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We investigate three-dimensional basic and mixed transmission problems for Helmholtz equa-
tion in piece wise homogeneous media by the potential method. We show uniqueness and
existence of solutions in the Lp based Sobolev and Bessel potential spaces and develop the
fundamental solutions method for transmission problems.
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1. Preliminary material

The basic interior and exterior boundary value problems for the Helmholtz equa-
tion by different methods are studied in scientific literature in various function
spaces for smooth and non-smooth domains (see [43], [37], [10], [11], [12], [31], [1]).

Applying the potential method and the theory of pseudodifferential operators,
here we study three-dimensional transmission problems for Helmholtz equation,
in particular, we consider two types of problems: basic transmission problem and
mixed transmission problem.

First we establish the uniqueness and existence of solutions and derive the cor-
responding estimates, and afterwards we develop the method of fundamental solu-
tions for the problems under consideration.

The Method of Fundamental Solutions (MFS) was first proposed by the well
known Georgian mathematician Victor Kupradze in the 1960s (see the pioneer-
ing works in this direction by V. Kupradze and M. Alexidze, [23], [24], [25]). The
main idea of the MFS is to distribute the singularity poles {y(k)}∞k=1 of the fun-
damental solution Γ(x − y) of a differential operator outside the domain under
consideration, construct the set of functions {Γ(x − y(k))}∞k=1 , prove its density
properties and linear independency in appropriate function spaces, and then ap-
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proximate the sought for solution by a linear combination of the fundamental
solutions

∑N
k=1Ck Γ(x − y(k)) with unknown coefficients Ck, which are to be de-

termined by satisfying the corresponding boundary conditions. Starting from the
1970s, the MFS gradually became a useful technique and is used to solve a large
variety of physical and engineering problems (see [5], [23], [24], [25], [26], [30], [3],
[22], [42], [34], [39], [15], [8], [9], [20], [29], [21] and the references therein). It should
be mentioned that until now it has not been worked out how to apply the MFS
to crack type problems, since the different approaches related to MFS described in
the scientific literature are not applicable to interior crack type problems.

Note that interior crack type problems can be reformulated as mixed type trans-
mission problems introducing an artificial interface boundary surface containing the
crack faces. Consequently, the MFS for mixed type transmission problems, which
is described in this paper, is applicable also to the interior crack type problems.

Let Ω+ = Ω1 ⊂ R
3 be a bounded domain with a smooth boundary S. Further,

let Ω− = Ω2 := R
3 \ Ω+, ∂Ω± = S, Ω± = Ω± ∪ S. Throughout the paper n(x)

stands for the outward unit normal vector at the point x ∈ S. The symbols {·}±
denote one sided limiting values (traces) on S = ∂Ω± from Ω±. Without loss of
generality we assume that the origin is located in the domain Ω1.

Further, let us consider the following regular dissection of the interface S: S =
ST ∪ SC , where ST ∩ SC = ∅. Here ST is the so called “transmission part”, while
SC represents the “interface crack part”.

Throughout the paper, for simplicity we assume that the surfaces S and the
curve ` = ST ∩ SC are C∞-smooth if not otherwise stated.

By Ck,α with nonnegative integer k and 0 < α 6 1, we denote the space of
functions whose k-th order partial derivatives are Hölder continuous functions with
exponent α. By Lp, Lp,loc, Lp,comp, W

r
p , W r

p,loc, W
r
p,comp, H

s
p , and Bs

p,q (with r ≥ 0,

s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞) we denote the well-known Lebesgue, Sobolev-
Slobodetskii, Bessel potential, and Besov function spaces, respectively (see, e.g.,
[40], [41], [28], [2]). Recall that Hr

2 = W r
2 = Br

2,2 , Hs
2 = Bs

2,2 , W t
p = Bt

p,p , and

Hk
p = W k

p , for any r ≥ 0, for any s ∈ R, for any positive and non-integer t, and for
any non-negative integer k. In our analysis we essentially employ also the spaces:

H̃s
p(M) := {f : f ∈ Hs

p(M0), supp f ⊂M},

B̃s
p,q(M) := {f : f ∈ Bs

p,q(M0), supp f ⊂M},

Hs
p(M) := {rMf : f ∈ Hs

p(M0)},

Bs
p,q(M) := {rMf : f ∈ Bs

p,q(M0) },

where M0 is a closed manifold without boundary and M is an open proper sub-
manifold of M0 with nonempty smooth boundary ∂M 6= ∅; rM is the restriction
operator onto M.

Remark 1 : Let a function f be defined on an open proper submanifoldM of a
closed manifold M0 without boundary. Let f ∈ Bs

p,q(M) and f̃ be the extension

of f by zero toM0 \M. If the extension preserves the space, i.e., if f̃ ∈ B̃s
p,q(M),

then we write f ∈ B̃s
p,q(M) instead of f ∈ rMB̃s

p,q(M) when it does not lead to
misunderstanding.



Vol. 19, No. 2, 2015 23

Consider the Helmholtz equation

L(∂, ω)u(x) := (∆ + κ2) u(x) = 0, x ∈ Ω±, (1.1)

where ∆ = ∂2
1 + ∂2

2 + ∂2
3 is the Laplace operator, ∂j = ∂/∂xj , ∂ := (∂1, ∂2, ∂3),

κ ∈ R is the so called frequency parameter.
We say that u belongs to the Sommerfeld class of radiating functions in an

unbounded domain Ω− and write u ∈ S(Ω−) if for sufficiently large |x| the relation

∂u(x)

∂r
− iκ u(x) = o(r−1), r = |x| , (1.2)

holds uniformly in all directions x/|x| (see [43], [37], [10], [11]).
Denote by Γ(x − y, ω) the fundamental solution that corresponds to outgoing

waves and satisfies the Sommerfeld radiation condition,

Γ(x− y,κ) = − 1

4π

eiκ |x−y|

|x− y|
. (1.3)

Introduce the single and double layer potentials associated with the fundamental
solution (1.3):

V (g)(x) ≡ V
S
(g)(x) =

∫
S

Γ(x− y,κ) g(y) dS, x ∈ R3 \ S, (1.4)

W (g)(x) ≡W
S
(g)(y) =

∫
S

[
∂n(y)Γ(x− y,κ)

]
g(y) dS, x ∈ R3 \ S, (1.5)

where f and g are densities of the potentials and ∂n := ∂
∂n denotes the normal

derivative.
It is well known that these potentials have the following properties (see, e.g.,

[32], [43], [33], [10], [11], [17], [12], [31], [6], [13], [1]).

Theorem 1.1 : Let 1 < p <∞ and s ∈ R. The operators

V : Bs
p,p(S)→ H

s+1+ 1

p
p (Ω+), V : Bs

p,p(S)→ H
s+1+ 1

p

p, loc (Ω−) ∩ S(Ω−) ,

W : Bs
p,p(S)→ H

s+ 1

p
p (Ω+), W : Bs

p,p(S)→ H
s+ 1

p

p, loc(Ω
−) ∩ S(Ω−) ,

are continuous.

If g ∈ B
− 1

p
p,p (S), h ∈ B

1− 1

p
p,p (S), then V,W ∈ C∞(Ω±) and

L(∂, ω)V
(
g
)

(x) = 0, L(∂, ω)W
(
g
)

(x) = 0, in Ω±, (1.6){
V (g)(x)

}+
=
{
V (g)(x)

}−
= H g(x) on S, (1.7){

∂n(x) V (g)(x)
}±

=
[
∓ 2−1 I + K̃

]
g(x), on S, (1.8)
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W (h) (x)

}±
=
[
± 2−1I +K

]
h(x) on S, (1.9){

∂nW (h)(x)
}+

=
{
∂nW (h)(x)

}− ≡ Lh(x) on S, (1.10)

where I stands for the identity operator, while K̃, K, and H are boundary integral
operators

K̃ g(x) :=

∫
S

[
∂n(x)Γ(x− y, ω)

]
g(y) dS, x ∈ S, (1.11)

K g(x) :=

∫
S

[
∂n(y)Γ(x− y, ω)

]
g(y) dS, x ∈ S, (1.12)

H g(x) :=

∫
S

Γ(x− y, ω) g(y) dS, x ∈ S. (1.13)

Moreover, the following mappings are bounded

H : Bs
p,p(S)→ Bs+1

p,p (S) , K̃ : Bs
p,p(S)→ Bs

p,p(S) ,

K : Bs
p,p(S)→ Bs

p,p(S) , L : Bs+1
p,p (S)→ Bs

p,p(S) .

For S ∈ C1,α, 0 < α 6 1, the operators H, K̃, and K are weakly singular
operators, while L is a singular integro-differential operator.

If S ∈ Ck+1,α with k > 1 and 0 < β < α 6 1. Then the following operators are
continuous

V : Ck,β(S) −→ Ck+1,β(Ω±), W : Ck,β(S) −→ Ck,β(Ω±),

H : Ck,β(S) −→ Ck+1,β(S) , K̃, K : Ck,β(S) −→ Ck,β(S) ,

L : Ck,β(S) −→ Ck−1,β(S) .

Remark 2 : The following operator equalities hold true in appropriate function
spaces:

KH = HK̃, LK = K̃ L, (1.14)

HL = −4−1 I6 +K 2, LH = −4−1 I6 + K̃ 2. (1.15)

2. Basic transmission problem

The basic transmission problem (BT) is formulated as follows: Find complex valued
functions

u1 ∈ H1
p (Ω1), u2 ∈ H1

p, loc(Ω2) ∩ S(Ω2), 1 < p <∞, (2.1)
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satisfying the Helmoltz equations in the corresponding domains,

(∆ + κ2
1)u1(x) = 0, x ∈ Ω1, κ2

1 = %1 ω
2, (2.2)

(∆ + κ2
2)u2(x) = 0, x ∈ Ω2, κ2

2 = %2 ω
2, (2.3)

and the transmission conditions on S:

{u1(x)}+ − {u2(x)}− = f(x), x ∈ S, (2.4)

{∂n(x)u1(x)}+ − {∂n(x)u2(x)}− = F (x), x ∈ S, (2.5)

where %j , j = 1, 2, are positive constants, ω ∈ R is a frequency parameter, and

f ∈ B
1− 1

p
p,p (S), F ∈ B

− 1

p
p,p (S). (2.6)

Here equations (2.2) and (2.3) are understood in the distributional sense, the
Dirichlet type condition (2.4) is understood in the usual trace sense, while the
Neumann type condition (2.5) is understood in the generalized trace sense defined
by the corresponding Green’s formulas (see, e.g. [31, Ch. 4]).

Applying the celebrated Rellich-Vekua lemma one can prove the following unique-
ness theorem (cf. [43], [10], [10]).

Theorem 2.1 : The homogeneous basic transmission problem (2.1)-(2.5) (with
f = F = 0) possesses only the trivial solution for p = 2.

To prove the existence results we look for a solution pair (u1, u2) in the form of
surface potentials:

u1(x) = V1(g1)(x), x ∈ Ω1, (2.7)

u2(x) = W2(g2)(x) + a V2(g2)(x), x ∈ Ω2, (2.8)

where Vj and Wj denote the single and double layer potentials on S constructed by

the fundamental solution Γ(x−y,κj), j = 1, 2, and g1 ∈ B
− 1

p
p,p (S) and g2 ∈ B

1− 1

p
p,p (S)

are unknown densities. Here a is a complex constant,

a = a1 + i a2, aj ∈ R, j = 1, 2, a2 6= 0. (2.9)

The contact conditions (2.4)-(2.5) lead to the following system of pseudodiffer-
ential equations with respect to g1 and g2:

H1g1 −
(
− 2−1I +K2 + aH2

)
g2 = f on S, (2.10)(

− 2−1I + K̃1

)
g1 −

[
L2 + a

(
2−1I + K̃2

)]
g2 = F on S, (2.11)

where the pseudodifferential operators Hj , Kj , K̃j , and Lj are generated by the
layer potentials Vj and Wj and their normal derivatives (see (1.10)-(1.13)).
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The operators

D2 := −2−1I +K2 + aH2 : Bs
p,p(S)→ Bs

p,p(S), (2.12)

N2 := L2 + a
(
2−1I + K̃2

)
: Bs+1

p,p (S)→ Bs
p,p(S) (2.13)

are invertible operators for arbitrary p ∈ (1,∞) and s ∈ R (see [4], [10], [36], [27],
[18], [19]). Therefore from (2.10) we can define g2,

g2 = D−1
2 H1g1 −D−1

2 f on S, (2.14)

and substitute it into equation (2.11) to obtain[(
− 2−1I + K̃1

)
−N2D−1

2 H1

]
g1 = F −N2D−1

2 f on S, (2.15)

where D−1
2 is the operator inverse to (2.12).

Evidently, the systems (2.10)-(2.11) and (2.14)-(2.15) are equivalent.
Denote

P :=
(
− 2−1I + K̃1

)
−N2D−1

2 H1. (2.16)

Let us show that the operator

P : Bs
p,p(S)→ Bs

p,p(S), 1 < p <∞, s ∈ R, (2.17)

is invertible.
It can easily be verified that the principal homogeneous symbol S(P;x, ξ), x ∈ S,

ξ ∈ R2 \ {0}, of the operator P is elliptic. Indeed, taking into account that

S(Hj ;x, ξ) = − 1

2|ξ|
, S(Lj ;x, ξ) =

|ξ|
2
, S(K̃j ;x, ξ) = 0, j = 1, 2, (2.18)

S(D−1
2 ;x, ξ) = −2, S(N2H1;x, ξ) = S(N2H2;x, ξ) = −1

4
, (2.19)

we get

S(P;x, ξ) = −1. (2.20)

This implies that the operator (2.17) is Fredholm with zero index. Now we show
that the null-space of the operator (2.17) is trivial. Indeed, let first p = 2, s =

−1
2 , and let g̃1 ∈ B

− 1

2

2,2 (S) = H
− 1

2

2 (S) be a solution of the homogeneous equation

P g̃1 = 0 on S. Then the functions g̃1 and g̃2 = D−1
2 H1g̃1 will be solutions to

the homogeneous system (2.10)-(2.11) with f = F = 0. It then follows that the
functions ũ1 and ũ2 defined by the equalities

ũ1(x) = V1(g̃1)(x), x ∈ Ω1, ũ2(x) = W2(g̃2)(x) + a V2(g̃2)(x), x ∈ Ω2,
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belong to the spaces H1
2 (Ω1) and H1

2,loc(Ω2) ∩ S(Ω2) respectively and solve the
homogeneous basic transmission problem. Consequently, due to the uniqueness
Theorem 2.1, we deduce:

ũ1(x) = 0, x ∈ Ω1, ũ2(x) = 0, x ∈ Ω2.

From these relations the equalities g̃1 = 0 and g̃2 = 0 follow immediately, implying
that the null-space of the operator (2.17) is trivial for p = 2, s = −1

2 . Thus the
operator (2.17) is invertible for these particular values of the parameters. Due to
the general theory of pseudodifferential equations on manifolds without boundary
then it follows that the operator (2.17) is invertible for an arbitrary 1 < p < ∞
and s ∈ R.

In particular, the operator

P : B
− 1

p
p,p (S)→ B

− 1

p
p,p (S), 1 < p <∞, (2.21)

is invertible and equation (2.15) is uniquely solvable for an arbitrary right hand side
function. Therefore the solution pair (g1, g2) of system (2.10)-(2.11) is representable
as follows:

g1 = P−1F − P−1N2D−1
2 f ∈ B

− 1

p
p,p (S), (2.22)

g2 = D−1
2 H1P−1F −D−1

2 H1P−1N2D−1
2 f −D−1

2 f ∈ B
1− 1

p
p,p (S). (2.23)

Remark 1 : With the help of the imbedding theorems it can be shown that if

S ∈ C2,α, f ∈ C1,β(S), F ∈ C0,β(S), 0 < β < α ≤ 1, (2.24)

then for the functions g1 and g2 defined by (2.18) and (2.19) the following inclusions
are true:

g1 ∈ C0,β(S), g2 ∈ C1,β(S), (2.25)

implying the following inclusions in view of formulas (2.7)-(2.8) and mapping prop-
erties of potentials and boundary integral operators described in Theorem 1.1:

u1 ∈ C∞(Ω1) ∩ C1,β(Ω1), u2 ∈ C∞(Ω2) ∩ C1,β(Ω2) ∩ S(Ω2). (2.26)

The above results lead to the following existence theorem.

Theorem 2.2 : Let conditions (2.6) be satisfied. Then the basic transmission
problem (2.1)-(2.5) is uniquely solvable and solutions can be represented in the
form (2.7)-(2.8), where the densities g1 and g2 are given by formulas (2.22)-(2.23).
Moreover we have the following estimates

‖u1‖H1
p(Ω1) ≤ C1

(
‖f‖

B
1− 1

p
p,p (S)

+ ‖F‖
B
− 1

p
p,p (S)

)
, (2.27)

‖u2‖H1
p(Ω2∩B(R)) ≤ C2(R)

(
‖f‖

B
1− 1

p
p,p (S)

+ ‖F‖
B
− 1

p
p,p (S)

)
, (2.28)
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where C1 is some positive constant, B(R) is a ball centered at the origin and radius
R, such that Ω1 ⊂ B(R), and C2(R) is a positive constant which depends on R.

Proof : Existence of a solution for p ∈ (1,∞) follows from the invertibility of the
operator (2.21), formulas (2.22)-(2.23), and representations (2.7)-(2.8). It remains
to prove uniqueness of solutions for arbitrary p > 1. Let (u1, u2) ∈ H1

p (Ω1) ×(
H1
p,loc(Ω2)∩S(Ω2)

)
be a solution to the homogeneous basic transmission problem.

It can be shown that any solution of the homogeneous Helmholtz equation in Ω1

from the space H1
p (Ω1) is uniquely representable in the form of a single layer

potential (2.7) with g1 = [T ]−1({∂nu1}+ + a{u1}+) ∈ B−1/p
p
1
p (S), where

T = −1

2
I + K̃1 + aκ1 : B−1/p

p1p
(S)→ B−1/p

p1p
(S)

ia invertible operator. Similarly, any solution of the homogeneous Helmholtz equa-
tion in Ω2 from the class H1

p,loc(Ω2)∩S(Ω2) is uniquely representable by the linear

combination of layer potentials (2.8) with g2 = D−1
2 {u2}+ ∈ B

1− 1

p
p,p (S) (cf. [43], [18],

[19]) . Since the homogeneous system (2.10)-(2.11) in the space B
− 1

p
p,p (S)×B

1− 1

p
p,p (S)

has only the trivial solution, we conclude that g1 = g2 = 0 on S implying u1 = 0
in Ω1 and u2 = 0 in Ω2.

The norm estimates (2.27)-(2.28) follow from the properties of the layer poten-
tials described in Theorem 1.1 and invertibility of the boundary operators involved
in formulas (2.22)-(2.23). �

3. Mixed transmission problem

The mixed transmission problem (MT) is formulated as follows: Find complex
valued functions

u1 ∈ H1
p (Ω1), u2 ∈ H1

p, loc(Ω2) ∩ S(Ω2), 1 < p <∞, (3.1)

satisfying the Helmoltz equations in the corresponding domains,

(∆ + κ2
1)u1(x) = 0, x ∈ Ω1, κ2

1 = %1 ω
2, (3.2)

(∆ + κ2
2)u2(x) = 0, x ∈ Ω2, κ2

2 = %2 ω
2, (3.3)

and the mixed transmission conditions on the transmission part ST and crack part
SC :

{u1(x)}+ − {u2(x)}− = f1(x), x ∈ ST , (3.4)

{∂n(x)u1(x)}+ − {∂n(x)u2(x)}− = F1(x), x ∈ ST , (3.5)

{∂n(x)u1(x)}+ = F (+)(x), x ∈ SC , (3.6)

{∂n(x)u2(x)}− = F (−)(x), x ∈ SC , (3.7)
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where %j , j = 1, 2, and ω are as in the formulation of the basic transmission
problem (BT), and

f1 ∈ B
1− 1

p
p,p (ST ), F1 ∈ B

− 1

p
p,p (ST ), F (±) ∈ B

− 1

p
p,p (SC). (3.8)

In addition we require that the following compatibility condition is satisfied:

F :=

{
F1 on ST ,

F (+) − F (−) on SC ,
F ∈ B

− 1

p
p,p (S). (3.9)

It is evident that the crack type conditions (3.6)-(3.7) are equivalent to the following
two conditions:

{∂n(x)u1(x)}+ − {∂n(x)u2(x)}− = F (+)(x)− F (−)(x), x ∈ SC , (3.10)

{∂n(x)u1(x)}+ + {∂n(x)u2(x)}− = F (+)(x) + F (−)(x), x ∈ SC , (3.11)

Denote by f̃1 some fixed extension of the function f1 from ST onto the whole of
S preserving the smoothness:

f̃1 ∈ B
1− 1

p
p,p (S), r

ST
f̃1 = f1 on ST . (3.12)

Then an arbitrary extension f of the function f1 from ST onto the whole of S
preserving the smoothness has the form f = f̃1 + g where

g ∈ B̃
1− 1

p
p,p (SC). (3.13)

Now we can reformulate equivalently the mixed transmission conditions (3.4)-(3.7)
as follows:

{u1(x)}+ − {u2(x)}− = f1(x), x ∈ ST , (3.14)

{∂n(x)u1(x)}+ − {∂n(x)u2(x)}− = F (x), x ∈ S, (3.15)

{∂n(x)u1(x)}+ + {∂n(x)u2(x)}− = F (+)(x) + F (−)(x), x ∈ SC , (3.16)

where F is defined by (3.9).
Applying again the Rellich-Vekua lemma one can prove the following uniqueness

theorem (cf. [43], [10], [10]).

Theorem 3.1 : The homogeneous mixed transmission problem (3.1)-(3.7) pos-
sesses only the trivial solution for p=2.

Motivated by the results obtained in the previous section, we look for solution
pair of the mixed transmission problem (MT) in the form of layer protentials

u1(x) = V1(g1)(x), x ∈ Ω1, (3.17)

u2(x) = W2(g2)(x) + a V2(g2)(x), x ∈ Ω2, (3.18)
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where

g1 = P−1F − P−1N2D−1
2 (f̃1 + g), (3.19)

g2 = D−1
2 H1P−1F −D−1

2 H1P−1N2D−1
2 (f̃1 + g)−D−1

2 (f̃1 + g) (3.20)

with unknown function g satisfying the inclusion (3.13).
It can be verified easily that the conditions (3.2)-(3.3), (3.14), and (3.15) are

satisfied automatically, while the condition (3.16) leads to the following pseudod-
ifferential equation with respect to the unknown function g:(

− 2−1I + K̃1

)
g1 +

[
L2 + a

(
2−1I + K̃2

)]
g2 = F (+) + F (−) on SC ,

which can be rewritten as

r
SC

{
−
(
− 2−1I + K̃1

)
P−1N2D−1

2

−
[
L2 + a

(
2−1I + K̃2

)]
D−1

2

(
H1P−1N2D−1

2 + I
)}
g = Ψ on SC , (3.21)

where

Ψ = F (+) + F (−) − r
SC

{(
− 2−1I + K̃1

)(
P−1F − P−1N2D−1

2

)
f̃1

+
[
L2 + a

(
2−1I + K̃2

)]
D−1

2

[
H1P−1F −

(
H1P−1N2D−1

2 + I
)
f̃1

]}
∈ B

− 1

p
p,p (SC).

(3.22)

Let us introduce the notation

Q :=−
(
− 2−1I + K̃1

)
P−1N2D−1

2

−
[
L2 + a

(
2−1I + K̃2

)]
D−1

2

(
H1P−1N2D−1

2 + I
)

(3.23)

and rewrite equation (3.21) as

r
SC
Q g = Ψ on SC . (3.24)

The operator Q has the following mapping properties:

r
SC
Q : H̃s

p(SC)→ Hs−1
p (SC), (3.25)

: B̃s
p,p(SC)→ Bs−1

p,p (SC), (3.26)

for s ∈ R and 1 < p <∞.
To establish Fredholm properties of the operators (3.25) and (3.26) first we cal-

culate the principal homogeneous symbol. With the help of relations (2.18)-(2.20),
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we find:

S(Q;x, ξ) = 2 |ξ|, x ∈ S, ξ ∈ R2 \ {0}. (3.27)

Therefore by Theorem 5.1 in Appendix A, we conclude that if the following in-
equalities hold

1

p
− 1

2
< s <

1

p
+

1

2
, (3.28)

then the operators (3.25) and (3.26) are Fredholm with zero index.
Now let us show that these operators possess the trivial null-spaces for the param-

eters p = 2 and s = 1
2 satisfying the inequalities (3.28). Let g̃ ∈ H̃

1

2

2 (SC) = B̃
1

2

2,2(SC)
be a solution of the homogeneous equation r

SC
Q g̃ = 0 on SC , and consider the

functions

v1(x) = V1(h1)(x), x ∈ Ω1, (3.29)

v2(x) = W2(h2)(x) + a V2(h2)(x), x ∈ Ω2, (3.30)

where

h1 = −P−1N2D−1
2 g̃, (3.31)

h2 = −D−1
2

(
H1P−1N2D−1

2 + I
)
g̃. (3.32)

It is easy to check that the pair (v1, v2) ∈ H1
2 (Ω1)×

(
H1

2,loc(Ω2)∩S(Ω2)
)

solves the
homogeneous mixed transmission problem and due to the uniqueness Theorem 3.1
we have v1 = 0 in Ω1 and v2 = 0 in Ω2. These relations imply h1 = 0 and h2 = 0 on
S, whence the equality g̃ = 0 on S follows due to the invertibility of the operator

P−1N2D−1
2 : H

1

2

2 (S)→ H
− 1

2

2 (S),

which in turn is a consequence of the invertibility of the operators (2.12), (2.13),
and (2.17). Thus the null-spaces of the operators (3.25) and (3.26) are trivial for
the particular values p = 2 and s = 1

2 and consequently they are invertible. Due
to Theorem 5.1 then we deduce that the operators (3.25) and (3.26) are invertible
for arbitrary p and s satisfying the inequalities (3.28).

These results lead to the following existence theorem.

Theorem 3.2 : Let conditions (3.8)-(3.9) hold and 4
3 < p < 4. Then the

mixed transmission problem is uniquely solvable and the solution pair (u1, u2) ∈
H1
p (Ω1) ×

(
H1
p, loc(Ω2) ∩ S(Ω2)

)
is representable in the form (3.17)-(3.20), where

g ∈ B̃1− 1

2
p,p (SC) is defined by the uniquely solvable pseudodifferential equation (3.24).
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Moreover we have the following estimates

‖u1‖H1
p(Ω1) ≤ C1

(
‖f1‖

B
1− 1

p
p,p (ST )

+ ‖F‖
B
− 1

p
p,p (S)

+ ‖F (+) + F (−)‖
B
− 1

p
p,p (SC)

)
, (3.33)

‖u2‖H1
p(Ω2∩B(R)) ≤ C2(R)

(
‖f1‖

B
1− 1

p
p,p (ST )

+ ‖F‖
B
− 1

p
p,p (S)

+ ‖F (+) + F (−)‖
B
− 1

p
p,p (SC)

)
,

(3.34)

where C1 is some positive constant, B(R) is a ball centered at the origin and radius
R, such that Ω1 ⊂ B(R), and C2(R) is a positive constant which depends on R.

Proof : It is quite similar to the proof of Theorem 2.2. �

Remark 1 : Note that if in the formulation of the mixed transmission problem
κ1 = κ2 and the conditions (3.4)-(3.5) are homogeneous, i.e., f1 = F1 = 0, then we
obtain the interior crack problem with SC treated as a crack surface. Consequently,
the theoretical results obtained in Subsection 3 for the mixed transmission problem
as well as the results related to the FSM obtained in the next section can be applied
also to the interior crack type problems.

4. Method of fundamental solutions for the mixed transmission problem
(MT)

Now we develop the Method of Fundamental Solutions (MFS) for transmission
problems.

Let us introduce two artificial Lipschitz surfaces Si and Se, where Si ⊂ Ω1 = Ω+,
i.e., Si is located inside the surface S = ∂Ω1 = ∂Ω2, while Se ⊂ Ω2 = Ω− and S is
located inside the surface Se. Denote by Ωi the bounded domain surrounded by the
surface Si, and by Ωe the domain exterior to Se. Evidently Ωi ⊂ Ω1 and Ωe ⊂ Ω2.

Further, let {y(k)}∞k=1 ⊂ Si be a dense set of points in Si and let {z(j)}∞j=1 ⊂ Se
be a dense set of points in Se.

We use the notation introduced in the previous sections and construct the fol-
lowing sets of functions:

γ
(1)
j (x) := Γ(x− z(j),κ1), j = 1, 2, 3, · · · (4.1)

γ
(2)
k (x) := Γ(x− y(k),κ2), k = 1, 2, 3, · · · (4.2)

ϕ
(2)
k (x) :=

[
(∂n(y) + a)Γ(x− y,κ2)

]
y=y(k) , k = 1, 2, 3, · · · (4.3)

Motivation of our further analysis is the following. If one looks for approximate

solution pair
(
u

(N)
1 , u

(M)
2

)
of the exact solution (u1, u2) of the mixed transmission

problem (3.1), (3.2), (3.3), (3.14), (3.15), and (3.16) in the form of linear combina-
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tions:

u
(N)
1 (x) =

N∑
j=1

Aj γ
(1)
j (x), x ∈ Ω1, (4.4)

u
(M)
2 (x) =

M∑
k=1

Bk ϕ
(2)
k (x), x ∈ Ω2, (4.5)

in accordance with Theorem 3.2 we need to approximate the functions F on S,
F (+) + F (−) on SC , and f1 on ST by choosing the unknown constants Aj and Bk
appropriately,

N∑
j=1

Aj ∂n(x)γ
(1)
j (x)−

M∑
k=1

Bk ∂n(x)ϕ
(2)
k (x) ≈ F on S, (4.6)

N∑
j=1

Aj ∂n(x)γ
(1)
j (x) +

M∑
k=1

Bk ∂n(x)ϕ
(2)
k (x) ≈ F (+) + F (−) on SC , (4.7)

N∑
j=1

Aj γ
(1)
j (x)−

M∑
k=1

Bk ϕ
(2)
k (x) ≈ f1 on ST . (4.8)

Rewrite these relations as follows

N∑
j=1

Aj

 r
S
∂n(x)γ

(1)
j (x)

r
SC
∂n(x)γ

(1)
j (x)

r
ST
γ

(1)
j (x)

− M∑
k=1

Bk

 r
S
∂n(x)ϕ

(2)
k (x)

−r
SC
∂n(x)ϕ

(2)
k (x)

r
ST
ϕ

(2)
k (x)

 ≈
 F

F (+) + F (−)

f1

 . (4.9)

Note that

(F, F (+) + F (−), f1) ∈ B
− 1

p
p (S)×B

− 1

p
p (SC)×B

1− 1

p
p (ST ). (4.10)

In what follows we show that approximation of type (4.9) is always possible in the
space

Hp := B
− 1

p
p,p (S)×B

− 1

p
p,p (SC)×B

1− 1

p
p,p (ST ). (4.11)

To this end let us introduce the following set of vector functions

U
(1)
j =

 r
S
∂n(x)γ

(1)
j (x)

r
SC
∂n(x)γ

(1)
j (x)

r
ST
γ

(1)
j (x)

 , U
(2)
k =

 r
S
∂n(x)ϕ

(2)
k (x)

−r
SC
∂n(x)ϕ

(2)
k (x)

r
ST
ϕ

(2)
k (x)

 , j, k = 1, 2, 3, · · · (4.12)

and investigate its density properties.

Lemma 4.1: The set of vector functions
{
U

(1)
j , U

(2)
k

}∞
j,k=1

is linearly independent

and dense in the space Hp for 4
3 < p < 4.
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Proof : First we prove the density property. To this end we have to show that if
h = (h1, h2, h3) belongs to the adjoint space (Hp)

∗, i.e.

h = (h1, h2, h3) ∈ (Hp)
∗ := B

1

p

p′,p′(S)× B̃
1

p

p′,p′(SC)× B̃
−1+ 1

p

p′,p′ (ST ),
1

p
+

1

p′
= 1, (4.13)

and

〈
h , U

(1)
j

〉
= 0,

〈
h , U

(2)
k

〉
= 0, j, k = 1, 2, 3, · · · (4.14)

then h = 0. Here
〈
· , ·
〉

denotes the well defined duality relation between the

mutually adjoint spaces (Hp)
∗ and Hp which extends the usual

(
Lp′ , Lp

)
duality.

Keeping in mind that z(j) and y(k) are dense subsets of Se and Si respectively,
from (4.14) we deduce

∫
S

[∂n(x)Γ(x− y,κ1)]h1(x) dSx +

∫
SC

[∂n(x)Γ(x− y,κ1)]h2(x) dSx

+

∫
ST

Γ(x− y,κ1)h3(x) dSx = 0, y ∈ Se, (4.15)

and

(
∂n(y) + a

)[ ∫
S

[∂n(x)Γ(x− y,κ2)]h1(x) dSx −
∫
SC

[∂n(x)Γ(x− y,κ2)]h2(x) dSx

+

∫
ST

Γ(x− y,κ2)h3(x) dSx

]
= 0, y ∈ Si, (4.16)

Now we see that the function in the right hand side of (4.15) is a C∞ regu-
lar radiating solution to the exterior Dirichlet problem in the domain Ωe for the
Helmholtz equation, while the function in the right hand side of (4.16) is a C∞

regular solution to the interior Robin problem in the domain Ωi for the Helmholtz
equation.

Applying the corresponding uniqueness theorems and keeping in mind that these
functions are analytic functions of real variable y in R3 \ S, we conclude that

w1(y) :=

∫
S

[∂n(x)Γ(x− y,κ1)]h1(x) dSx +

∫
SC

[∂n(x)Γ(x− y,κ1)]h2(x) dSx

+

∫
ST

Γ(x− y,κ1)h3(x) dSx = 0, y ∈ Ω1, (4.17)
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and

w2(y) :=

∫
S

[∂n(x)Γ(x− y,κ2)]h1(x) dSx −
∫
SC

[∂n(x)Γ(x− y,κ2)]h2(x) dSx

+

∫
ST

Γ(x− y,κ2)h3(x) dSx = 0, y ∈ Ω2. (4.18)

Evidently both functions wj , j = 1, 2, are solutions of the Helmholtz equation
and due to the properties of the layer potentials we have:

w1, w2 ∈ H1
p′(Ω1), w1, w2 ∈ H1

p′(Ω2) ∩ S(Ω2). (4.19)

Note that if 4
3 < p < 4, then p′ satisfies the same inequality

4

3
< p′ < 4. (4.20)

From (4.17), (4.18), and (4.13) we find:

{w1}+ − {w1}− = h1 on ST

{w2}+ − {w2}− = h1 on ST

}
⇒ {w1}+ + {w2}− = 0 on ST , (4.21)

{∂n(y)w1}− − {∂n(y)w1}+ = h3 on ST

{∂n(y)w2}− − {∂n(y)w2}+ = h3 on ST

}
⇒ {∂n(y)w1}+ + {∂n(y)w2}− = 0 on ST ,

(4.22)

{∂n(y)w1}+ − {∂n(y)w1}− = 0 on SC ⇒ {∂n(y)w1}+ = 0 on SC , (4.23)

{∂n(y)w2}+ − {∂n(y)w2}− = 0 on SC ⇒ {∂n(y)w2}− = 0 on SC , (4.24)

{w1}+ − {w1}− = h1 + h2 on SC

{w2}+ − {w2}− = h1 − h2 on SC

}
⇒ {w1}+ + {w2}− = 2h2 on SC . (4.25)

From conditions (4.21), (4.22), (4.23), and (4.24) it follows that the pair

(w1,−w2) ∈ H1
p′(Ω1)×

[
H1
p′(Ω2) ∩ S(Ω2)

]
solves the homogeneous mixed transmission problem with p′ satisfying the inequal-
ities (4.20). Therefore due to Theorem 3.2 we have w1 = 0 in Ω1 and w2 = 0 in
Ω2. In view of (4.21)-(4.25) we have h = (h1, h2, h3) = 0. Thus the set of vector

functions
{
U

(1)
j , U

(2)
k

}∞
j,k=1

is dense in the space Hp for 4
3 < p < 4.

Now we show that any finite subsequence of the system
{
U

(1)
j , U

(2)
k

}∞
j,k=1

is lin-

early independent. Let for some complex constants Aj and Bk the following linear
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combinations vanish

N∑
j=1

Aj U
(1)
j −

N∑
k=1

Bk U
(2)
k = 0, (4.26)

which means that the components of the vector (4.26) vanish on the corresponding
surfaces

N∑
j=1

Aj
[
U

(1)
j

]
1
−

N∑
k=1

Bk
[
U

(2)
k

]
1

= 0 on S, (4.27)

N∑
j=1

Aj
[
U

(1)
j

]
2
−

N∑
k=1

Bk
[
U

(2)
k

]
2

= 0 on SC , (4.28)

N∑
j=1

Aj
[
U

(1)
j

]
3
−

N∑
k=1

Bk
[
U

(2)
k

]
3

= 0 on ST . (4.29)

Define the functions

v
(N)
1 (x) =

N∑
j=1

Aj γ
(1)
j (x), x ∈ R3 \ {z(1), · · · , z(N)}, (4.30)

v
(N)
2 (x) =

N∑
k=1

Bk ϕ
(2)
k (x), x ∈ R3 \ {y(1), · · · , y(N)}. (4.31)

Evidently the functions v1 and v2 are analytic functions of the real variable x in
their domains of definition, satisfy the Sommerfeld radiation conditions, and in
accordance with the relations (4.27)-(4.29) satisfy the transmission conditions

{∂nv1}+ − {∂nv2}− = 0 on S, (4.32)

{∂nv1}+ + {∂nv2}− = 0 on SC , (4.33)

{v1}+ + {v2}− = 0 on ST . (4.34)

In view of the inclusions v1 ∈ C∞(Ω1) and v1 ∈ C∞(Ω2) ∩ S(Ω2) by Theorem 3.2
we conclude that v1(x) = 0 for x ∈ Ω1 and v2(x) = 0 for x ∈ Ω2, implying

v
(N)
1 (x) = 0, x ∈ R \ {z(1), · · · , z(N)}, (4.35)

v
(N)
2 (x) = 0, x ∈ R \ {y(1), · · · , y(N)}, (4.36)

due to the analyticity of the functions (4.30)-(4.31). Whence the equalities Aj = 0
and Bk = 0 follow immediately which completes the proof. �

From the above results it follows that approximation of the solution pair (u1, u2)
to the mixed transmission problem is reduced to the approximation of the given
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functions F, F (+) + F (−), and f1 on the interface by the dense set of functions
{U (j), U (k)}∞j,k=1 defined in (4.11).

5. Appendix A: Fredholm properties of strongly elliptic pseudodifferential
operators on manifolds with boundary

Here we recall some results from the theory of strongly elliptic pseudodifferential
equations on manifolds with boundary, in both Bessel potential and Besov spaces.
These are the main tools for proving existence theorems for mixed boundary value,
boundary–transmission and crack type problems using the potential method. They
can be found, e.g., in [14], [16], [38].

Let M ∈ C∞ be a compact, n–dimensional, non-self-intersecting manifold with
boundary ∂M ∈ C∞, and let A be a strongly elliptic N × N matrix pseudod-
ifferential operator of order ν ∈ R on M. Denote by S(A;x, ξ) the principal
homogeneous symbol matrix of the operator A in some local coordinate system
(x ∈M, ξ ∈ Rn \ {0}).

Let λ1(x), · · · , λN (x) be the eigenvalues of the matrix

[S(A;x, 0, · · · , 0,+1) ]−1[S(A;x, 0, · · · , 0,−1) ], x ∈ ∂M.

Introduce the notation

δj(x) = Re
[

(2π i)−1 lnλj(x)
]
, j = 1, · · · , N,

where ln ζ denotes the branch of the logarithm analytic in the complex plane cut
along (−∞, 0]. Due to the strong ellipticity of A we have the strict inequality

−1/2 < δj(x) < 1/2 for x ∈M, j = 1, · · · , N.

The numbers δj(x) do not depend on the choice of the local coordinate system.
Note that in particular cases, when S(A;x, ξ) is an even matrix function in ξ or
S(A;x, ξ) is a positive definite matrix for every x ∈M and ξ ∈ Rn \ {0}, we have
δj(x) = 0 for j = 1, · · · , N, since all the eigenvalues λj(x) (j = 1, · · · , N) are
positive numbers for any x ∈M.

The Fredholm properties of strongly elliptic pseudodifferential operators on man-
ifolds with boundary are characterized by the following theorem.

Theorem 5.1 : Let s ∈ R, 1 < p <∞, 1 ≤ t ≤ ∞, and let A be a strongly elliptic
pseudodifferential operator of order ν ∈ R, that is, there is a positive constant c0

such that

ReS(A;x, ξ) η · η ≥ c0 |η|2

for x ∈M, ξ ∈ Rn with |ξ| = 1, and η ∈ CN .
Then the operators

A :
[
H̃s
p(M)

]N → [
Hs−ν
p (M)

]N
, (5.1)

A :
[
B̃s
p,t(M)

]N → [
Bs−ν
p,t (M)

]N
, (5.2)
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are Fredholm with zero index if

1

p
− 1 + sup

x∈ ∂M, 1≤j≤N
δj(x) < s− ν

2
<

1

p
+ inf
x∈ ∂M, 1≤j≤N

δj(x). (5.3)

Moreover, the null–spaces and indices of the operators (5.1) and (5.2) are the same
(for all values of the parameter t ∈ [1,+∞]) provided p and s satisfy the inequality
(5.3).
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