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CATEGORICAL DOMAIN THEORY: SCOTT TOPOLOGY,
POWERCATEGORIES, COHERENT CATEGORIES

PANAGIS KARAZERIS

ABSTRACT. In the present article we continue recent work in the direction of domain
theory were certain (accessible) categories are used as generalized domains. We discuss
the possibility of using certain presheaf toposes as generalizations of the Scott topology
at this level. We show that the toposes associated with Scott complete categories are
injective with respect to dense inclusions of toposes. We propose analogues of the upper
and lower powerdomain in terms of the Scott topology at the level of categories. We show
that the class of finitely accessible categories is closed under this generalized upper pow-
erdomain construction (the respective result about the lower powerdomain construction
is essentially known). We also treat the notion of “coherent domain” by introducing two
possible notions of coherence for a finitely accessible category (qua generalized domain).
The one of them imitates the stability of the compact saturated sets under intersection
and the other one imitates the so-called “2/3 SFP” property. We show that the two
notions are equivalent. This amounts to characterizing the small categories whose free
cocompletion under finite colimits has finite limits.

Introduction

The use of categories as domains for denotational semantics has had a long history by
now. The reader may consult [2], [16] for some recent developments, and references
to the subject. While most of the notions entering the theory of domains have direct
category theoretic generalizations (directed suprema to filtered colimits, ideal completions
to inductive completions, algebraic domains to finitely accessible categories [3], etc.), one
of the central tools of domain theory, the Scott topology, has not been examined, at least
explicitly, towards such a generalization. Nevertheless, the idea of representing the Scott
topology by a suitably chosen topos is implicitly present in at least the two interrelated
articles [9], [10].

In this work we take as starting point the ideas and results in those two articles and
try to check the success of this metaphor with respect to some constructions and results
of domain theory, where the Scott topology plays a major role. We discuss the possibility
of using certain presheaf toposes as generalizations of the Scott topology at this level and
examine whether certain features of the Scott topology are maintained. In particular,
in what concerns injectivity, we prove that the toposes associated with Scott complete
categories are injective with respect to dense inclusions of toposes. Then we focus on
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two goals: To describe the categorical analogues of powerdomains in terms of the Scott
topology and, in view of its importance for various duality results in domain theory, to
introduce a notion of “coherent domain” at the level of categories. In the first direction
we show that the class of finitely accessible categories and of continuous categories with
a small dense subcategory, respectively, are closed under the proposed generalized upper
powerdomain construction (the respective results about the lower powerdomain construc-
tion are essentially known). In the second direction we introduce two possible notions of
coherence for a finitely accessible category (qua generalized domain), one imitating the
stability of the compact saturated sets under intersection and one imitating the so-called
“2/3 SFP” property. We show that the two notions are equivalent, in essence giving a
characterization of the perfect presheaf toposes, in the sense of [4]. This also amounts
to characterizing the small categories whose free cocompletion under finite colimits has
finite limits.

I wish to thank Professor J. Adámek for his comments on a very early version of this
work and Dr. A. Tongas for his valuable assistance with TeX.

1. Scott toposes and injectivity

When we attempt to find a topos that imitates the behaviour of the Scott topology for
domains we have three things in mind: First, we want a topos whose category of points
is the category we start with (and view as a generalized domain). Secondly, we want
to talk about a topos that, at least in the case of “good” categories, is injective in the
category of toposes. Finally, in the case that K = L = Idl(P ) is an algebraic poset and
σL is the Scott topology on it, then we would like the topos in question to be equivalent
to sh(L, σL).

On the other hand, given an algebraic poset D, the equivalence σD ∼= ⊔↑ (D, 2) ∼=
2Df , i.e the fact that upper segments determined by finite elements form a basis for the
topology, suggests that we should be looking for a presheaf topos to play the role of the
Scott topology. So for the needs of the present work we confine ourselves to this case.
Specifically, given a finitely accessible category K, we let the “Scott topos” associated
with K be the presheaf topos σK = SetKf , where Kf is the full subcategory of finitely
presentable objects of K. This is a topos whose category of points is K. In the case K
is locally finitely presentable, so that Kf has finite colimits, it is a topos that is injective
(with respect to all inclusions) ([9], Prop. 1.2). In the case where K is a generalized Scott
domain, it is injective with respect to dense inclusions (see below).

Also, in the case where K = L is an algebraic poset, so that C = P is just a partially
ordered set, we have that SetP

op ∼= sh(L, σL), as desired ([9], Lemma 1.1). When we look
at continuous categories with a small dense subcategory (in connection to the generalized
powerdomain constructions), we regard as the appropriate version of the “Scott topos” the
topos associated with such a category in [10]. These toposes are canonically constructed
out of such continuous categories K, they arise as retractions of presheaf toposes, and
then have the category K we started with as their categories of points.
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Although presheaf toposes are not necessarily injective in the category of Grothendieck
toposes, we can maintain some of the relative injectivity properties known for the Scott
topology on continuous posets. For example it is well known that Scott domains with
their Scott topology are exactly the injectives, with respect to dense inclusions, in the
category of T0 spaces (see [7] for some more general discussion of these phenomena).
We show here that the “Scott topos” associated to a Scott complete category, in the
sense of [2], is injective with respect to dense inclusions of toposes. Recall that a Scott
complete category is a finitely accessible category with an initial object, in which every
diagram that has a cocone has a colimit (so that in particular it has copowers). In [2]
Scott complete categories were characterized as categories of models for certain kinds of
sketches, equivalently, for certain kinds of first-order (actually, coherent) theories.

More precisely a Scott complete category is the category of models of what we call a
“Scott theory”, for brevity. These are theories in a multi-sorted language, whose axioms
are of the following form:

(i) For formulae φ and ψ which are finite conjunctions of atomic ones, sentences of the
kind

(∀xi : si)[φ(x1, . . . , xn) → (∃yj : tj)ψ(x1, . . . , xn, y1, . . . , ym)], (∗)
provided

ψ(x1, . . . , xn, y1, . . . , ym) ∧ ψ(x1, . . . , xn, y
′
1, . . . , y

′
m) → (y1 = y′1 ∧ . . . ∧ ym = y′m)

is also provable in the theory (a theory given by axioms of this form is called a
lim-theory).

(ii) For a specified collection of sorts S and s ∈ S, sentences

(∀x : s)[x = x→ ⊥] (∗∗)
The classifying topos of such a theory is simply the category of functors on the finitely

presented models of the Scott theory: The classifying topos is a sheaf subtopos of the
presheaf topos that classifies the lim-theory part. The topology inducing the sheaf subto-
pos is given by the requirement that the empty cover covers the objects realizing the
specified sorts. An application of the comparison lemma [4] tells us that the classifying
topos is eventually the one that is obtained by removing the objects covered by the empty
cover from the category of finitely presented models for the lim-theory part of the Scott
theory. See also [5] for details.

1.1. Definition. An inclusion of toposes i: E � � �� F is called dense if the following
equivalent conditions are satisfied:

(i) i∗ reflects the initial object

(ii) i∗ preserves the initial object

(iii) The topology j, inducing the inclusion, has j(0) = 0.
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1.2. Proposition. Toposes classifying Scott theories are injective with respect to dense
inclusions between Grothendieck toposes.

Proof. Let i: E � � �� F be a dense inclusion between Grothendieck toposes and f : E
�� B[T] be any geometric morphism to the classifying topos of a Scott theory. We

adapt to our case the argument given in [9] for the injectivity of algebraic toposes with
respect to all inclusions. So we will show that the functor

(− ◦ i):Top(F , B[T]) �� Top(E , B[T])

has a right adjoint, such that the counit of the adjunction is a natural isomorphism.
Under the universal property of the classifying topos, the above functor is transported

to the functor ”take the inverse image of”

i∗:ModF(T) ��ModE(T)

A right adjoint with the required property would be given by taking the image under i∗
of a model provided that the direct image functor preserved models. But this is indeed
the case, because all we need for the preservation of models of a Scott theory is the
preservation of finite limits as well as of the initial object. In particular, the validity of
sentences like (∗∗), above, is preserved, so that if ‖ x = x ‖F≤‖ ⊥ ‖F holds in F then

i∗(‖ x = x ‖F) ≤ i∗(‖ ⊥ ‖F) =‖ ⊥ ‖E .
The equivalent conditions in the definition of a dense inclusion exactly secure the preser-
vation of the initial object.

2. Powerdomain constructions at the level of categories

The upper (Smyth) powerdomain of a domain D is usually described as the set of compact
saturated subsets of D in the Scott topology σD on D, ordered by reverse inclusion. By
the Hofmann - Mislove theorem this set is isomorphic to the set of Scott open filters (i.e
filters inaccessible by directed joins) on the frame σD, ordered by inclusion. The latter
set can, in turn, be identified with the set of maps that preserve directed joins and finite
meets (=preframe maps) from the frame σD to the algebra of truth values Ω.

Here we attempt to generalize the construction of the upper powerdomain at the level
of finitely accessible categories. For that we use as a guide the description of the upper
powerdomain of a domain as the set of preframe maps from the frame of Scott opens on
the domain to the algebra of truth values. Proceeding in formal analogy, we generalize
this construction at the level of categories defining the upper powercategory of a finitely
accessible category as the category of Set-valued functors that preserve finite limits and
filtered colimits from the “Scott topos” corresponding to the finitely accessible category.

Similarly we define the lower powercategory of a finitely accessible category as the
category of all small colimit preserving functors from the “Scott topos” corresponding to
the finitely accessible category to the category of sets.
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2.1. Definition. Let K = Flat(Kop
f ) be a finitely accessible category. The upper pow-

ercategory of K is the category of functors that preserve finite limits and filtered colimits
from the topos σK = SetKf to the category Set:

PU(K) = LexCont(SetKf , Set)

2.2. Definition. Let K = Flat(Kop
f ) be a finitely accessible category. The lower power-

category of K is the category of functors that preserve all small colimits from σK = SetKf

to the category Set:

PL(K) = Colim(SetKf , Set)

When K is just a continuous category with a small dense subcategory, by the upper
and lower powercategory respectively we mean the categories defined as above with the
appropriate Scott topos substituted for the full presheaf category. The Scott topos now is
a retraction in the category of Grothendieck toposes (as in [10], Prop. 3.3) of the presheaf
category.

Here we intend to show that the 2-category of finitely accessible categories (and con-
tinuous functors and all natural transformations) is closed under the upper and lower
powercategory construction. Our task is considerably easier in the studying the lower
powercategory, as it amounts to adapting to this context ideas relating to the lower bag-
topos, something that has attracted much more attention in the literature so far ([11],
[17], [6]).

When it comes to the upper powercategory, we want to show that when K is a finitely
accessible category then so is PU(K). We base our proof on the following more general

2.3. Proposition. Let E be a locally finitely presentable category and F be any Grothendi-
eck topos. Then the category LexCont(E ,F) of functors preserving finite limits and filtered
colimits from E to F is equivalent to the category FlatF(Ef ) of flat functors to F on the
full subcategory of E consisting of its finitely presentable objects.

Proof. Recall the well known equivalence between the categories Cont(E ,F) of Scott
continuous functors from E to F , on the one hand and FEf , on the other hand. We
show that this equivalence restricts to one between their respective full subcategories
LexCont(E ,F) and FlatF(Ef ). The equivalence takes a functor E �� F to its restriction
along the inclusion Ef � � �� E , in the one direction and a functor Ef �� F to its left Kan
extension along the aforementioned inclusion in the other direction.

First, notice that when F : Ef �� F is flat then its left Kan extension along i: Ef
� � �� E is left exact (so that FlatF(Ef ) is contained as a full subcategory in LexCont(E ,F)),
by some general properties of left Kan extensions of functors into a Grothendieck topos.
This is a result that may be possible to trace in [4], but nevertheless see [12] for a discussion
of the generality in which it holds.

In the opposite direction suppose that F : E �� F is left exact. We show that its
restriction F ◦ i: Ef �� F is flat. We use the fundamental equivalence between flat and
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left filtering functors stated in [13],VII. 9.1. A functor H: Ef �� F is left filtering if it
satisfies the following:

(i) The family of all maps H(C) �� 1, for all C ∈ Ef , is epimorphic

(ii) For any two objects C, D ∈ Ef , the family of maps H(B) �� H(C)×H(D), where
B runs over all the cones C �� B �� D, is epimorphic.

(iii) For any pair of parallel arrows, u, v:C ���� D in Ef , the family of induced maps
H(B) �� Eq(H(u), H(v)) to the equalizer of H(u), H(v), where B runs over all
the cones B �� C ���� D, is epimorphic.

Let us verify the third clause in the definition of a filtering functor, the others following
similarly. So consider a pair of arrows Eq((F ◦ i)u, (F ◦ i)v) ���� X in F , such that
whenever they are restricted along any (F ◦ i)B �� Eq((F ◦ i)u, (F ◦ i)v), where B is a
cone for u, v:C ���� D, they become equal. Since F is left exact, Eq((F ◦ i)u, (F ◦ i)v) ∼=
F (Eq(iu, iv)). Write E = Eq(iu, iv) as a filtered colimit of finitely presentable objects,
Eq(iu, iv) ∼= colimEf/EiB. Since F is continuous F (Eq(iu, iv)) ∼= colimEf/E(F ◦ i)B. This
way we have that two elements of

hom(Eq((F ◦ i)u, (F ◦ i)v), X) ∼= hom(colimEf/E(F ◦ i)B,X)
∼= limEf/E hom((F ◦ i)B,X)

become equal whenever they are projected to the coordinates of the latter inverse limit.
Thus they are already equal.

2.4. Corollary. a. The upper powercategory of a finitely accessible category is a finitely
accessible category.

b. The upper powercategory of a continuous category with a small dense subcategory
is continuous (with a small dense subcategory).

Proof. The proof of the first claim is immediate. For the second, recall from [10],
Corollary 2.17, that a category L is as in the statement if and only if it is a retract by
continuous functors of one of the form FlatC. By Prop. 3.3 of loc. cit., the “Scott topos”
associated to the continuous category is a retract, in the category of Grothendieck toposes,
of SetCop

. Postcomposition with the inverse images of the retraction renders PUL a retract
by continuous functors of LexCont(SetCop

, Set), hence a continuous category with small
dense subcategory.
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Remark. Beyond the formal analogy, there is a stronger reason suggesting that our
definition of the upper powercategory is in the right direction: Our construction is in
accordance with the “bagdomain” view of powerdomains, initiated in [17] and developed
in [11]. According to this approach the elements of the powerdomain should be indexed
families of elements of the domain we start with, rather than just sets of such elements.
This way of looking at things forces us to abandon the idea of a powerdomain as an
ordered set, and adopt instead a view of powerdomains as categories, even when we start
with a classical domain.

In order to examine closer the connection of our approach with the “bagdomain” ideas
[11], let K = FlatC be a finitely accessible category. Johnstone’s suggestion is that the
category of points of the upper “bagtopos” of the “Scott topos” SetCop

should be the ind-
completion of the category Famf (C)op. In other words, it should be the ind-completion
of the dual of the category obtained by freely adjoining finite coproducts to C. Our
PU(K) = Flat([SetCop

]f ) is the ind-completion of the dual of the free cocompletion of C

under finite colimits.

In particular, the above arguments show that the upper powercategory of the one
point domain is calculated as follows:

PU({∗}) = LexCont(Set, Set)
∼= Lex(Setf , Set)
∼= Lex((BAlg)opf , Set)
∼= BAlg,

agreeing with the intuitions presented in loc.cit.

The lower powercategory construction: We show that the 2-category finitely
accessible categories is closed under the lower powercategory construction.

2.5. Proposition. The lower powercategory PL(K) of a finitely accessible category K is

equivalent to SetK
op
f

Proof. The fundamental result about free cocompletions, exposed as Corollary 1.3 in
[15] gives the equivalence claimed above

2.6. Corollary. a. The lower powercategory of a finitely accessible category is an
accessible category.

b. The lower powercategory of a continuous category with a small dense subcategory
is continuous (with a small dense subcategory).

Proof. The first is obvious, the second follows as in Corollary 2.4.
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3. Generalizing the notion of a coherent domain

One of the fundamental uses of the Scott topology in domain theory is in the study of
the so called coherent domains. A coherent domain is one with the property that the
� relation on the frame of opens for the Scott topology on the domain is closed under
intersection. The role of coherence in domain theory is fundamental, both in the study of
exponentiability of domains as well as in the dual description of domains either in terms
of “information systems” à la Scott or in “logical form’ à la Abramsky.

In analogy with the preordered case we state the relevant property in terms of the
closure of the full subcategory of finitely presentable objects of a “Scott topos” E under
finite limits. This is equivalent to saying that the full subcategory Ecoh of E , consisting of
the coherent objects, is closed under all finite colimits. In turn this is equivalent to the
condition Ef = Ecoh (cf. [4], Exposé VI, as well as the appendix of [14]). Such toposes
are called “perfect” in [4] and include all the coherent toposes satisfying the noetherian
condition on their lattices of subobjects, notably the simplicial topos, and, among others
the Zariski and the etale topos over a scheme. (Notice that when E = SetKf is a perfect
topos then the equivalence between functors from Ef to Set and continuous functors from
E to Set takes left exact functors to left exact ones. So LexCont(E , Set) is equivalent to
the category Lex(Ef , Set), which is a typical locally finitely presentable category.) One of
the most pleasant features of coherent domains that lies in the heart of the duality theory,
is that coherence can be described elementarily, in terms of the order of the domain. In
particular a domain is coherent if and only if it satisfies the so-called 2/3-SFP property.
Recall that a (classical) domain satisfies the 2/3-SFP property if, given any finite set S
of finite elements of it, there is another finite set M of finite elements such that:

• the elements of M are upper bounds for S, and

• every other upper bound for S is greater or equal than some element of M .

3.1. Definition. A finitely accessible category K is coherent if the topos SetKf is perfect,
that is, it is coherent and the equivalent conditions in the previous paragraph are satisfied.

3.2. Definition. A finitely accessible category K has the “2/3-SFP” property if for
every finite (including empty) diagram K: I �� Kf in Kf there is a finite subcategory D
of Kf such that

• the objects of the subcategory are cocones for the diagram and the arrows of the
subcategory are morphisms of cocones. By the latter we mean that, for any two
cocones λ:K ⇒ D and µ:K ⇒ D′, any i ∈ I and d:D �� D′ in D, we have
µi = d ◦ λi.

• any other cocone for the diagram factors through one of the cocones in the finite
subcategory and
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• given any two such factorizations through xj:Dj
�� F and xk:Dk

�� F there is
a zig-zag

D2

α1

��

D2n

αn

��

Dj = D1

ρj,2

��

xj

��

D3 ... D2n−1

ρ2,3

��
ρ2n−1,2n

��

D2n+1 = Dk

ρ2n,k

		

xk



F

in the full subcategory, having vertices ρl,l+1and arrows αl:D2l
�� F from the

even-numbered vertices of the zig-zag to F , such that xj = α1 ◦ ρj,2, α1 ◦ ρ3,2 =
α2 ◦ ρ3,4, . . . , αn ◦ ρ2n,k = xk

Then we have the following:

3.3. Theorem. A finitely accessible category K is coherent if and only if it has the
“2/3-SFP” property.

Proof. Suppose that K is coherent and consider a finite diagram C: I �� Kf of finitely
presentable objects. There is an induced finite diagram in SetKf . Consider its limit
limI hom(Ci,−). The assumption tells us that it is a finitely presentable object. It is,
thus, a finite colimit of representables:

e: limI hom(Ci,−) ∼= colimJ hom(Dj,−): p

The construction of limits in Set gives, for all objects F ∈ Kf , a bijection between elements
of limI hom(Ci, F ) and cocones of the diagram C: I �� Kf . Then the image, under the
bijection, of idDj

renders each (Dj, λj:C �� Dj) a cocone for the diagram. Furthermore,
if we start with a cocone (F, ξ:C �� F ) then the image, under the bijection, of the
element that it determines in limI hom(Ci, F ) is an element o colimJ hom(Dj, F ). It is
thus represented by some arrow x:Dj

�� F . Then (F, x ◦ λj) is still a cocone for the
diagram. By naturality we have a commutative square

colimJ hom(Dj, Dj)

x◦−
��

pj �� limI hom(Ci, Dj)

x◦−
��

colimJ hom(Dj, F )
pF �� limI hom(Ci, F )

We have that p ◦ e = id, so

(ξi)
n
i=1 = pF eF (ξi)

n
i=1

= pF (x̄)

= pF (x ◦ idj)
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= x ◦ pj(idj)
= (x ◦ λj,i)ni=1,

thus having the desired factorization. The above naturality square manifests also the
fact that the vertices of the diagram D:J �� Kf are morphisms of cocones (this is a
diagram taking values inside SetKf but it factors through Kf ). In particular, consider
any d:Dj

�� Dj′ in the image of D and let λ:C ⇒ Dj be a cocone corresponding to
some element inside colimJ hom(Dj, Dk) represented by id:Dj

�� Dj. Let also µ:C ⇒
Dj′ be the cocone corresponding to the element of colimJ hom(Dj′ , Dj′) represented by
id:Dj′ �� Dj′ . The latter is also represented by the element d:Dj

�� Dj′ inside
colimJ hom(Dj, Dj′) since there is an obvious zig-zag connecting the two elements of
colimJ hom(Dj,−) that are defined at stage Dj′ . The naturality square then gives us

µ = pj′(d) = d ◦ pj(idj) = d ◦ λ.
Finally, consider any two factorizations of (F, ξ:C �� F ) through some (Dj, λj:C
�� Dj), (Dk, λk:C �� Dk). By naturality we have eF (xj ◦ λj) = xj ◦ ej(λj) and

eF (xk ◦λk) = xk ◦ ek(λk) . So xj ◦ej(λj) and xk ◦ej(λk) represent the same element inside
the colimit. By the construction of colimits in the category of sets we get that, if the
arrows yj:Dn

�� Dj and yk:Dm
�� Dk represent ej(λj) and ek(λk), respectively, then

there is a zig-zag

D2 D2ν

Dn = D1

ρn,2

��

D3

ρ2,3

��

... D2ν−1

ρ2ν−1,2ν



D2ν+1 = Dm

ρ2ν,m

��

connecting Dn and Dm, with the relevant identities holding, the xj ◦yj and xk◦yk entering
the leftmost and rightmost equation. Then the augmented zig-zag

Dj Dk

Dj = D−1

idj

��

Dn = D1

yj

��

... D2ν+1 = Dm

yk

��

D2ν+3 = Dk

idk

��

gives the desired conditions.
Conversely let us assume that K satisfies the 2/3-SFP property. Notice that the

definition of the 2/3-SFP property includes the conditions that are necessary and sufficient
for a presheaf topos to be coherent ([4], Exposé VI, Exercise 2.17 c)), so that we only have
to verify that the finitely presentable objects are closed under finite limits. We first show
that the finitely presentable objects of SetKf are closed under products. Since retractions
are preserved by products and, due to the cartesian closedness of the topos, the product of
two colimits of representables is a colimit of products of representables, it suffices to show
that the product of two representable functors is a finitely presentable object. So consider
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a product hom(C,−)× hom(D,−). For the discrete diagram {C,D}, there is a finite set
{Bi} of cocones, with the property that any other cocone for this diagram factors through
them. This means that there is a map e: hom(C,−)× hom(D,−) �� colimI hom(Bi,−)
sending a pair of arrows out of C, D to their factorization through a Bi. In the opposite
direction there is a map p: colimI hom(Bi,−) �� hom(C,−) × hom(D,−) sending an
element of colimI hom(Bi,−) defined at stage F and represented by an x:Bi

�� F to
the cocone produced by composition with the cocone λi: {C, D} ⇒ Bi. This establishes
an obvious isomorphism between the two, provided the map p were well defined. This is
indeed the case: Let x = y as elements of colimI hom(Bi, F ), where y:Bj

�� F . Then
there is a zig-zag with vertices Bi = B1, ..., B2n+1 = Bj, edges ρl,l+1, l = 1, ..., 2n+ 1 and
arrows zl:B2l

�� F , l = 1, ..., n satisfying

x = z1 ◦ ρ1,2, z1 ◦ ρ2,3 = z2 ◦ ρ3,4,
... , zn ◦ ρ2n,2n+1 = y

The fact that the edges are morphisms of cocones gives

x ◦ λi = z1 ◦ ρ1,2 ◦ λi
= z1 ◦ λ2

= z1 ◦ ρ2,3 ◦ λ3

= z2 ◦ ρ3,4 ◦ λ3

= ...

= y ◦ λj

proving the good definition of the map p.

Next, we show the closure of the finitely presentable objects under equalizers. We can
reduce the proof to showing that the equalizer of a pair of arrows

f, g: hom(C,−) ���� colimJ hom(Dj,−)

is finitely presentable. The two arrows correspond, via Yoneda, to a pair of elements
f̌ , ǧ ∈ colimJ hom(Dj, C). An arrow x:C �� F belongs to the equalizer of f, g at stage
F if the composites x◦ f̌ , x◦ ǧ represent equal elements in colimJ hom(Dj, F ). Thus when
Dj, Dk are not part of the same connected component of the diagram D:J �� Kop

f , the
equalizer of f, g is the initial presheaf, which is finitely presentable. So we assume that
f̌ , ǧ are connected by a zig-zag:
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D2

α1

��

D2n

αn

��

Dj = D1

ρj,2

��

f̌ ��

D3 ... D2n−1

ρ2,3

��
ρ2n−1,2n

��

D2n+1 = Dk

ρ2n,k

		

ǧ

C

x

��
F

For every finite diagram Dz consisting of some zig-zag connecting Dj and Dk, as well as f̌
and ǧ, let Cz,n be the set of cocones for it, as provided by the first clause of the “2/3-SFP”
property.

We will exhibit a pair of natural maps

Eq(f, g)
e ����
p

colimzcolimn hom(Cz,n,−)

where the first colimit on the right hand side is taken over all possible zig-zags connecting
Dj and Dk. As morphisms between zig-zags in the indexing category for that colimit
are taken morphisms between their respective vertices in the image of J satisfying the
obvious commutativities. Notice that there are finitely many such zig-zags and that any
two of them can be taken of equal length by possibly adding identities. Also notice that
every morphisms (z) � (z′) induces morphisms of cocones Cz,n �� Cz′,n′ for any of the
cocones of the diagrams Dz and Dz′ , respectively, that are prescribed by the “2/3-SFP”
property.

The action of e is as follows: As explained above an element of the equalizer at
level F determines an element in colimJ hom(Dj, F ), represented by both x ◦ f̌ , x ◦ ǧ.
The fact that the two arrows represent the same element in the colimit means, by the
construction of the colimits in the category of sets, that they are edges of a cocone for
one of the above diagrams Dz . Hence there is a factorization Cz,n �� F through one
of the Cz,n’s, by the second clause of the “2/3-SFP” property. Thus we obtain the image
eF (x) in colimzcolimn hom(Cz,n, F ). Whenever we have another zig-zag manifesting the
equality of x ◦ f̌ , x ◦ ǧ as elements of colimJ hom(Dj, C) and a factorization of x through
a different cocone Cz′,n′ , for the respective diagram, then we can concatenate the two
zig-zag’s into a larger diagram. A cocone Cz′′,n′′ for this larger diagram remains a cocone
for each one of the two smaller subdiagrams and so does F , so we have factorizations
Cz1,n1

�� Cz′′,n′′ , regarding the first subdiagram,Cz′1,n′
1

�� Cz′′,n′′ , regarding the second
and Cz′′,n′′ �� F , regarding the larger subdiagram. Now, using the third clause in the
definition of the “2/3-SFP” property, there are zig-zag’s from Cz,n to Cz1,n1 and an edge
from Cz1,n1 to Cz′′,n′′ , as well as from Cz′,n′ to Cz′1,n′

1
and an edge from Cz′1,n′

1
to Cz′′,n′′ ,

and respective arrows from their vertices to F , satisfying the equations of the definition.
Pasting the two zig-zag’s together, we find a zig-zag from Cz,n to Cz′,n′ and edges to F ,
satisfying the relevant identities, showing that the image of x under eF is well defined.
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This also shows the naturality of e: If γ:F �� G is a transition arrow then the square

Eq(f, g)(F )

γ◦−
��

eF �� colimzcolimn hom(Cz,n, F )

γ◦−
��

Eq(f, g)(G)
eG �� colimzcolimn hom(Cz,n, G)

is commutative. Because, if ẽF (x) represents eF (x) in colimzcolimn hom(Cz,n, F ) then

γ ◦ ẽF (x) and eG(γ ◦ x) represent two factorizations of the element γ ◦ x of the equalizer,
defined at level G, through different cocones among the prescribed ones. Thus, as elements
of the colimit at level G, they are equal.

In the opposite direction p sends an element x:Cz,n �� F to the element x ◦ λC :C
�� Cz,n �� F , where λC is the C− edge of the cocone λ for the diagram Dz. This

can readily seen to be an element of the equalizer of f, g. The necessary commutativities
manifesting the equality of x ◦λC ◦ f̌ with x ◦λC ◦ ǧ inside colimJ hom(Dj, F ) follow from
the fact that Cz,n is a cocone for Dz. The fact that the definition of p does not depend
on the choice of the representative x (thus the naturality of p, as well) is as follows: Let
x1:Cz1,n1

�� F represent the same element of colimzcolimn hom(Cz,n, F ) as xk:Czk,nk

�� F , where µ:Dzk
⇒ C

k,nk
is a cocone for another diagram Dzk

. Then there are
cocones Czi,ni

for diagrams Dzi
and a zig-zag connecting them as in the diagram

C

λc

��

µc

��

(λ2)c

��

(λ3)c

��

(λk−2)c

��

(λk−1)c

��
Cz2,n2

x2

��

Czk−1,nk−1

xk−1

��

. . .

Cz1,n1

x1

���
������������������������������������������

α1,2�������

���������

Cz3,n3

α2,3�������

���������

α3,4

��

x2◦α2,3=x3◦α3,4

���
��

��
��

��
��

��
��

��
��

��
��

��
��

Czk−2,nk−2

��

��

  ��
��

��
��

��
��

��
��

��
��

��
��

��
��

Czk,nk

αk−1,k

!!

xk

""�������������������������������������������������

F
The edges αi,i+1 are morphisms induced by morphisms of zig-zags, thus they are mor-
phisms of cocones for the diagrams Dzi

. Thus we have
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x1 ◦ λC = x2 ◦ α1,2 ◦ λC
(compatibility for the zig-zag) = x2 ◦ (λ2)C

(the α’s are morphisms of cocones) = x2 ◦ α2,3 ◦ (λ3)C

(compatibility for the zig-zag) = x3 ◦ α3,4 ◦ (λ3)C

= ...

= y ◦ µC

Also from the construction follows that p ◦ e = id, having thus presented the equalizer
in question as a retract of a finite colimit of representables. In a locally finitely presentable
category the retracts of finite colimits of objects in a set of regular generators are exactly
the finitely presentable objects ([8], Satz 7.6, in a presheaf category however these happen
to be just the finite colimits of representables).

The general case now follows, because the equalizer of two arrows out of a finite colimit
of representables is a retract of the colimit of the equalizers of the arrows produced after
composing with the inclusion of each representable into the colimit.

Remark. It is obvious that when Kf is a Plotkin category, in the sense of [16], then it
has the “2/3-SFP” property, something that ought to hold, as the former notion is meant
as a categorical version of the “SFP” property.

3.4. Corollary. The upper powercategory of a coherent category is a locally finitely
presentable one

Proof. If K is coherent then the finitely presentable objects of SetKf are closed under
finite limits and we have PU(K) = Lex((SetKf )f ).

Finally, observe that the “2/3-SFP” property is involves only the small category of
finitely presentable objects of a finitely accessible category. So it can be stated for any
small category C. On the other hand the full subcategory of finitely presentable objects
of SetCop

is just the free cocompletion of C under finite colimits. Thus a restatement of
the above theorem is

3.5. Corollary. The free cocompletion of a small category C under finite colimits has
finite limits if and only if the dual of C satisfies the conditions in the definition of the
“2/3-SFP” property.
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Jean-Louis Loday, Université de Strasbourg: loday@math.u-strasbg.fr
Ieke Moerdijk, University of Utrecht: moerdijk@math.uu.nl
Susan Niefield, Union College: niefiels@union.edu
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