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In this paper we obtain the Clark-Ocone’s stochastic integral representation formula with
explicit form of integrand in case, when path-dependent Wiener functional is not stochastically
(in Malliavin sense) smooth. To achieve this aim, we check that the conditional mathematical
expectation of the considered functional is stochastically smooth, and apply the generalization
of the Clark-Ocone’s formula, obtained by us earlier.
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1. Introduction

It is well-known from Ito’s calculus, that the stochastic integral (as process) from
a square integrable adapted process is a square integrable martingale. The answer
to the inverse question: is it possible to represent the square integrable martin-
gale adapted to the natural filtration of Wiener process, as the stochastic integral
given by the well-known Clark formula ([1]). In particular, let Wt (t ∈ [0, T ]) be a
standard Wiener process and =Wt is a natural filtration generated by this Wiener
process. If F is a square integrable =Wt -measurable random variable, then there
exist a unique {=Wt }-adapted square integrable in L2([0, T ]) random process ψt
such that

F = EF +

∫ T

0
ψtdWt.

The representation of functionals of Wiener process by the stochastic integral,
also known as the martingale representation, was studied by several authors.
Martingale representation theorems (including Girsanovs measure transformation
theorem) are widely known to play essentially important role in modern finan-
cial mathematics ([2]). Karatzas and Ocone ([3]) have shown how to use Ocone-
Haussmann-Clark formula in financial mathematics, in particular for constructing
hedging strategies in the complete financial markets driven by Wiener process.

∗Corresponding author. Email: o.purtukhia@gmail.com



Vol. 20, No. 2, 2016 25

Since that time interest to Malliavin calculus has been significantly increasing.
Therefore developing of the theory has intensively begun together with looking for
the new sphere of its applications ([4]). Among them the applications in mathemat-
ical statistics are especially important (regularity of density, hypothesis testing).

At the same time, finding of explicit expression for ψt is a very difficult prob-
lem. In this direction, is known one general results, which is called Ocone-Clark
formula (5), according to which ψt = E(DtF |=Wt ), where Dt is so called Malliavin
stochastic derivative. But, on the one hand, here the stochastically smoothness of
considered functional is required and on the other hand, even in case of smoothness,
calculations of Malliavin derivative and conditional mathematical expectation are
rather difficult.

Absolutely different method for finding of ψt was offered by Shyriaev, Yor and
Graversen ([6], [7]). This method was based on using Ito’s (generalized) formula
and Levy’s theorem for Levy’s martingale mt = E(F |=Wt ) associated with F . Our
approach (see, Jaoshvili, Purtukhia [8]) within the classical Ito’s calculus allows to
construct ψt explicitly by using both the standard L2 theory and the theories of
weighted Sobolev spaces, in case when the functional F has no stochastic derivative
(in particular, the class of functionals considered by us includes, for example, the
functional F = I{WT>K} which is not stochastically differentiable).

Later, we (with prof. O. Glonti [9]) considered the case when the functional F
is stochastically non-smooth, but from Levy’s martingale associated with it one
can select a stochastically smooth subsequence and in this case we have offered
the method for finding the integrand. It is known, that if the random variable
is stochastically differentiable (in Malliavin sense), then conditional mathematical
expectation of this variable is stochastically differentiable as well ([10]). In partic-
ular, if F ∈ D2,1, then E(F |=Ws ) ∈ D2,1 and Dt[E(F |=Ws )] = E(DtF |=Ws )I[0,s](t),
where D2,1 denotes the Hilbert space which is the closure of the smooth Wiener
functionals class with corresponding (Sobolev type) norm (see below). We gener-
alized ([9]) Clark-Ocone formula for the case, when the functional is not stochasti-
cally smooth, but its conditional mathematical expectation is smooth (for example,
F = I{WT>K} /∈ D2,1, but E(F |=Wt ) = 1−Φ(K−Wt√

T−t ) ∈ D2,1 for all t ∈ [0, T ), where

Φ(·) is the standard normal distribution function).
In this paper we consider a path-dependent Wiener functional

F = (WT −K)−I{WT∗≤B}

which isn’t stochastically smooth (here and bellow Wt∗ = min
0≤s≤t

Ws). For this func-

tional the stochastic integral representation formula with the explicit form of inte-
grand is obtained. With this aim in mind we find the conditional density function
of joint distribution low of Wiener process and its minimum process under the
given value of Wiener process, calculate the conditional mathematical expectation
of the considered functional, check if it is stochastically smooth and apply above-
mentioned generalization of the Clark-Ocone’s formula. Note that this functional is
a typical example of payoff function of so called European barrier1 and lookback2

1The barrier option is either nullified, activated or exercised when the underlying asset price breaches a
barrier during the life of the option.
2The payoff of a lookback option depends on the minimum or maximum price of the underlying asset attained
during certain period of the life of the option.
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Options. Hence, the stochastic integral representation formula obtained here could
be used to compute the explicit hedging portfolio of such barrier and lookback
option.

2. Auxiliary results

On the probability space (Ω,=, P ) the standard Wiener process W = (Wt), t ∈
[0, T ] is given and (=Wt ), t ∈ [0, T ], is the natural filtration generated by the Wiener
process W. We consider functionals of the Wiener process, i.e. the random variables
that are =WT -measurable.

The derivative (see [10]) of a smooth random variable F of the form

F = f(W (h1), . . . ,W (hn)), f ∈ C∞p (Rn), hi ∈ L2([0, T ])

is the stochastic process DtF given by

DtF =

n∑
i=1

∂f

∂xi
((W (h1), . . . ,W (hn))hi(t)

(where W (hi) =
∫ T

0 hi(t)dWt).
D is closable as an operator from L2(Ω) to L2(Ω;L2([0, T ])). We will denote its

domain by D2,1. That means, D2,1 is equal to the adherence of the class of smooth
random variables with respect to the norm

||F ||2,1 = ||F ||L2(Ω) + |||DF |||L2(Ω;L2([0,T ])).

Proposition 2.1: Let ψ : Rm → R1 be a continuously differentiable function
with bounded partial derivatives. Suppose that F = (F 1, ..., Fm) is a random vector
whose components belong to the space D2,1. Then ψ(F ) ∈ D2,1, and

Dtψ(F ) =

m∑
i=1

∂

∂xi
ψ(F )DtF

i.

(see, [11], Proposition 1.2.3.).

Let p(u, t,Wu, A) be the transition probability of the Wiener process W, i.e.
P [Wt ∈ A|Wu] = p(u, t,Wu, A), where 0 ≤ u ≤ t, A is a Borel subset of R and

p(u, t, x, A) =
1√

2π(t− u)

∫
A

exp{−(y − x)2

2(t− u)
}dy.

For the computation of conditional mathematical expectation below we use the
well-known statement:

Proposition 2.2: For any bounded or positive measurable function f we have
the relation

E[f(Wt)|Wu] =

∫
R
f(y)p(u, t,Wu, dy) (P − a.s.).
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Theorem 2.3 : Suppose that gt = E[F |=Wt ] is Malliavin differentiable (gt(·) ∈
D2,1) for almost all t ∈ [0, T ). Then we have the stochastic integral representation

gT = F = EF +

∫ T

0
νudWu (P − a.s.),

where

νu = lim
t↑T

E[Dugt|=Wu ] in the L2([0, T ]× Ω)

(see, [9], Theorem 1]).

Let L2([0, T ]) = L2([0, T ],B([0, T ]), λ) (where λ is the Lebesgue measure). We
denote by L2,T the set of measurable functions u : R→ R, such that u(·)ρ(·, T ) ∈
L2 := L2(R,B(R), λ), where ρ(x, T ) = exp{− x2

2T }.

Theorem 2.4 : Let a function f ∈ L2,T/α, 0 < α < 1, and it has the first order
generalized derivative ∂f/∂x, such that ∂f/∂x ∈ L2,T/β , 0 < β < 1/2. Then the
following stochastic integral representation holds

f(WT ) = Ef(WT ) +

∫ T

0
E
[∂f
∂x

(WT )|=Wt
]
dWt

(see, [8], Theorem 2]).

Proposition 2.5: The joint conditional distribution density (t > s, y ≤ 0, y ≤ x)

fWt,Wt∗|Ws=z =
∂2P{Wt ≤ x,Wt∗ ≤ y|Ws = z}

∂x∂y

can be express as follows

fWt,Wt∗|Ws=z =
2(x− 2y + z)√

2π(t− s)3
exp

{
− (x− 2y + z)2

2(t− s)

}
. (1)

Proof : (Proof of Proposition 2.5.) It’s clear that if x < y or y > 0 then {Wt ≤
x} ⊆ {wt∗ ≤ y} and the conditional joint distribution function of Wt and Wt∗
under given Ws = z is independent from y :

P{Wt ≤ x,Wt∗ ≤ y|Ws = z} = P{Wt ≤ x|Ws = z}

= P{Wt −Ws ≤ x− z|Ws = z} = P{Wt −Ws ≤ x− z}.

Hence, in this case

fWt,Wt∗|Ws=z =
∂2P{Wt −Ws ≤ x− z}

∂x∂y
= 0.
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Suppose now that y ≤ x and y ≤ 0. According to the elementary relations

Wt∗ = Ws∗ ∧ min
s<l≤t

Wl

and

(Ws∗ ∧ min
s<l≤t

Wl)−Ws = (Ws∗ −Ws) ∧ ( min
s<l≤t

Wl −Ws),

we have

P{Wt ≤ x,Wt∗ ≤ y|Ws = z,Ws∗ = u}

= P{Wt ≤ x,Ws∗ ∧ min
s<l≤t

Wl ≤ y|Ws = z,Ws∗ = u}

= P{Wt −Ws ≤ x− z, (u ∧ min
s<l≤t

Wl)−Ws ≤ y − z|Ws = z,Ws∗ = u}

= P{Wt −Ws ≤ x− z, (u−Ws) ∧ min
s<l≤t

(Wl −Ws) ≤ y − z|Ws = z,Ws∗ = u}.

Hence, due to the equality

P{AB|C} = P{A|C} − P{AB|C},

using properties of the Wiener process and conditional probability, one can easily
see that (u > y)

P{Wt ≤ x,Wt∗ ≤ y|Ws = z,Ws∗ = u}

= P{Wt −Ws ≤ x− z|Ws = z,Ws∗ = u}

−P{Wt −Ws ≤ x− z, (u−Ws) ∧ min
s<l≤t

(Wl −Ws) > y − z|Ws = z,Ws∗ = u}

= P{Wt −Ws ≤ x− z}

−P{Wt −Ws ≤ x− z, u− z > y − z, min
s<l≤t

(Wl −Ws) > y − z|Ws = z,Ws∗ = u}

= P{Wt −Ws ≤ x− z}
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−P{Wt −Ws ≤ x− z, min
s<l≤t

(Wl −Ws) > y − z|Ws = z,Ws∗ = u}

= P{Wt −Ws ≤ x− z} − P{Wt −Ws ≤ x− z, min
s<l≤t

(Wl −Ws) > y − z}

= P{Wt −Ws ≤ x− z, min
s<l≤t

(Wl −Ws) ≤ y − z}. (2)

Let us define a new Wiener process W θ, θ ∈ [0, t], as follows W θ = Wt −Wt−θ.
It is evident that Wt −Wl = W t−l and therefore

min
s<l≤t

(Wl −Ws) = min
s≤l≤t

(Wl −Ws) = min
s≤l≤t

W l−s = min
0≤l−s≤t−s

W l−s = W (t−s)∗.

On the other hand, basing on the expressions for distribution law of minimum
process Wt∗ and for joint distribution low of Wt and Wt∗ (see, for example, [12]),
we have:

P{Wt∗ ≤ b} =
2√
2πt

∫ b

−∞
exp{−v

2

2t
}dv, b ≤ 0,

and

P{Wt > a,Wt∗ ≤ b} =
1√
2πt

∫ 2b−a

−∞
exp{−v

2

2t
}dv, b ≤ min(a, 0),

we conclude:

P{Wt ≤ a,Wt∗ ≤ b} = P{Wt∗ ≤ b} − P{Wt > a,wt∗ ≤ b}

=
2√
2πt

∫ b

−∞
exp{−v

2

2t
}dv − 1√

2πt

∫ 2b−a

−∞
exp{−v

2

2t
}dv.

Taking into account the last relation, it is possible to rewrite the conditional
probability in (2) in the following form:

P{Wt ≤ x,Wt∗ ≤ y|Ws = z,Ws∗ = u}

= P{W t−s ≤ x− z, min
s<l≤t

W (t−s)∗ ≤ y − z}I{u>y}

=
1√

2π(t− s)
[2

∫ y−z

−∞
exp{− v2

2(t− s)
}dv −

∫ 2y−x−z

−∞
exp{− v2

2(t− s)
}dv].
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Therefore, in concordance with properties of the Wiener process and conditional
mathematical expectation, we can write

P{Wt ≤ x,Wt∗ ≤ y|Ws = z} = [E(I{Wt≤x,Wt∗≤y}|Ws)]|Ws=z

= {E[E(I{Wt≤x,Wt∗≤y}|Ws,Ws∗)|Ws]}|Ws=z

= {E[E(I{Wt≤x,Wt∗≤y}|Ws = z,Ws∗ = u)|z=Ws,u=Ws∗ |Ws]}|Ws=z

= {E[P{Wt ≤ x,Wt∗ ≤ y|Ws = z,Ws∗ = u}|z=Ws,u=Ws∗ |Ws]}|Ws=z

=
{
E
[ 2√

2π(t− s)

∫ y−z

−∞
exp

{
− v2

2(t− s)

}
dv
∣∣∣
z=Ws,u=Ws∗

∣∣∣Ws

]}∣∣∣
Ws=z

−
{
E
[ 1√

2π(t− s)

∫ 2y−x−z

−∞
exp

{
− v2

2(t− s)

}
dv
∣∣∣
z=Ws,u=Ws∗

∣∣∣Ws

]}∣∣∣
Ws=z

=
{
E
[ 2√

2π(t− s)

∫ y−Ws

−∞
exp

{
− v2

2(t− s)

}
dv
∣∣∣Ws

]}∣∣∣
Ws=z

−
{
E
[ 1√

2π(t− s)

∫ 2y−x−Ws

−∞
exp

{
− v2

2(t− s)

}
dv
∣∣∣Ws

]
}
∣∣∣
Ws=z

=
1√

2π(t− s)

[
2

∫ y−z

−∞
exp

{
− v2

2(t− s)

}
dv −

∫ 2y−x−z

−∞
exp

{
− v2

2(t− s)

}
dv
]
.

From this it follows, that

∂2

∂x∂y
P{Wt ≤ x,Wt∗ ≤ y|Ws = z}

=
∂

∂y

[ 1√
2π(t− s)

exp
{
− (2y − x− z)2

2(t− s)

}]

=
2(x− 2y + z)√

2π(t− s)3
exp

{
− (x− 2y + z)2

2(t− s)

}
,

that ends the proof of proposition. �
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3. Main result

Theorem 3.1 : For the Wiener functional F = (WT −K)−I{WT∗≤B} (T > t,B ≤
0, B ≤ K) the following stochastic integral representation holds

F = EF −
∫ T

0
Φ
(2B −K −Wt√

T − t

)
dWt, (3)

where Φ(·) is a standard normal distribution function.

Proof : According to the Markov property of the Wiener process and the well-
known properties of conditional mathematical expectation, in accordance with the
Proposition 2.2, we have

gt = E[F |=Wt ] = E[(WT −K)−I{WT∗≤B}|=
W
t ]

= {E[(WT −K)−I{WT∗≤B}|Wt = z]}|z=Wt

=
[
−
∫ B

−∞

∫ K

−∞
(x−K)

2(x− 2y + z)√
2π(T − t)3

exp
{
− (x− 2y + z)2

2(T − t)

}
dxdy

]∣∣∣
z=Wt

.

Using an integration formula in parts in the integral with respect to dx, it is not
difficult to see that

−
∫ B

−∞

∫ K

−∞
(x−K)

2(x− 2y + z)√
2π(T − t)3

exp
{
− (x− 2y + z)2

2(T − t)

}
dxdy

=

∫ B

−∞

1√
2π(T − t)

∫ K

−∞
2(x−K)d

(
exp

{
− (x− 2y + z)2

2(T − t)

})
dy

=

∫ B

−∞

1√
2π(T − t)

2(x−K) exp
{
− (x− 2y + z)2

2(T − t)

}∣∣∣K
−∞

dy

−
∫ B

−∞

2√
2π(T − t)

∫ K

−∞
exp

{
− (x− 2y + z)2

2(T − t)

}
dxdy

= −
∫ B

−∞

2√
2π(T − t)

∫ K

−∞
exp

{
− (x− 2y + z)2

2(T − t)

}
dxdy.

Note, that at the end of calculations we have used the relation:
limx−→∞ x exp{−x2} = 0.
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Therefore, we conclude that

gt = −
∫ B

−∞

2√
2π(T − t)

∫ K

−∞
exp

{
− (x− 2y +Wt)

2

2(T − t)

}
dxdy.

According to Proposition 2.1, it is not difficult to see that the obtained expression
for gt is stochastically differentiable (gt ∈ D2,1 for all t ∈ [0, T )). Therefore, basing
on the rule of stochastic differentiation of the ordinary integral as well as composite
function, we can write

Dsgt =

∫ B

−∞

2√
2π(T − t)

∫ K

−∞

x− 2y +Wt

T − t
exp

{
− (x− 2y +Wt)

2

2(T − t)

}
I[0,t](s)dxdy.

Further, using again the standard technique of integration, we easily obtain that

Dsgt = −
∫ B

−∞

2√
2π(T − t)

[ ∫ K

−∞
d
(

exp
{
− (x− 2y +Wt)

2

2(T − t)

})]
dyI[0,t](s)

= −
∫ B

−∞

2√
2π(T − t)

exp
{
− (K − 2y +Wt)

2

2(T − t)

}
dyI[0,t](s)

= −
∫ B

−∞

1√
2π(T − t)/4

exp
{
− (y −K/2−Wt/2)2

2(T − t)/4

}
dyI[0,t](s)

= −Φ0,(T−t)/4(B −K/2−Wt/2)I[0,t](s),

where Φ0,σ2(·) is the distribution function of normal distributed random variable
N(0, σ2) with mean 0 and variance σ2 respectively (Φ(·) = Φ0,1(·)).

As a consequence the elementary relation cN(a, σ2) ∼= N(ca, c2σ2), we can
rewrite the last equalitiy in the following form

Dsgt = −Φ0,T−t(2B −K −Wt)I[0,t](s).

Now let us pass to calculation of conditional mathematical expectation of Dsgt
with respect to σ-algebra =Ws .

Further, using the Markov property and the transition probabilities of the Wiener
process, we have

E
[
Φ0,T−t(C −Wt)|=Ws

]
= E

[ 1√
2π(T − t)

∫ C−Wt

−∞
exp

{
− u2

2(T − t)

}
du|=Ws

]

= E
[ 1√

2π(T − t)

∫ C

−∞
exp

{
− (u−Wt)

2

2(T − t)

}
du|=Ws

]
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= E
[ 1√

2π(T − t)

∫ C

−∞
exp

{
− (u−Wt)

2

2(T − t)

}
du|Ws

]

=
1√

2π(T − t)
1√

2π(t− s)

∫ ∞
−∞

[ ∫ C

−∞
exp

{
− (u− x)2

2(T − t)

}
du
]

exp
{
− (x−Ws)

2

2(t− s)

}
dx

=
1√

2π(T − t)
1√

2π(t− s)

∫ ∞
−∞

∫ ∞
−∞

I(−∞,C)(u) exp
{
−(u− x)2

2(T − t)
−(x−Ws)

2

2(t− s)

}
dudx.

According to the Fubini’s theorem, highlighting the full square in the argument
of the exponential function and using the properties of the distribution density
function, it is not difficult to see that

E[Φ0,T−t(C −Wt)|=Ws ]

=
1√

2π(T − t)
1√

2π(t− s)

×
∫ ∞
−∞

I(−∞,C)(u)
[ ∫ ∞
−∞

exp
{
− (u− x)2

2(T − t)
− (x−Ws)

2

2(t− s)

}
dx
]
du

=
1√

2π(T − t)
1√

2π(t− s)

×
∫ C

−∞

[ ∫ ∞
−∞

exp
{
− (u− x)2

2(T − t)
− (x−Ws)

2

2(t− s)

}
dx
]
du

=
1√

2π(T − t)
1√

2π(t− s)

×
∫ C

−∞
exp

{
− (u−Ws)

2

2(T − s)

}
∫ ∞
−∞

exp

−
[
x− u(t−s)+Ws(T−t)

T−s

]2

2(T−t)(t−s)
T−s

 dx

 du

=
1√

2π(T − t)
1√

2π(t− s)

√
2π

(T − t)(t− s)
T − s

∫ C

−∞
exp{−(u−Ws)

2

2(T − s)
}du
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=
1√

2π(T − s)

∫ C

−∞
exp{−(u−Ws)

2

2(T − s)
}du = Φ0,T−s(C −Ws).

Thus, we have

E[Φ0,T−t(2B −K −Wt)|=Ws ] = Φ0,T−s(2B −K −Ws).

Now, combining all the relations obtained above, we easily conclude that

E[Dsgt|=Ws ] = −Φ0,T−s(2B −K −Ws)I[0,t](s).

Passing now to the limit in the latter expression as t −→ T we obtain

νs = lim
t−→T

E[Dsgt|=Ws ] = −Φ0,T−s(2B −K −Ws)I[0,T ](s)

= −Φ0,1

(2B −K −Ws√
T − s

)
I[0,T ](s).

From here, using Theorem 2.3, we complete the proof of the theorem. �

Corollary 3.2: Taking in Theorem 3.1 B = K, we will see that the Wiener
functional F = (WT −K)− permits the following stochastic integral representation

F = EF −
∫ T

0
Φ
(K −Wt√

T − t

)
dWt,

where

EF = KΦ
( K√

T

)
+ Tϕ

( K√
T

)
.

Really, in the case B = K it is evident that (WT −K)−I{WT∗≤K} = (WT −K)−.
On the other hand, we have

E(WT −K)− =
1√
2πT

∫ K

−∞
(K − x) exp

{
− x2

2T

}
dx

=
K√
2πT

∫ K

−∞
exp

{
− x2

2T

}
dx+

T√
2πT

∫ K

−∞
d
(

exp
{
− x2

2T

})

= KΦ
( K√

T

)
+ Tϕ

( K√
T

)
.

Remark 1 : It is not difficult to see that the same result can be obtained from
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result [8]. Indeed, according to Theorem 2.4 we have

(WT −K)− = E(WT −K)− +

∫ T

0
E
[{ ∂

∂x
(x−K)−

}
|x=WT

|=Wt
]
dWt

= E(WT −K)− −
∫ T

0
E[I{WT≤K}|=

W
t ]

= KΦ
( K√

T

)
+ Tϕ

( K√
T

)
−
∫ T

0
E[I{WT≤K}|Wt]dWt

= KΦ
( K√

T

)
+ Tϕ

( K√
T

)
−
∫ T

0
E[I{WT−Wt≤K−x}|Wt = x]|x=Wt

dWt

= KΦ
( K√

T

)
+ Tϕ

( K√
T

)
−
∫ T

0
P{WT −Wt ≤ K − x}|x=Wt

dWt

= KΦ
( K√

T

)
+ Tϕ

( K√
T

)
−
∫ T

0
[Φ0,T−t(K −Wt)]dWt

= KΦ
( K√

T

)
+ Tϕ

( K√
T

)
−
∫ T

0
Φ
(K −Wt√

T − t

)
dWt.

Corollary 3.3: In case B = K = 0, we obtain the known result (see, for example,
[8])

W−T =

√
T

2π
+

∫ T

0

[
Φ
( Wt√

T − t

)
− 1
]
dWt.
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