left h-exact sequence, (X ′′, α, f ′′) is the pullback of (g′′, ∂Y ) and f ′ =
1A′ ,

(b) in the typical right h-exact sequence, (Y ′, α, g′) is the pushout of (f ′, ∂X) and g′′ =
1′′A,

(c) the typical strongly h-exact sequence is of the following type, determined by an
arbitrary factorisation ∂A = h′′h′

A′

h′
��

A′ h′ ��

��

H

h′′
��

H
h′′

��

1

����������
A′′ A′′

(63)

4.5. Theorem. (Homotopical homology of morphisms)

Given an h-differential sequence a: 0 � gf , its homotopical homology exists and is
computed as

H(f, g;α) = Cuα = Kvα = (w:B → Z), (64)

from the diagram below, where (B, c, γ) is the pushout of (∂X , f
′), while (Z, k, κ) is the

pullback of (∂Y , g
′′) and w:B → Z is the induced morphism (think of B as h-boundaries,

of Z as h-cycles)

X ′ f ′ ��

∂

��

A′ g′ ��
c

##���
��
�

∂

��

z

���
��

��
� Y ′

∂

��

B
w ��������

b ���
���

�� Z
k##���

��
�

κ

��������

X ′′
f ′′

��

γ
��������

A′′
g′′

�� Y ′′

(65)

Moreover, our sequence is h-exact iff K(vα) = (1A′ , w) is a homotopy equivalence,
iff w is an isomorphism of D, iff H(f, g;α) is contractible, iff its homology is null:
H∗(H(f, g;α)) = 0.
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Proof. We already know that H(f, g;α) exists and how to compute it (3.7), but let us
write down everything, in this simple case. Computing h-kernels and h-cokernels, as in
4.3, the following diagram shows that Cuα and Kvα are indeed the object w:B → Z

X ′ f ′ ��

∂

��

f ′ �����
���� A′ g′ ��

���
����
�

∂

���
�
�
�
�

c !!   
    

  Y ′

∂

��

A′

z

��

c !!   
    

   B
���
����
�

b

��

κw

$$����

B

w
��

X ′′ f ′′ ��������

wγ �����
���� A′′ g′′ ����������

    
    

 
    

    
 Y ′′

Z k

%%�
�

    
    

  

    
    

  A′′ g′′
$$���

Z k

%%���

(66)

hker(g) = (z, (1, k): z → ∂A, κ), hcok(f) = (b, (c, 1): ∂A → b, γ),
uα = (f

′, wγ):X → z, vα = (κw, g
′′): b→ Y,

hcok(uα) = (w, (c, 1): z → w, γ), hker(vα) = (w, (1, k):w → b, κ).
(67)

Finally, the diagram (24) becomes

X

uα

��

uf

��

f



�
��

��
��

��
Y

α
uf = (f

′, γ), u = (1, w),

c
(1,b)

��

u

��

A

g
��!!!!!!!!!

(z,1)
��

(c,1)


�

��
��

��
��

� k

vg

��

vg = (κ, g
′′), v = (w, 1).

z
(1,k)

��!!!!!!!!!
b

v

��
vα

��

(68)

This proves that our sequence is h-exact iffK(vα) = (1A′ , w) is a homotopy equivalence.
The other equivalent conditions follow immediately from 4.2 and 4.1.

5. Bounded chain complexes and weak exactness

For the category A = Chp0D bounded chain complexes on an abelian category D, a notion
of weak exactness, controlled by homology, is more effective.

5.1. Homology. Let D be abelian. Recall that the category A = Chp0D of chain
complexes concentrated in degrees n ∈ [0, p] (p ≥ 1) is homotopical and h-semistable
(3.7).

The ordinary homology functorsHn:A → D (0 ≤ n ≤ p) satisfy the following self-dual
axioms, combining properties of homology and homotopy theories

(i) homotopy invariance: if f � g in A, then Hn(f) = Hn(g);

(ii) exactness: for every map f :A→ B in A, the sequences

H0(Kf)→ H0(A)→ H0(B), Hp(A)→ Hp(B)→ Hp(Cf), (69)

are exact in D;
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(iii) stability: there are two natural isomorphisms

ω:Hn(ΩA)→ Hn+1(A), σ:Hn(A)→ Hn+1(ΣA) (0 ≤ n < p), (70)

which are coherent with the morphisms Uf , Vf (for every map f :A→ B), i.e. form
a commutative diagram (in Ab)

Hn(Kf)
Hn(Uf )

��

σK
��

if

��������
Hn(ΩCf)

ωC
��

Hn+1(ΣKf)
Hn+1(Vf )

�� Hn+1(Cf)

(71)

yielding a natural transformation if :Hn(Kf)→ Hn+1(Cf) (0 ≤ n < p).

Abstracting from this situation, we shall consider the following setting: a pointed
homotopical category A with Ωp+1 = 0 = Σp+1, equipped with a theory Hn:A → E with
values in an abelian category and satisfying the axioms above for 0 ≤ n ≤ p. (This can
be easily adapted to the positive or unbounded cases.)

5.2. Theorem. In this setting:
(a) ω and σ are also coherent with the morphisms induced in homology by the unit uA and
counit vA of the adjunction Σ � Ω: they form commutative diagrams in E

Hn(A)
Hn(uA) ��

σA ��""
"""

Hn(ΩΣA)

ωΣA&&###
###

Hn+1(ΣΩA)
Hn+1(vA) �� Hn+1(A)

Hn+1(ΣA) Hn(ΩA)
ωΣA

''$$$$$$
ωA

$$%%%%%
(72)

(b) The morphisms if , Hn(Uf ), Hn+1(Vf ), Hn(uA), Hn+1(vA) are iso (0 ≤ n < p).
(c) every map f :A→ B produces two exact sequences in E

Hp(Kf) �� �� Hp(A) H1(B) �� H0(Kf) ��

if
��

H0(A) �� H0(B)

Hp(A) H1(B) �� H1(Cf) �� H0(A) �� H0(B) �� �� H0(Cf)

(73)

which are actually one, modulo the isomorphisms if and the commutative squares above:
the fibre-cofibre homology sequence of f .

Proof. (a) The diagrams (72) derive from (71), writing uA and vA as in (41).
(c) For the upper row, apply H0 to the fibre sequence of f , taking into account that
Hn(A) ∼= H0(Ω

nA) for 0 ≤ n ≤ p and that Ωp+1 = 0; exactness follows from the prop-
erties of the fibre sequence (1.7), together with the axioms of exactness and homotopy
invariance for H0. Similarly for the lower row. The commutativity of (73) follows from
the commutativity of the adjunction fibre-cofibre diagram (39).
(b) The Five Lemma in E proves now that all if are iso; the rest follows from the com-
mutative diagrams (71), (72).
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5.3. Weak equivalences. Now, say that a map f :A→ B is a weak equivalence (with
respect to the theory H∗) if Hn(f) is iso for all n; similarly, the object A is weakly null
(or weakly contractible) if Hn(A) = 0 for all n. Plainly, by the usual properties of exact
sequences in abelian categories:
(a) Kf is weakly null if and only if Hn(f) is iso for n > 0 and mono for n = 0,
(b) Cf is weakly null if and only if Hn(f) is iso for n < p and epi for n = p.

Thus, for p = 2, the complex A = (A2 → A1 → A0) is a weakly null object iff it forms
a short exact sequence; but it is easy to see that it is nullhomotopic iff this sequence splits.

5.4. Lemma. In the general setting mentioned at the end of (5.1), let an h-differential
sequence (f, g;α) be given. Then the map i:Cuα = Kvα (2.5) is a weak equivalence.

Proof. The diagram (42) gives a commutative diagram in the abelian category E

Xn
��

���
�
� Xn

��

���
�
� 0 ��

���
�
� Xn−1

��
Xn

��

��

����
Xn

��

��

����
0 ��

��

��� ���
Xn−1

��

%%%%

X
′
n

������

���
�
�
�

An ������

���
�
�
� Yn �������

���
�
�
� X

′
n−1

��
X

′
n

��

��

&&&&
An ��

��

&&& &&&
Yn ��

��

&&& &&&
X

′
n−1

��

''''

Kn
������ Y

′
n

������ Yn ������� Kn−1

Cn ��

i∗ (('''
Y

′
n

��
''''

Yn ��
''' '''

Cn−1
i∗
%%'''

(74)

with Cn = Hn(Cuα) and Kn = Hn(Kvα).
Its rows and columns are exact, except - possibly - the lowest front row and the left

back column, which are just known to be of order two. Moreover, in each row or column,
each term Cn or Kn has at least two terms on each side (possibly null). By a sort of
variation of the 3×3-Lemma, it follows that all Hn(i) are iso. (Of course, one only needs
to verify this for modules, by diagram chasing.)

5.5. Definition and Theorem. (Weak exactness)
In the general setting mentioned at the end of 5.1, let an h-differential sequence (f, g;α)

be given, and consider its diagram (24). The following conditions are equivalent:

(a) the map u:Kcf → Kg is a weak equivalence (with respect to H∗),

(b) Hn(vα):Hn(Cf)→ Hn(C) is iso for n > 0, and mono for n = 0,

(c) the object H+(f, g;α) = Kvα is weakly null.

(d) the map v:Cf → Ckg is a weak equivalence (with respect to H∗),

(e) Hn(uα):Hn(B)→ Hn(Kg) is iso for n < p, and epi for n = p,
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(f) the object H−(f, g;α) = Cuα is weakly null,

If they are satisfied, the sequence (f, g;α) will be said to be w-exact. This notion is
strictly weaker than h-exactness, provided that p ≥ 2 and E has some non-split short exact
sequence.

Proof. The preceding lemma shows that (c) and (f) are equivalent, while the equivalence
of (b) and (c) has been considered in 5.3. Therefore, we only need to prove that (a) and
(b) are equivalent. This follows from the Five Lemma in E: take the diagram

Kcf
kcf ��

u
��

A
cf �� Cf

vα
��

Kg
kg

�� A g
�� C

(75)

and apply the (natural) fibre-cofibre homology sequence (73), to cf and g

0 �� Hp(Kcf) ��

u∗��

Hp(A) H0(Kcf) ��

u∗
��

H0(A) �� H0(Cf) ��

(vα)∗��

0

��
0 �� Hp(Kg) �� Hp(A) H0(Kg) �� H0(A) �� H0(C) �� H0(Cg) �� 0

(76)

Finally, it suffices to consider a sequence 0→ A→ 0, which is h-exact (resp. w-exact)
if and only if A is nullhomotopic (resp. w-null), which - under our assumptions - are
indeed non-equivalent conditions by a remark at the end of 5.3.
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Aurelio Carboni, Università dell Insubria: aurelio.carboni@uninsubria.it
P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk
G. Max Kelly, University of Sydney: maxk@maths.usyd.edu.au
Anders Kock, University of Aarhus: kock@imf.au.dk
F. William Lawvere, State University of New York at Buffalo: wlawvere@acsu.buffalo.edu
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