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1. Main Results

Let f ∈
(
T 2
)
, T 2 = [−π, π]2 be a 2π-periodic functions with respect to each

variable. The two-dimensional Fourier series of f with respect to the trigonometric
system is the series

s [f ] =

+∞∑
m,n=−∞

f̂(m,n) eimxeiny,

where

f̂(m,n) =
1

4π2

∫ π

−π

∫ π

−π
f(x, y)e−imxe−inydxdy

are the Fourier coefficients of the function f .
Let C(T 2)be the space of continuous functions are 2π-periodic with respect to

each variable with the norm

∥f∥c = sup
x,y∈T 2

|f(x, y)| .

Let f ∈ C(T 2). The expression

ω(δ, f)c = sup
{
∥f(·+ u, ·+ v)− f(·, ·)∥c : u

2 + v2 ≤ δ2
}
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is called the total modulus of continuity of the function f .
The partial modulus of continuity are defined by

ω1(δ, f)c = sup {∥f(·+ u, ·)− f(·, ·)∥c : |u| ≤ δ} ,

ω2(δ, f)c = sup {∥f(·, ·+ v)− f(·, ·)∥c : |v| ≤ δ} .

We also use the notion of a mixed modulus of continuity. They are defined as
follows:

ω1,2(δ1, δ2, f)c = sup
{
∥f(·+ u, ·+ v)− f(·+ u, ·)− f(·, ·+ v) + f(·, ·)∥c

: |u| ≤ δ1, |v| ≤ δ2

}
, f ∈ C(T 2).

The Riesz’s means of the Fourier series has been studied by a lot of authors.
We mention for instance the papers of Szasz [11] and Yabuta [12], devoted to the
logarithmic means. Similar means with respect to the Walsh and Vilenkin systems
were discussed by Simon [10], and Gat [5]. The Norlund logarithmic means has
been studied in ([1-7],[10-12]).
In this paper we investigate the approximation properties of two-dimensional

logarithmic means of double trigonometric Fourier series of f defined as follows:

tn,m(f, x, y) =
1

lnlm

n−1∑
i=1

m−1∑
j=1

si,j(f, x, y)

(n− i)(m− j)
, ln =

n∑
k=1

1

k
,

where SM,N (f, x, y) is the partial sum of double Fourier series of f defined by

s
M,N

(f, x, y) =

M∑
m=−M

N∑
n=−N

f̂(m,n)eimxeiny.

It is evident that

tn,m(f, x, y)− f(x, y) =

∫ π

−π

∫ π

−π
[f(x+ t, y + s)− f(x, y)]Fn(t)Fm(s)dtds,

where

Fn(t) =
1

ln

n−1∑
k=1

Dk(t)

n− k

and Dk(t)is Dirichlet kernel.
For one dimensional trigonometric Fourier series Goginava and Tkebuchava [6]

proved that the following are true
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Theorem A [6]. Let f ∈ C(T ) and

ω(δ, f)c = o
( 1

log(1/δ)

)
then

||tn(f)− f ||c → oasn → ∞.

Theorem B [6]. There exists a function f ∈ C(T ) such that

ω(δ, f)c = O

(
1

log(1/δ)

)
and tn(f, 0) diverges.
It is well-known that the following statement is true [13].
Theorem C (Zhizhiashvili). Let f ∈ C(T 2), then

∥Sn,m(f)− f∥c ≤ c
{
ω1

( 1
n
, f
)
c
log(n+ 1) + ω2

( 1
m
, f
)
c
log(m+ 1)

+ω1,2
( 1
n
,
1

m
, f
)
c
log(n+ 1) log(m+ 1)

}
.

From (1) and (2)Let A=(amnjk) denote a positive rectangular matrix, i. e.,
amnjk=0 for j > m or k > n, a amnjk > 0 for each 0 ≤ j ≤ m, 0 ≤ k ≤ n
and

m∑
j=0

n∑
k=0

amnjk = 1.

For any double sequence (Sjk), define

t
mn

=

m∑
j=0

n∑
k=0

amnjk · sjk, m,n = 0, 1, 2, . . .

The sequence (Sjk) is said to be summable by A if tmn tends to a finite limit as
m,n → ∞.
A double rectangular matrix A is said to be regular if it sums every bounded

convergent double sequence (Sjk) to the same limit. Necessary and sufficient con-
ditions for the matrix A to be regular are known (see, e.g. [9]):

lim
m,n→∞

m∑
j=0

amnjk = 0 (k = 0, 1, ...), (1)

lim
m,n→∞

n∑
k=0

amnjk = 0 (j = 0, 1, ...). (2)
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Since

∥tn,m(f)− f∥c ≤
1

lnlm

n−1∑
i=0

m−1∑
j=0

∥Si,j(f)− f∥c
(n− i)(m− j)

,

from (1) and (2) we conclude that the following theorem is true.

Theorem 1.1 : Let f ∈ C(T 2) and

ω(δ, f)c = o

((
1

log(1/δ)

)2
)
.

Then

∥tn,m(f)− f∥C → 0 as m,n → ∞.

In the paper we investigate sharpness of Theorem 1.1. In particular, the following
is true

Theorem 1.2 : There exist a function f ∈ C(T 2) such that

ω(δ, f)c = O

((
1

log(1/δ)

)2
)
,

and tn,n(f, 0, 0) diverges.

Proof : (of Theorem 1.2) We choose a monotonically increasing sequence of posi-
tive integers{nk; k ≥ 1} such that

n1 ≥ 2,

n2
k ≤ nk+1, (3)

k−1∑
l=1

22nl

n2
l

<
22nk

n2
k

, (4)

( nk

22nk

)2 k−1∑
i=0

(
22ni

ni

)2

<
1

k
. (5)

We construct a function f defined as follows. Set

f(x, y) =

∞∑
k=1

fk(x) · fk(y)
n2
k

,
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where

fk(x) = sin
(
22nk +

1

2

)
x · 1[6·γnk,

6·m(nk)·γnk ]
(x),

k = 1, 2, . . . , x ∈ [−π, π],

where 1A is the characteristic function of a set A and

m(nnk
) = max

{
s : sγnk

≤ γnk−1

}
, γnk

=
π

6(22nk + 1/2)
..

First we prove that

ω(δ, f)C = O

((
1

log(1/δ)

)2
)
. (6)

For every sufficiently small δ > 0 there exists a positive integer k such that

π

22nk + 1/2
≤ δ <

π

22nk−1 + 1/2
.

Since

|fnl
(x+ δ)− f(x)| = O(δ22nl), l = 1, 2..., k − 1,

from (3) and (4) we get

|f(x+ δ, y)− f(x, y)| ≤
k−1∑
l=1

1

n2
l

· |fnl
(x+ δ)− fnl

(x)|+ 2

∞∑
l=k

1

n2
l

= O

(
δ

k−1∑
l=1

22nl

n2
l

)
+O

(
1

n2
k

)
= O

(
δ
22nk−1

n2
k−1

)
+O

(
1

n2
k

)

= O

((
1

log(1/δ

)2
)
.

Consequently,

ω1(δ, f)C = O

((
1

log(1/δ)

)2
)
. (7)

Analogously, we obtain
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ω2(δ, f)C = O

((
1

log(1/δ

)2
)
. (8)

Since

ω(δ, f)C ≤ ω1(δ, f)C + ω2(δ, f)C

from (7) and (8) we get (6)
Next, we shall prove that t22nk,22nk (f, 0, 0) diverges.
It is clear that

∣∣t22nk ,22nk (f, 0, 0)− f(0, 0)
∣∣ = ∣∣t22nk ,22nk (f, 0, 0)

∣∣

=

∣∣∣∣∫ π

−π

∫ π

−π
f(t, s)F22nk (t)F2

2nk (s)dtds

∣∣∣∣

≥ c

n2
k

(∫ π

−π
fnk

(t)F22nk (t)dt

)2

−
k−1∑
i=1

c

n2
i

(∫ π

−π
fni

(t)F22nk (t)dt

)2

−
∞∑

i=k+1

c

n2
i

(∫ π

−π
fni

(t)F22nk (t)dt

)2

= I − II − III. (9)

Since (see [6])

l22nF22n(x)

=
sin(22n + 1

2)x

2 sin x
2

22n−2∑
k=1

2

k(k + 1)(k + 2)

sin2
(
(k + 1)x2

)
2 sin2 (x/2)

+
1

22n(22n − 1)
×

sin(22n + 1
2)

2 sin (x/2)

sin2 22n−1x

2 sin2 (x/2)

+
1

22n
sin2(22n + 1

2)x

4 sin2 (x/2)
− 3

4

sin(22n + 1
2)x

2 sin (x/2)

−
cos(22n + 1

2)x

2 sin (x/2)
(

n∑
k=1

sin kx

k
),
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we have

I =
c

n2
k

(∫ π

−π
fnk

(t)F22nk (t)dt

)2

≥

≥

(
c

n2
k

∣∣∣∣∣
∫ πm(nk)

2nk+1/2

π

22nk+1/2

sin2(22nk + 1/2)t

2 sin(t/2)

22nk−2∑
i=1

2

i(i+ 1)(i+ 2)
·
sin2(i+ 1) t2
2 sin2(t/2)

dt

∣∣∣∣∣

− c

n2
k

1

22nk(22nk − 1)

∣∣∣∣∣
∫ π·m(nk)

22nk+1/2

π

22nk+1/2

sin2(22nk + 1/2)t

2 sin(t/2)

sin2 2nk−1t

2 sin2(t/2)
dt

∣∣∣∣∣

− c

n2
k

1

22nk

∣∣∣∣∣
∫ πm(nk)

22nk+1/2

π

22nk+1/2

sin
(
22nk + 1/2

)
t
sin2(22nk + 1/2)t

4 sin2(t/2)
dt

∣∣∣∣∣

− c

n2
k

∣∣∣∣∣
∫ πm(nk)

22nk+1/2

π

22nk+1/2

sin2
(
22nk + 1/2

)
t

2 sin (t/2)
dt

∣∣∣∣∣

− c

n2
k

∣∣∣∣∣
∫ πm(nk)

22nk+1/2

π

22nk+1/2

sin
(
22nk + 1/2

)
t cos

(
22nk + 1/2

)
t

2 sin (t/2)

(
22nk∑
i=1

sin it

i

)
dt

∣∣∣∣∣
)2

=

= (I1 − I2 − I3 − I4 − I5)
2. (10)

It is evident that

I2, I3, I4, I5 = 0

(
1

n2
k

·
∫ πm(nk)

22nk+1/2

π

22nk+1/2

1

t
dt

)
= 0

(
1

nk

)
. (11)

Since (see [14])

sin(i+ 1) · t
2
≥ 2

π

i+ 1

2
t, i = 1, 2, ..., 2nk−1 − 1,

for t ∈ Ink
, In =

2n−1∪
m=1

[αmn, βmn] ,
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where

αmn =
π · (12m+ 1)

6 · (22n + 1/2)
, βmn =

π · (12m+ 5)

6 · (22n + 1/2)
,m, n = 1, 2, ....

and

sin
(
22nk + 1/2

)
t ≥ 1/2,

∣∣∣∣∣
22n∑
k=1

sin kx

k

∣∣∣∣∣ ≤ c < ∞,

for I1 we have

I1 ≥
c

n2
k

2n
k
−1−1∑
i=1

(i+ 1)2

i (i+ 1) (i+ 2)

2nk−1∑
m=1

∫ βm,nk

αm,nk

1

t
dt ≥ c > 0. (12)

Combining (11) and (12) we conclude that

I ≥ c > 0. (13)

Now, we estimate II. Since [6]

∥tn(f)− f∥c ≤ c · ω (1/n, f)c log (n+ 1)

and

ω

(
fni

,
1

22nk

)
c

= 0

(
22ni

22nk

)
, i = 1, 2, ..., k − 1,

from (4) and (5) we get

II ≤ C

k−1∑
i=1

1

n2
i

∥t22nk (fni
)− (fni

)∥2c ≤ C

k−1∑
i=1

(
1

ni
ω

(
fni

,
1

22nk

)
nk

)2

(14)

≤ C ·
k−1∑
i=1

(
1

ni

22ni

22nk
nk)

2 ≤ C(
nk

22nk
)2

k−1∑
i=1

(
22ni

ni
)2 ≤ c

k
= o(1) as k → ∞.

It is obvious that

∥Fn∥L = O

(
1

log n
·
n−1∑
i=1

∥Di∥1
n− i

)

= O

(
1

log n
·
n−1∑
i=1

log (i+ 1)

n− i

)
= O (log (n+ 1)) .



56 Bulletin of TICMI

Then we have

III = O

( ∞∑
i=k+1

1

n2
i

· ∥F22nk∥21

)
= O(

∞∑
i=k+1

1

n2
i

n2
k) (15)

= O

((
nk

nk+1

)2
)

= O(
n2
k

n4
k

) = O(
1

n2
k

) = o(1) as k → ∞.

After substituting 13, (14) and (15) in (9) we obtain

lim
k→∞

∣∣t22nk , 22nk (f, 0, 0)− f(0, 0)
∣∣ > 0.

�
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