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The paper considers the boundary value problems of elasticity for semi-ellipse, when boundary
conditions at the portion of the linear boundary between the focuses are nonzero and outside
the focuses are zero. Thus, the continuity conditions for the problem solution are given at the
portion of the linear boundary, therefore it is possible to bind the semi-ellipse as a whole ellipse,
in which on the section between the focuses the condition of uninterrupted continuation of the
problem solution not performed along this part, i.e. we have a crack on which, for example, the
tangential stress acts. The problem solution for the cracked ellipse is reduced to the solution of
the internal and external problems of elasticity, which are solved quite simply by the method
of separation of variables.
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1. Introduction

The paper considers boundary value problems for semi-ellipse
{0 ≤ ξ ≤ ξ1, 0 ≤ η ≤ π} (if ξ, η (0 ≤ ξ < ∞, 0 ≤ η < 2π) are elliptic coordinates
and x, y are Cartesian coordinates, then x = c cosh ξ cos η, y = c sinh ξ sin η,
where c is the scale factor equaling to 1 in our case), when boundary conditions at
the portion of the linear boundary between the focuses are nonzero and outside the
focuses are zero. Thus, conditions of uninterrupted continuation of the problem
solution (symmetry or anti symmetry) are given at η = 0 and η = π, therefore it
is possible to bind the semi-ellipse as a whole ellipse, in which, for example the
tangential stress is given on ξ = 0 and the condition of uninterrupted continuation
of the problem solution not performed along this part, i.e. we have a crack on
which the tangential stress acts.

Many researchers have studied the different problems caused by the cracks ex-
isting (made on purpose) or originated in an elliptic body. In [1-3], problems of
ultimate equilibrium are solved in closed form for a brittle plate weakened by an
elliptic hole with one or two small linear cracks located at the ends of the hole. In
[4-6] stress intensity factors are considered for cracks emanating from elliptic holes
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in finite or infinite plates. In [7] the stress intensity factor along the crack front
of an elliptical crack in a rotating shaft was studied. In [8] considered medium is
composed of an elliptic inclusion and many confocal elliptic layers. The crack is
embedded in the elliptic inclusion. The author’s earlier works [9-11] deal with the
question whether cracks can be helpful in strengthening structures. For example,
when building underground structures, tunnels in particular, engineers intention-
ally make so-called technical openings in the tunnel walls in order to decrease the
stress concentration and fortify the walls using various techniques. In [9] the au-
thor investigates how the number of cracks and their lengths influence the stress
distribution in the tunnel walls, i.e., how the tangential stress concentration on the
circular hole contour can be diminished by varying the number of cracks and their
lengths. In [10] the author investigates how the tangential stress concentration can
be diminished on the contour of an elliptic hole (except the crack ends) by varying
the number of cracks and their lengths.

The present work considers the deflected mode of a homogeneous isotropic ellipse
when a) the body is weakened with an internal linear crack, in particular, the crack
is between focuses F1 and F2 (See Fig. 1), which is affected by a tangential stress
and which depends on ξ1 and η, and b) the elliptic body has no cracks. In both
cases, tangential stress depending on η acts on the boundary ξ = ξ1.

Figure 1. Ellipse with cracks between the fo-
cuses F1 and F2.

Figure 2. Semi-ellipse

The mathematical model of this problem is built by means of the system of
elliptic coordinates ξ, η. The problem is obtained from the relevant problem for
the semi-ellipse Ω̄1 = Ω1

⋃
Γ1 = {ξ0 = 0 ≤ ξ ≤ ξ1, 0 ≤ η ≤ π} (See Fig. 2), when

at η = 0 and η = π the continuity conditions of the problem solution are given and
at ξ = 0 tangential stress is given, and the continuity condition of the solution is
not met along this section. The problem is solved with the method reducing the
complex problems of the theory of elasticity to the solution of simple problems
[12-14], in particular, to the solution of the internal and external problems of the
theory of elasticity simply solved by the method of separation of variables (MSV)
[15, 16]. By using MATLAB software, we have obtained the numerical values and
drafted 3D and 2D graphs of displacements and distribution of stresses in the body,
when there is a) a tangential stress, and b) continuity conditions of the problem
solution, symmetry conditions in particular, given at ξ = 0.
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2. Setting problems in the elliptic coordinates

2.1. Equilibrium equations, physical law

Let us describe the equilibrium equations in the elliptic coordinate system ξ, η as
follows:

a) D,ξ −K,η = 0, c) ū,ξ + v̄,η = κ−2
κµ h2

0D,

b) D,η + K,ξ = 0, d) v̄,ξ − ū,η = 1
µh2

0K,
(1)

where κ = 4 (1− ν) , µ = E
2(1−ν) , h0 =

√
cosh (2ξ)− cos (2η), ū = 2hu

c2 , v̄ = 2v
c2 ; u

and v are the components of the displacement vector along ξ = const line normal
and tangent, hξ = hη = h = c√

2

√
cosh (2ξ)− cos (2η) are metric coefficients, κ−2

κµ D

is the divergence of the displacement vector, 1
µK is the rotor of the displacement

vector, ν is Poisson’s ratio and E is the modulus of elasticity.
Hooke’s Law will be described as follows:

h2
0

µ
σξξ =

h2
0

µ
D − 2v̄,η − 2

h2
0

[sinh (2ξ) ū− sin (2η) v̄] ,

h2
0

µ
σηη =

h2
0

µ
D − 2ū,ξ +

2
h2

0

[sinh (2ξ) ū− sin (2η) v̄] ,

h2
0

µ
τξη =

h2
0

µ
K + 2ū,η − 2

h2
0

[sin (2η) ū + sinh (2ξ) v̄] .

(2)

2.2. Boundary conditions

Let us set the boundary problem for the semi-ellipse, i.e. let us find the solu-
tion of system of equations (1) (ū, v̄ ∈ C2(Ω), D, K ∈ C1(Ω) (Fig. 2) in area
Ω = {0 ≤ ξ < ξ1, 0 ≤ η < 2π} (See Fig. 1), which meets the following boundary
conditions:

1) for ellipse with crack

η = 0 : v̄ = 0, ū,η = 0 or ū = 0, v̄,η = 0,

η = π : v̄ = 0, ū,η = 0 or ū = 0, v̄,η = 0,

ξ = 0 :
h2

0

µ
σξξ = f1 (η) ,

h2
0

µ
τξη = f2 (η) or ū = φ1 (η) , v̄ = φ2 (η) ,

ξ = ξ1 :
h2

0

µ
σξξ = f3 (η) ,

h2
0

µ
τξη = f4 (η) or ū = φ3 (η) , v̄ = φ4 (η) ;

2) for the whole ellipse

η = 0 : v̄ = 0, ū,η = 0 or ū = 0, v̄,η = 0,

η = π : v̄ = 0, ū,η = 0 or ū = 0, v̄,η = 0,
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ξ = 0 : ū = 0, v̄,ξ = 0 or v̄ = 0, ū,ξ = 0,

ξ = ξ1 :
h2

0

µ
σξξ = f3 (η) ,

h2
0

µ
τξη = f4 (η) or ū = φ3 (η) , v̄ = φ4 (η) .

3. Setting and solving concrete problem for ellipse with crack

Let us consider the case when f1 (η) = 0, f2 (η) = sin (2η) sinh (2ξ1) P , f3 (η) = 0,
f2 (η) = sin (2η) P i.e.

η = 0 : v̄ = 0, ū,η = 0, (3)

η = π : v̄ = 0, ū,η = 0, (4)

ξ = 0 :
h2

0

µ
σξξ = 0,

h2
0

µ
τξη = sin (2η) sinh (2ξ1) P, (5)

ξ = ξ1 :
h2

0

µ
σξξ = 0,

h2
0

µ
τξη = sin (2η) P, (6)

where P is an arbitrary real number.
The solution of problem (1)-(6) is reduced to the solution of the two following

problems:

3.1. The first problem

The first problem (external problem) is considered in area Ω2 =
{0 ≤ ξ < ∞, 0 ≤ η ≤ π} given in Fig. 3 with the following boundary condi-
tions:

Figure 3. Infinite area with the first problem

η = 0 : v̄ = 0, ū,η = 0, (7)

η = π : v̄ = 0, ū,η = 0, (8)

ξ = 0 :
h2

0

µ
σξξ = 0,

h2
0

µ
τξη = sin (2η) sinh (2ξ1)P. (9)
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The solution of this problem will be described as follows:

ū = − (ϕ1,η − ϕ2,ξ) sinh ξ sin η

+ [(ϕ3,ξ − (κ− 1)ϕ1) sinh ξ cos η + (ϕ3,η − (κ− 1)ϕ2) cosh ξ sin η] ,

v̄ = (ϕ1,ξ + ϕ2,η) sinh ξ sin η(10)

− [(ϕ3,ξ − (κ− 1)ϕ1) cosh ξ sin η − (ϕ3,η − (κ− 1)ϕ2) sinh ξ cos η] ;

(10)

D =
κµ

cosh (2ξ)− cos (2η)
[(ϕ1,η − ϕ2,ξ) cosh ξ sin η − (ϕ1,ξ + ϕ2,η) sinh ξ cos η] ,

K =
κµ

cosh (2ξ)− cos (2η)
[(ϕ1,η − ϕ2,ξ) sinh ξ cos η + (ϕ1,ξ + ϕ2,η) cosh ξ sin η] .

The components of stress tensors are presented with the following formulae:

h2
0

µ
σξξ = − (κϕ1,ξ − (κ− 2)ϕ2,η + 2ϕ3,ηη) sinh ξ cos η

− ((κ− 2)ϕ1,η + κϕ2,ξ − 2ϕ3,ξη) cosh ξ sin η − 2 (ϕ1,ξη + ϕ2,ηη) sinh ξ sin η

− 4 sinh2 ξ

cosh (2ξ)− cos (2η)
{(ϕ1,ξ + ϕ2,η) sinh ξ cos η − (ϕ1,η − ϕ2,ξ) cosh ξ sin η},

h2
0

µ
σηη = ((κ− 2)ϕ1,ξ − κϕ2,η + 2ϕ3,ηη) sinh ξ cos η

+(κϕ1,η + (κ− 2)ϕ2,ξ − 2ϕ3,ξη) cosh ξ sin η + 2 (ϕ1,ξη + ϕ3,ηη) sinh ξ sin η

+
4 sinh2 ξ

cosh (2ξ)− cos (2η)
{(ϕ1,ξ + ϕ2,η) sinh ξ cos η − (ϕ1,η − ϕ2,ξ) cosh ξ sin η} ,

(11)

h2
0

µ
τξη = (κϕ1,ξ − (κ− 2) ϕ2,η + 2ϕ3,ηη) cosh ξ sin η

− ((κ− 2)ϕ1,η + κϕ2,ξ − 2ϕ3,ξη) sinh ξ cos η − 2 (ϕ1,ηη − ϕ2,ξη) sinh ξ sin η

− 4 sinh2 ξ

cosh (2ξ)− cos (2η)
{(ϕ1,ξ + ϕ2,η) cosh ξ sin η − (ϕ1,η − ϕ2,ξ) sinh ξ cos η} ,

where ϕi, i = 1, 2, 3 are harmonic functions. From boundary conditions (7) and
(8), we obtain:
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ϕ1 =
∞∑

n=1

A1ne−nξ cos (nη) , ϕ2 =
∞∑

n=1

A2ne−nξ sin (nη) ,

ϕ3 =
∞∑

n=1

A2n
κ− 2
2n

e−nξ cos (nη) .

(12)

It is purposeful to substitute boundary conditions (9) with the following equiv-
alent conditions:

− 2
κµ

(σξξ sinh ξ0 cos η − τξη cosh ξ0 sin η) = ϕ1,ξ,

κ− 2
2

ϕ1,η − 1
µ

(σξξ cosh ξ0 sin η + τξη sinh ξ0 cos η) = ϕ2,ξ,

i.e. conditions (9) will be described as follows:

κϕ1,ξ = P sinh (2ξ1) sin η sin (2η) ,

(κ− 2)ϕ1,µ − 2ϕ2,ξ = 0.
(13)

From (12), (13), we obtain the following system of equations:

∞∑

n=1

−κne−nξA1n cos (nη) = P sinh (2ξ1) sin η sin (2η) ,

∞∑

n=1

[− (κ− 2) nA1n + 2nA2n] e−nξ sin (nη) = 0,

that is:

∞∑

n=1

−κne−nξA1n cos (nη) =
1
2
P sinh (2ξ1) [cos η − cos (3η)] ,

∞∑

n=1

[− (κ− 2) nA1n + 2nA2n] e−nξ sin (nη) = 0.

(14)

From (14), the following system is obtained:

κe−ξA11 = −1
2
P sinh (2ξ1) , ((κ−2)A11 − 2A21) e−ξ = 0,

3κe−3ξA13 =
1
2
P sinh (2ξ1) , ((κ−2)A13 − 2A23) e−3ξ = 0.

(15)

The solution of system (15) is as follows:
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A11 = − P

2κ
eξ sinh (2ξ1) , A21 = −κ− 2

4κ
Peξ sinh (2ξ1) ,

A13 =
P

6κ
e3ξ sinh (2ξ1) , A23 =

κ− 2
12κ

Pe3ξ sinh (2ξ1) .

(16)

By substituting the expressions (12) in expressions (10) and (11), one obtains
the components of the displacement vectors and stress tensor of form:

ū = e−ξ

{
(A11 −A21) sinh ξ sin2 η −

[
(κ− 1)A11 − κ− 2

2
A21

]
sinh ξ cos2 η

−3κ− 4
2

A21 cosh ξ sin2 η

}
+ e−3ξ {3 (A13 −A23) sinh ξ sin η sin (3η)

−
[
(κ− 1)A13 − κ− 2

2
A23

]
sinh ξ cos η cos (3η)

−3κ− 4
2

A23 cosh ξ sin η sin (3η)
}

,

v̄ = e−ξ {− (A11 −A21) sinh ξ sin η cos η + [(κ− 1)A11 cosh ξ+

(
κ− 2

2
cosh ξ −3κ− 4

2
sinh ξ

)
A21

]
sin η cos η

}

+e−3ξ

{
−3 (A13 −A23) sinh ξ sin η cos (3η) +

[
(κ− 1)A13 +

κ− 2
2

A23

]

× cosh ξ sin η cos η−3κ− 4
2

A23 sinh ξ cos η sin (3η)
}

.

(17)

h2
0

µ
σξξ = e−ξ

{
[κA11 + 2 (κ− 2)A21] sinh ξ cos2 η

+ [(κ− 2)A11 + 2 (κ− 1)A21] cosh ξ sin2 η − 2 (A11 −A21) sin ξ sin2 η

+
4 sinh2 ξ (A11 −A21)
cosh (2ξ)− cos (2η)

[
sinh ξ cos2 η − cosh ξ sin2 η

]}

+3e−3ξ {[κA13 + 2 (κ− 2)A23] sinh ξ cos η cos (3η) + [(κ− 2) A13

+2 (κ− 1)A23] cosh ξ sin η sin (3η)−6 (A13 −A23) sin ξ sin η sin (3η)

+
4 sinh2 ξ (A13 −A23)
cosh (2ξ)− cos (2η)

[sinh ξ cos η cos (3η)− cosh ξ sin η sin (3η)]} ,
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h2
0

µ
σηη = e−ξ

{
[− (κ− 2)A11 − 2 (κ− 1)A21] sinh ξ cos2 η

+ [κA11 − 2 (κ− 2)A21] cosh ξ sin2 η + 2 (A11 −A21) sin ξ sin2 η

−4 sinh2 ξ (A11 −A21)
cosh (2ξ)− cos (2η)

[
sinh ξ cos2 η− cosh ξ sin2 η

]}

+3e−3ξ {[− (κ− 2)A13 − 2 (κ− 1)A23] sinh ξ cos η cos (3η) − [κA13

+2 (κ− 2)A23] cosh ξ sin η sin (3η)+6 (A13 −A23) sinh ξ sin η sin (3η)

−4 sinh2 ξ (A13 −A23)
cosh (2ξ)− cos (2η)

[sinh ξ cos η cos (3η)− cosh ξ sin η sin (3η)]} ,

h2
0

µ
τξη = e−ξ {− [κA11 + 2 (κ− 2)A21] cosh ξ sin η cos η

+ [κA11 + 2 (κ− 1)A21] sinh ξ sin η cos η

+
4 sinh2 ξ (A11 −A21)
cosh (2ξ)− cos (2η)

[cosh ξ sin η cos η+ sinh ξ sin η cos η]}

+3e−3ξ {− [κA13 + 2 (κ− 2)A23] cosh ξ sin η cos (3η)

+ [κA13 + (κ− 2)A23] sinh ξ sin (3η) cos η+6 (A13 −A23) sinh ξ sin η cos (3η)

+
4 sinh2 ξ (A13 −A23)
cosh (2ξ)− cos (2η)

[cosh ξ sin η cos (3η) + sinh ξ sin (3η) cos η]} .

(18)

From (16), (17), (18), the numerical values of the displacement vector and stress
tensor components are obtained at any point of the body.

3.2. The second problem

The second problem (internal problem) is considered on the area Ω3 =
{0 ≤ ξ ≤ ξ1, 0 ≤ η ≤ π} given in Fig. 4 with the following boundary conditions:

η = 0 : v̄ = 0, ū,η = 0, (19)

η = π : v̄ = 0, ū,η = 0, (20)

ξ = 0 : ū = 0, v̄,ξ = 0, (21)

ξ = ξ1 :
2
µ

σξξ = 0− g̃11 (η) ,
2
µ

τξη = sin (2η) P − g̃12 (η) . (22)
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Here g̃11 (η) = 2
µσξξ

∣∣∣
ξ=ξ1

, g̃12 (η) = 2
µτξη

∣∣∣
ξ=ξ1

, where σξξ and τξη are the solution of

the first problem (1), (2), (7)-(9). Continuity conditions of the problem solution,
symmetry conditions in particular, are given at ξ = 0.

Figure 4. Area with the second problemThe solution of this problem is presented with harmonic functions ϕ1 and ϕ2:

ū =
[
sinh2 ξ1 cosh ξ (ϕ1,η + ϕ2,ξ) + (κ− 1) sinh ξϕ2

]
cos η

− [
cosh2 ξ1 sinh ξ (ϕ1,ξ − ϕ2,η)− (κ− 1) cosh ξϕ1

]
sin η,

v̄ = − [
cosh2 ξ1 sinh ξ (ϕ1,η + ϕ2,ξ) + (κ− 1) cosh ξϕ2

]
sin η

− [
sinh2 ξ1 cosh ξ (ϕ1,ξ − ϕ2,η)− (κ− 1) sinh ξϕ1

]
cos η.

(23)

D =
κµ

cosh (2ξ)− cos (2η)
[(ϕ1,ξ − ϕ2,η) cosh ξ sin η + (ϕ1,η + ϕ2,ξ) sinh ξ cos η] ,

K =
κµ

cosh (2ξ)− cos (2η)
[(ϕ1,ξ − ϕ2,η) sinh ξ cos η − (ϕ1,η + ϕ2,ξ) cosh ξ sin η] .

By substituting the expressions (23) for the displacement vector and the expres-
sions for the divergence D and the rotor component K in Hooke’s law (2), one
obtains the components of the stress tensor of form:

h2
0

µ
σξξ =

[
2 sinh2 ξ1 (ϕ1,ξη − ϕ2,ηη) cosh ξ − ((κ− 2)ϕ1,η − κϕ2,ξ) sinh ξ] cos η

+
[
2 cosh2 ξ1 (ϕ1,ηη + ϕ2,ξη) sinh ξ + (κϕ1,ξ + (κ− 2)ϕ2,η) cosh ξ

]
sin η

−4 sinh (ξ1 + ξ) sinh (ξ1 − ξ)
cosh (2ξ)− cos (2η)

{(ϕ1,ξ − ϕ2,η) cosh ξ sin η+ (ϕ1,η + ϕ2,ξ) sinh ξ cos η} ,

h2
0

µ
σηη = − [

2 sinh2 ξ1 (ϕ1,ξη − ϕ2,ηη) cosh ξ − (κϕ1,η − (κ− 2) ϕ2,ξ) sinh ξ
]
cos η

− [
2 cosh2 ξ1 (ϕ1,ηη + ϕ2,ξη) sinh ξ + ((κ− 2)ϕ1,ξ + κϕ2,η) cosh ξ

]
sin η

+
4 sinh (ξ1 + ξ) sinh (ξ1 − ξ)

cosh (2ξ)− cos (2η)
{(ϕ1,ξ − ϕ2,η) cosh ξ sin η+ (ϕ1,η + ϕ2,ξ) sinh ξ cos η} ,
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h2
0

µ
τξη = −

[
2 cosh2 ξ1 (ϕ1,ξη − ϕ2,ηη) sinh ξ −

(
(κ− 2)

∂ϕ1

∂η
− κ

∂ϕ2

∂ξ

)
cosh ξ

]
sin η

+
[
2 sinh2 ξ1 cosh ξ (ϕ1,ηη + ϕ2,ξη) +

(
κ

∂ϕ1

∂ξ
+ (κ− 2)

∂ϕ2

∂η

)
sinh ξ

]
cos η

+
4 sinh (ξ1 + ξ) sinh (ξ1 − ξ)

cosh (2ξ)− cos (2η)
{(ϕ1,ξ − ϕ2,η) sinh ξ cos η −(ϕ1,η + ϕ2,ξ) cosh ξ sin η} .

(24)

By employing the MSV and taking into account the boundary conditions (19),
(20), (21) we can write harmonic functions ϕ1, ϕ2 in the following form:

ϕ1 =
∞∑

n=1

B1n
sinh (nξ)
cosh (nξ1)

sin (nη) , ϕ2 =
∞∑

n=1

B2n
cosh (nξ)
cosh (nξ1)

cos (nη) . (25)

It is purposeful to substitute boundary conditions (22) with the following equiv-
alent conditions:

2
µ

(cosh ξ1 sin ησξξ + sinh ξ1 cos ητξη)

= sinh (2ξ1) (ϕ1,ηη + ϕ2,ξη) + κϕ1,ξ + (κ− 2)ϕ2,η,

2
µ

(sinh ξ1 cos ησξξ − cosh ξ1 sin ητξη)

= sinh (2ξ1) (ϕ1,ξη − ϕ2,ηη)− (κ− 2)ϕ1,η + κϕ2,ξ,

i.e. conditions (22) will be described as follows:

sinh (2ξ1) (ϕ1,ηη + ϕ2,ξη) + κϕ1,ξ + (κ− 2)ϕ2,η

= (− cosh ξ1 sin ηg̃11 + sinh ξ1 cos η (sin (2η) P − g̃12)) ,

sinh (2ξ1) (ϕ1,ξη − ϕ2,ηη)− (κ− 2)ϕ1,η + κϕ2,ξ

= (− sinh ξ1 cos ηg̃11 − cosh ξ1 sin η (sin (2η) P − g̃12)) ,

(26)

By inserting (25) in (26), we obtain:
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∞∑

n=1

[
−n2 sinh (2ξ1)

sinh (nξ)
cosh (nξ1)

(B1n + B2n)

+n
cosh (nξ)
cosh (nξ1)

(κB1n − (κ− 2) B2n)
]

sin (nη) =
∞∑

n=1

F̃1n sin (nη) ,

∞∑

n=1

[
n2 sinh (2ξ1)

cosh (nξ)
cosh (nξ1)

(B1n + B2n)

−n
sinh (nξ)
cosh (nξ1)

((κ− 2)B1n − κB2n)
]

cos (nη) =
∞∑

n=1

F̃2n cos (nη) ,

(27)

where F̃1n = 2
π

∫ π
0 F1 (η) sin (nη) dη and F̃2n = 2

π

∫ π
0 F2 (η) cos (nη) dη are the coef-

ficients of expansion of functions:

F1 (η) = − cosh ξ1 sin ηg̃11 + sinh ξ1 cos η (P sin (2η)− g̃11 (η))

and

F2 = − sinh ξ1 cos ηg̃11 − cosh ξ1 sin η (P sin (2η)− g̃12 (η))

into Fourier series (F1 (η) - according to sinuses and F2 (η) - according to cosines),
respectively.

After equating the expressions at the same trigonometric functions in both sides
of equations in (27), we obtain an infinite system of linear algebraic equations to
unknown quantities B1n and B2n.

[
−n2 sinh (2ξ1)

sinh (nξ)
cosh (nξ1)

+ nκ
cosh (nξ)
cosh (nξ1)

]
B1n −

[
n2 sinh (2ξ1)

sinh (nξ)
cosh (nξ1)

+n (κ− 2)
cosh (nξ)
cosh (nξ1)

]
B2n = F̃1n,

[
n2 sinh (2ξ1)

cosh (nξ)
cosh (nξ1)

− n (κ− 2)
sinh (nξ)
cosh (nξ1)

]
B1n

+
[
n2 sinh (2ξ1)

cosh (nξ)
cosh (nξ1)

+nκ
cosh (nξ)
cosh (nξ1)

]
B2n = F̃2n, n = 1, 2, . . . .

(28)

As one can see, the leading matrix of system (28) is a block-diagonal one (See
Fig. 5).

The dimension of each block Di, i = 1, 2, . . . is 2×2 and detDi 6= 0, while when
i →∞, detDi → M , where M 6= 0 is the finite number.

Let us find B1n, B2n from (28), and we will obtain the following expressions of
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Figure 5. Image of the leading matrix

the displacement vector and stress tensor components from (23)-(25):

ū =
∞∑

n=1

{[
n sinh2 ξ1 cosh ξ

sinh (nξ)
cosh (nξ1)

(B1n + B2n)

+ (κ− 1) sinh ξ
cosh (nξ)
cosh (nξ1)

B2n

]
cos η cos (nη)−

[
n cosh2 ξ1 sinh ξ

cosh (nξ)
cosh (nξ1)

× (B1n + B2n)− (κ− 1) cosh ξ
sinh (nξ)
cosh (nξ1)

B1n

]
sin η sin (nη)

}
,

v̄ =
∞∑

n=1

{
−

[
n cosh2 ξ1 sinh ξ

sinh (nξ)
cosh (nξ1)

(B1n + B2n)

+ (κ− 1) cosh ξ
cosh (nξ)
cosh (nξ1)

B2n

]
sin η cos (nη)

−
[
n sinh2 ξ1 cosh ξ

cosh (nξ)
cosh (nξ1)

(B1n + B2n)

− (κ− 1) sinh ξ
sinh (nξ)
cosh (nξ1)

B1n

]
cos η sin (nη)

}
.

(29)

h2
0

µ
σξξ =

∞∑

n=1

{[
2n2 sinh2 ξ1 cosh ξ

cosh (nξ)
cosh (nξ1)

(B1n + B2n)

−n sinh ξ
sinh (nξ)
cosh (nξ1)

((κ− 2)B1n − κB2n)

−n
4 sinh (ξ1 + ξ) sinh (ξ1 − ξ)

cosh (2ξ)− cos (2η)
sinh ξ sinh (nξ)

cosh (nξ1)
(B1n + B2n)

]
cos η cos (nη)
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+
[
−2n2 cosh2 ξ1 sinh ξ

sinh (nξ)
cosh (nξ1)

(B1n + B2n)

+n cosh ξ
cosh (nξ)
cosh (nξ1)

(κB1n − (κ− 2)B2n)

−n
4 sinh (ξ1 + ξ) sinh (ξ1 − ξ)

cosh (2ξ)− cos (2η)
cosh ξ cosh (nξ)

cosh (nξ1)
(B1n + B2n)

]
sin η sin (nη)

}
,

h2
0

µ
σηη =

∞∑

n=1

{[
−2n2 sinh2 ξ1 cosh ξ

cosh (nξ)
cosh (nξ1)

(B1n + B2n)

+n sinh ξ
sinh (nξ)
cosh (nξ1)

(κB1n − (κ− 2) B2n)

+n
4 sinh (ξ1 + ξ) sinh (ξ1 − ξ)

cosh (2ξ)− cos (2η)
sinh ξ sinh (nξ)

cosh (nξ1)
(B1n + B2n)

]
cos η cos (nη)

+
[
2n2 cosh2 ξ1 sinh ξ

sinh (nξ)
cosh (nξ1)

(B1n + B2n)

−n cosh ξ
cosh (nξ)
cosh (nξ1)

((κ− 2)B1n − κB2n)

+n
4 sinh (ξ1 + ξ) sinh (ξ1 − ξ)

cosh (2ξ)− cos (2η)
cosh ξ cosh (nξ)

cosh (nξ1)
(B1n + B2n)

]
sin η sin (nη)

}
,

h2
0

µ
τξη =

∞∑

n=1

{
−

[
2n2 cosh2 ξ1 sinh ξ

cosh (nξ)
cosh (nξ1)

(B1n + B2n)

−n cosh ξ
sinh (nξ)
cosh (nξ1)

((κ− 2)B1n − κB2n)

−n
4 sinh (ξ1 + ξ) sinh (ξ1 − ξ)

cosh (2ξ)− cos (2η)
cosh ξ sinh (nξ)

cosh (nξ1)
(B1n + B2n)

]
sin η cos (nη)

+
[
−2n2 sinh2 ξ1 cosh ξ

sinh (nξ)
cosh (nξ1)

(B1n + B2n)

+n sinh ξ
cosh (nξ)
cosh (nξ1)

(κB1n − (κ− 2) B2n)

+n
4 sinh (ξ1 + ξ) sinh (ξ1 − ξ)

cosh (2ξ)− cos (2η)
sinh ξ cosh (nξ)

cosh (nξ1)
(B1n + B2n)

]
cos η sin (nη)

}
.

(30)

From (29), (30), we obtain the numerical values of the displacement vector and
stress tensor components at any point of the body, where B1n, B2n is the solution
of system (28).
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Note. To obtain the solution of infinite system (28), n = 1, . . . , 15.
The sum of the solution of the first problem and solution of the second problem

is the solution of problems (1)-(6) (i.e. tensions and displacements at any point of
the body).

4. Setting and solving concrete problem for a whole ellipse

Let us set the boundary value problem for a semi-ellipse when the continuity condi-
tions (symmetry conditions) of the solution are given at the linear boundary which
means that it is possible to bound the semi-ellipse into a whole ellipse. So, let us find
the solution of system of equations (1) in the area Ω1 = {0 < ξ < ξ1, 0 < η < π}
(Fig. 2), which meets the following boundary conditions:

η = 0 : v̄ = 0, ū,η = 0, (31)

η = π : v̄ = 0, ū,η = 0, (32)

ξ = 0 : ū = 0, v̄,ξ = 0, (33)

ξ = ξ1 :
h2

0

µ
σξξ = 0,

h2
0

µ
τξη = sin (2η) P. (34)

The components of the displacement vector and stress tensor are given by har-
monic functions ϕ1 and ϕ2, and are presented by formulae (23), (24).

By employing the MSV and taking into account the boundary conditions (31),
(32), (33), we can write functions ϕ1 and ϕ2 in the following form:

ϕ1 =
∞∑

n=1

B1n
sinh (nξ)
cosh (nξ1)

sin (nη) , ϕ2 =
∞∑

n=1

B2n
cosh (nξ)
cosh (nξ1)

cos (nη) . (35)

Like with the second problem of the previous paragraph, we will here substitute
boundary conditions (34) with the equivalent:

sinh (2ξ1) (ϕ1,ηη + ϕ2,ξη) + κϕ1,ξ + (κ− 2)ϕ2,η = sinh ξ1 cos η sin (2η) P,

sinh (2ξ1) (ϕ1,ξη − ϕ2,ηη)− (κ− 2)ϕ1,η + κϕ2,ξ = − cosh ξ1 sin η sin (2η) P.
(36)

By inserting (35) in (36), we obtain:

∞∑

n=1

[
−n2 sinh (2ξ1)

sinh (nξ)
cosh (nξ1)

(B1n + B2n)

+n cosh(nξ)
cosh(nξ1)

(κB1n − (κ− 2) B2n)
]
sin (nη) = sinh ξ1 cos η sin (2η) P,

∞∑
n=1

[
n2 sinh (2ξ1)

cosh(nξ)
cosh(nξ1)

(B1n + B2n)

−n sinh(nξ)
cosh(nξ1)

((κ− 2)B1n − κB2n)
]
cos (nη) = − cosh ξ1 sin η sin (2η) P.

(37)
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After equating the expressions at the same trigonometric functions in both sides
of equations (37), we obtain the following infinite system of linear algebraic equa-
tions to unknown quantities B1n and B2n.

[
− sinh (2ξ1)

sinh(ξ)
cosh(ξ1)

+ κ cosh(ξ)
cosh(ξ1)

]
B11 −

[
sinh (2ξ1)

sinh(ξ)
cosh(ξ1)

+ (κ− 2) cosh(ξ)
cosh(ξ1)

]
B21 = P

2 sinh (ξ1) ,

[
sinh (2ξ1)

cosh(ξ)
cosh(ξ1)

− (κ− 2) sinh(ξ)
cosh(ξ1)

]
B11 +

[
sinh (2ξ1)

cosh(ξ)
cosh(ξ1)

+κ cosh(ξ)
cosh(ξ1)

]
B21 = −P

2 cosh (ξ1) ,

3
[
−3 sinh (2ξ1)

sinh(3ξ)
cosh(3ξ1)

+ κ cosh(3ξ)
cosh(3ξ1)

]
B13 − 3

[
3 sinh (2ξ1)

sinh(3ξ)
cosh(3ξ1)

+ (κ− 2) cosh(3ξ)
cosh(3ξ1)

]
B23 = P

2 sinh (ξ1) ,

3
[
3 sinh (2ξ1)

cosh(3ξ)
cosh(3ξ1)

− (κ− 2) sinh(3ξ)
cosh(3ξ1)

]
B13 + 3

[
3 sinh (2ξ1)

cosh(3ξ)
cosh(3ξ1)

+κ cosh(3ξ)
cosh(3ξ1)

]
B23 = P

2 cosh (ξ1) ,

(38)

The values of displacements and stresses are calculated formulae (29), (30) at any
point to be considered, where B1n, B2n, n = 1, 3 are the solution of system (38).

5. Numerical examples and discussion

By using MATLAB software, the numerical values of the displacement vector and
stress tensor components were obtained at the points of a) the ellipse weakened
with the crack and b) the ellipse without cracks (whole ellipse), and the 3D (See
Fig. 6-9) and 2D (See Fig. 10-17) graphs of displacements and stresses distribution
respectively.

Numerical values are obtained for the following data:ν = 0.3, E = 106kg/cm2,
P = −10kg/cm2, ξ0 = 0, ξ1 = 1.

Fig. 6 shows 3D graph of distribution of the stress tensor components in semi-
ellipse and Fig. 8 shows 3D graph of distribution of the components of a displace-
ment vector, when variable tangential stress is given at ξ = 0 (i.e. on the section
between the focuses) and normal stress equals to 0, while Fig. 7 and Fig. 9 show
the relevant graphs of the same components when there are symmetry conditions
given on the section between the focuses.

Fig. 10 and Fig. 11 show the graphs of components of the stress tensor σξξ, σηη

and τξη, when η = π
4 or η = π

2 or η = 3π
4 and 0 ≤ ξ ≤ ξ1 = 1 (See hyperbolic lines in

Fig. 18), in particular, when there are tangential stresses (Fig. 10) and symmetry
conditions (Fig. 11) given on the section between the focuses. As expected, in both
cases (we mean the boundary conditions on the section between the focuses), the
graphs show that the values of stress σξξon η = π

4 and η = 3π
4 are the same, and
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Figure 6. Distribution of σξξ, σηη and τξη in semi-ellipse when tangential stress is given at ξ = 0

Figure 7. Distribution of σξξ, σηη and τξη in semi-ellipse when symmetry conditions are given at ξ = 0

the values of σηη are also the same, while the values ofτξη differ with the sign only
and are very little (almost 0) at η = π

2 .
Fig. 12 and 13 show the graphs of u and v, the components of a displacement

vector when η = π
4 or η = π

2 or η = 3π
4 and 0 ≤ ξ ≤ ξ1 = 1 (See Fig. 18). The

graphs show that the values of displacement u are the same at η = π
4 and η = 3π

4
and the values of displacement v differ with the sign only and equal to 0 at η = π

2
as it was expected.

Fig. 14 and 15 show the graphs of σξξ, σηη and τξηin both cases when ξ = ξ1−ξ0

2 =
1
2 and 0 ≤ η ≤ π (See elliptic line in Fig. 18) , while Fig. 16 and 17 show the graphs
of u and v for the same values of ξ and η.
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Figure 8. Distribution of u and v in semi-ellipse when tangential stress is given at ξ = 0

Figure 9. Distribution of u and v in semi-ellipse when symmetry conditions are given at ξ = 0

Figure 10. The components of the stress tensor obtained for fixed η = π
4
, η = π

2
and η = 3π

4
and when ξ

changes (0 ≤ ξ ≤ ξ1 = 1) when tangential stress is given at ξ = 0
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Figure 11. The components of the stress tensor obtained for fixed η = π
4
, η = π

2
and η = 3π

4
and when ξ

changes (0 ≤ ξ ≤ ξ1 = 1) when symmetry conditions are given at ξ = 0

Figure 12. Components of a displacement vector obtained for fixedη = π
4
, η = π

2
and η = 3π

4
and when

ξchanges (0 ≤ ξ ≤ ξ1 = 1) when tangential stress is given at ξ = 0

Figure 13. Components of a displacement vector obtained for fixed η = π
4
, η = π

2
and η = 3π

4
and when

ξchanges (0 ≤ ξ ≤ ξ1 = 1) when symmetry conditions are given at ξ = 0
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(a) (b)

(c)

Figure 14. Components of stress tensor obtained for fixed ξ = ξ1−ξ0
2

= 1
2

and when η changes (0 ≤ η ≤ π) when tangential stress is given at ξ = 0.

(a) (b)

(c)

Figure 15. Components of stress tenzor obtained for fixed ξ = ξ1−ξ0
2

= 1
2

and when η changes (0 ≤ η ≤ π), when symmetry conditions are given at
ξ = 0.

It is known that in the problem, there is a line of symmetry if the elastic prop-
erties of the material, the geometric configuration of the boundary and loading
conditions are symmetric with respect to this line. The elastic properties of a ho-
mogeneous isotropic body are the same at all points and in all directions; so it
remains only to follow the last two requirements. The presence of the line of sym-
metry leads to two physical effects. First, there are no normal (relative to line)
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(a) (b)

Figure 16. Components of a displacement vector obtained for fixed ξ =
ξ1−ξ0

2
= 1

2
and when η changes (0 ≤ η ≤ π) when tangential stress is given

at ξ = 0.

(a) (b)

Figure 17. Components of a displacement vector obtained for fixed ξ =
ξ1−ξ0

2
= 1

2
and when η changes (0 ≤ η ≤ π.) when symmetry conditions

are given at ξ = 0.

Figure 18. Semi-ellipse with elliptic and hyperbolic lines

displacements on it, and, second, there are no tangential stresses acting along
it. It is obvious that in problems (1)-(6), there is a line of symmetryx = 0, i.e.
axesy(η = π/2). Therefore, tangential stresses τξη equal to zero for all values of
ξat η = π/2 (see Fig.10 and Fig. 11). Also, normal displacementsv, relative to line
symmetry η = π/2, equal to zero for all values of ξ at η = π/2 (see Fig 12 and Fig.
13).

It should also be noted that the absolute values of normal and tangential dis-
placements and stresses when tangential stress acts on the section between the
focuses, are higher than in terms of symmetry conditions along the same section.
This can be explained by the fact that the excitation applied to the internal sec-
tion of the ellipse causes the weakening of the body and increase in the normal and
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tangential displacements and stresses in it.

6. Conclusions

The principal outcomes of the present paper can be summarized as follows:

(1) Mathematical modeling of the boundary value problem of the theory of
elasticity for the elliptic body with an internal crack by setting a problem
in the elliptic coordinate system.

(2) Reduction of the solution of the set problem to the solutions of the rele-
vant, internal and external problems, which can be solved analytically quite
simply by the method of separation of variables.

(3) Obtaining the numerical values of the components of stress tensor and
displacement vector at the points of the ellipse and the ellipse weakened by
an internal crack.

(4) Visualization and discussion of the obtained results.

The calculations and graphs were made by using MATLAB software.
As the bodies of an elliptic shape are common in practice, e.g. in building, me-

chanical engineering, biology, medicine, etc., the study of the deformed mode of
such bodies is topical and consequently, in my opinion, setting the problems consid-
ered in the article and the method of their solution is interesting from the practical
point of view.
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