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The paper deals with unconditional wavelet bases in variable exponent Lebesgue spaces.
Inhomogeneous wavelets of Daubechies type are considered. Some conditions for exponents
are found for which the Daubechies wavelet system is an unconditional basis in Lp(·)(Rn)
space.
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1. Introduction

The Lebesgue spaces Lp(·)(Rn) with variable exponent and the corresponding vari-
able Sobolev spaces W k,p(·)(Rn) are of interest for their applications to modelling
problems in physics, and to the study of variational integrals and partial differential
equations with non-standard growth condition (see [1],[3]).

Let p : R −→ [1,∞) be a measurable function. Denote by Lp(·)(R) the space of
all measurable functions f on R such that for some λ > 0∫

R

∣∣∣∣f(x)

λ

∣∣∣∣p(x)

dx <∞,

with the norm

‖f‖p(·) = inf

{
λ > 0 :

∫
R

∣∣∣∣f(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Methods of wavelet analysis are an important tool in investigating properties of
function spaces. Due to wavelet bases we can define isomorphisms between function
spaces of Hardy-Sobolev-Triebel type and corresponding sequence spaces. These
isomorphisms reduce many problems from the function spaces level to the sequence
spaces level. The main advantage of that approach is that interesting issues often
simplify in sequence spaces. So the question about existence of an unconditional
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basis in function spaces or wavelet characterization is very important to investigate
their properties (see [8],[11]).

Definition 1.1: We call a scaling function (father wavelet) a function ϕ ∈ L2(R)
and a wavelet (mother wavelet) a function ψ ∈ L2(R) such that the system

(Φ,Ψ) = {ϕm; m ∈ Z} ∪ {ψjk, j ∈ Z, j > 0, k ∈ Z},

where ϕm(x) = ϕ(x −m) and ψjk(x) = 2j/2ψ(2jx − k), is an unconditional basis
in the space L2(R).

Below for the simplicity we mean that ϕm = ψ0,m,m ∈ Z and we have

(Φ,Ψ) = {ψjm j ∈ N0,m ∈ Z}.

There are no wavelets belonging to the class C∞ with compact support. How-
ever I. Daubechies constructed systems of compactly supported wavelets with any
finite smoothness [7]. Such a system of wavelets will be called the Daubechies sys-
tems. That properties of Daubechies wavelets make easy to prove theorems about
isomorphisms between function spaces and sequence spaces easier.

Theorem 1.2 : ([7]) There exists a constant c > 0 such that for every k = 1, 2, ...
there are scaling function ϕ and wavelet ψ such that (i) ϕ, ψ ∈ Ck(R), (ii) ϕ and
ψ have compact support and suppϕ, and suppψ are subsets of [−kc, kc].

Given a locally integrable function f on R, the Hardy-Littlewood maximal oper-
ator M is defined by the equality

Mf(x) = sup
1

|Q|

∫
Q
|f(y)|dy,

where the supremum is taken over all intervals Q containing x.
Let f be a locally integrable function f on R. We consider the local variant of

the Hardy-Littlewood maximal operator given by

M locf(x) = sup
Q3x,|Q|≤1

1

|Q|

∫
Q
|f(y)|dy.

Denote by B(R) (Bloc(R)) the class of all measurable functions p : R −→ [1,∞)
for which the operator M (operator M loc) is bounded on Lp(·) (R) . Given any
measurable function p(·), let p− = infx∈R p(x) and p+ = supx∈R p(x). Below we
assume that 1 < p− ≤ p+ <∞.

In harmonic analysis a fundamental operator is the Hardy-Littlewood maximal
operator M . In many applications a crucial step has been to show that opera-
tor M is bounded on a variable Lp space. Note that many classical operators in
harmonic analysis such as singular integrals, commutators and fractional integrals
are bounded on the variable Lebesgue space Lp(·) whenever the Hardy-Littlewood
maximal operator is bounded on Lp(·)(Rn) (see monographes [1],[3]).

The conditions of boundednes of the local maximal function M loc are given in
[4].
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Kopaliani [6] and Idzuki [5] obtained characterization of variable exponent
Lebesgue spaces Lp(·)(R) by wavelets in case when p(·) ∈ B(R). Our aim is to
investigate the same question in case when p(·) ∈ Bloc(R).

For Daubechies scaling function ϕ and wavelet ψ we define the following square
function:

W (f)(x) =

+∞∑
j=0

∑
k∈Z

2j |aj,kχj,k(x)|2
1/2

, f ∈ Lp(·)(R);

where

aj0 =

∫
R

f(x)ϕj(x)dx and ajk =

∫
R

f(x)ψjk(x)dx, k > 0,

and χjk denotes characteristic functions of dyadic intervals Qjk. (A dyadic interval
is the interval with sides 2−j and center 2−j(m+1/2) is denoted byQjk for j, k ∈ Z.)

We prove the following theorem

Theorem 1.3 : Let p(·) ∈ Bloc(R) and let {Φ,Ψ} be a system associated with
Daubechies scaling function ϕ and wavelet ψ with smoothness k ≥ 1. Then
(i) the system {Φ,Ψ} forms an unconditional bases in space Lp(·)(R);
(ii) there exist constants c, C > 0 such that for all f ∈ Lp(·)(R)

c||f ||p(·) ≤ ||W (f)||p(·) ≤ C||f ||p(·). (1.1)

2. Proof of the main result

Let’s introduce some necessary definitions and theorems.
Let us recall the definition of the local Muckenhoupt weight.We define the class

of weights Alocp (R), (1 < p <∞), which consist of all nonnegative locally integrable
functions w defined on R

Alocp (w) := sup
1

|Q|p

∫
Q
w(x)dx

(∫
Q
w(x)−

1

p−1dx

)p−1

<∞,

where the supremum is taken over all intervals Q, |Q| ≤ 1.
We say that w ∈ Aloc∞ (R) if for any 0 < α < 1

sup
|Q|≤1

(
sup

F⊂Q,|F |>α|Q|

∫
Qw(x)dx∫
E w(x)dx

)
<∞.

Note that if w ∈ Aloc∞ (R), then w ∈ Alocp (R), for some p <∞. In consequence we

can define for w ∈ Aloc∞ (R) a positive number

rw := inf{1 ≤ p <∞ : w ∈ Alocp (R)}.
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Below we formulate the analog of Rubio de Francia theorem in case of variable
exponent space with local weights. Hereafter,F will denote a family of ordered pairs
of non-negative, measurable functions (f, g). If we say that for some p, 1 < p <∞,
and w ∈ Alocp∫

Rn

f(x)pw(x)dx ≤ C
∫
Rn

g(x)pw(x)dx, (f, g) ∈ F , (f, g) ∈ F , (2.1)

we mean that this inequality holds for any (f, g) ∈ F such that the left-hand side
is finite and that the constant C depends only on p and the constant Alocp (w) of w.

Theorem 2.1 : [2] Given a family F , assume that (2.1) holds for some 1 < p0 <
∞ , for every weight ω ∈ Alocp0 (R). Let p(·) be such that there exists 1 < p1 < p−,

with (p(·)/p1)
′ ∈ Bloc(R). Then

‖f‖p(·) ≤ C‖g‖p(·) for all (f, g) ∈ F

such that f ∈ Lp(·)(R).

By Se(R) we denote the set of all f ∈ C∞(R) such that

qN (f) := sup
x∈R

eN |x|
∑

0≤k≤N
|fk(x)| <∞, for all N ∈ N0.

We equip Se(R) with the locally convex topology which is defined by the system of
the semi norms qN . Let S ′e(R) is the collection of all continuous linear functionals
on Se(R). We equip S ′e(R) with the strong topology.

Following Rychkov ([9]) we define Triebel-Lizorkin spaces with local Mucken-
houpt weights.

Definition 2.2: Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R and w ∈ Aloc∞ (R). Let the
function ϕ0 ∈ C∞0 (R) satisfy ∫

R

ϕ0(x)dx 6= 0,

and ∫
R

xkϕ(x)dx = 0, 0 ≤ k ≤ B,

where ϕ(x) = ϕ0(x) − 1
2ϕ0(x2 ) and B > [s]. We define weighted Triebel-Lizorkin

space F s,wp,q (R) to be a set of all f ∈ S ′e(R) for which the following quasi-norm

||f |F s,ωpq (R)||ϕ0 =

∥∥∥∥∥∥∥
 ∞∑
j=0

2jsq|ϕj ∗ f |q
1/q

|Lwp (R)

∥∥∥∥∥∥∥ <∞.
The definition of the above spaces is independent of a choice of the function ϕ0

up to the equivalence of quasi-norms. The spaces are quasi-Banach and Banach
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spaces if p > 1 and q ≥ 1. The definition covers the earlier definitions of Triebel-
Lizorkin spaces for Muckenhoupt weights, admissible and locally regular weight.
All the above properties can be found in [9].

Definition 2.3: Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R and w ∈ Aloc∞ (R). Then f s,wp,q
is a a collection of all sequences

λ = {λjm ∈ R, j ∈ N0, m ∈ Z}

such that

||λ|fs,ωpq || =

∥∥∥∥∥∥∥
 ∞∑
j=0

∑
m∈Z

2jsq|λjkχjm|q
1/q

|Lpw(R)

∥∥∥∥∥∥∥ <∞.
For w ∈ Aloc∞ let us define

σp(w) =

(
rw

min(p, rw)
− 1

)
+ (rw − 1)

σq =
1

min(1, q)
− 1, σpq(w) = max(σp(w), σq).

Theorem 2.4 : Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R and w ∈ Aloc∞ (R). Let for
Daubechies wavelet system {Φ,Ψ} with smoothness k we have

k > max (0, [s] + 1, [rw/p− 1/p− s] + 1, [σpq(w)− s]) .

Let f ∈ S ′e(R). Then f ∈ F s,wp,q (R) if and only if it can be represented as

f =

∞∑
j=0

∑
m∈Z

λjm2−j/2ψjm,

where {λjm} ∈ f s,wp,q and the series converges in S ′e(R). The representation is unique
with

λ0m =

∫
R

f(x)ϕ(x−m)dx, m ∈ Z, λjm =

∫
R

f(x)ψjmdx, j ∈ N, m ∈ Z

and

I : f → {2j/2λjm}

is a linear isomorphism of F s,wp,q (R) onto fs,wp,q .

Let now prove the main result. It is known see [9] that, if 1 < p < ∞ and

ω ∈ Alocp (R) then Lωp (R) = F 0,ω
p,2 (R).
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It follows from Theorem 2.4 that if 1 < p <∞, ω ∈ Alocp (R) and k ≥ max{1, p−
1}, then Daubehies wavelet system {Φ,Ψ} with smoothness k is an unconditional
basis in Lωp (R) and the followiwing equivalence is true for some positive constants
c, C > 0

c‖f‖Lp
ω(R) ≤

∥∥∥∥∥∥∥
+∞∑
j=0

∑
k∈Z

2j |aj,kχj,k(x)|2
1/2

∥∥∥∥∥∥∥
Lp

ω(R)

≤ C‖f‖Lp
ω(R). (2.2)

Fix 1 < p0 < 2. Then max{1, p0 − 1} = 1. If p(·) ∈ Bloc(R) then there exists
1 < p1 < p− with (p(·)/p1)

′ ∈ Bloc(R) (see [4]). Note that (2.2) inequalities are
valid when k ≥ 1, w ∈ Alocp (R). From this fact and Theorem 2.1 with the pair
(Wf, |f |), we get the right side of inequality (1.1) when f ∈ C∞0 (R). Note that the
set C∞0 (R) is dense in Lp(·)(R) and consequently right side of inequality (1.1) is
also valid for all f ∈ Lp(·)(R). Analogously we obtain the left side of (1.1).

Let f ∈ Lp(·)(R) , then we have

c‖f‖Lp(·)(R) ≤

∥∥∥∥∥∥∥
+∞∑
j=0

∑
k∈Z

2j |aj,kχj,k(x)|2
1/2

∥∥∥∥∥∥∥
Lp(·)(R)

≤ C‖f‖Lp(·)(R). (2.3)

For any N ∈ N we have

0 ≤

∥∥∥∥∥∥f −
N∑
j=0

∑
m∈Z

λjmψjm

∥∥∥∥∥∥
p(·)

=

∥∥∥∥∥∥
∞∑

j=N+1

∑
m∈Z

λjmψjm

∥∥∥∥∥∥
p(·)

=

∥∥∥∥∥∥∥
 +∞∑
j=N+1

∑
k∈Z

2ja2
j,kχj,k(x)

1/2
∥∥∥∥∥∥∥
p(·)

<∞.

The last converges to 0 if N →∞.
Finally we prove that {Φ,Ψ} system is an unconditional basis for Lp(·)(R). Let

Λn ⊂ N0 × Z be an increasing sequence of finite sets such that Λn ↑ N0 × Z. Since

( ∑
(j,k)∈Λn

2j |ajkχjk|2
)1/2

∈ Lp(·)(R),

the series converges a.e. so that

( ∑
N0×Z\Λn

2j |ajkχjk|2
)1/2

→ 0 a.e as n→∞.



Vol. 19, No. 2, 2015 9

Then (2.3) implies

‖f −
∑

(j,k)∈Λn

ajkψjk)‖p(·) ≤ C‖(
∑

N0×Z\Λn

2j |ajkχjk|2)1/2‖p(·)

and the last norm tends to 0 as n→∞ by the dominated convergence theorem for
Banach function spaces with absolutely continuous norm. 2
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