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In the present work non-classical elasticity problems for the homogeneous isotropic elastic
half-space are stated and solved. The article considers the plane deformation. Namely, non-
classical problems are considered, which are formulated in the following way: what normal
stress is supposed to be applied to the part of the half-plane boundary to obtain the pre-
given stress or displacement at the segment inside the body. The problems are solved with a
boundary element method. There are test examples given showing the value of normal stress
supposed to apply to the section of the half-plane boundary to obtain the pre-given stress
or displacement at the segment inside the body. By using MATLAB software, the numerical
results are obtained and corresponding graphics are constructed.
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1. Introduction

In the theory of elasticity, there are a number of problems [1]-[13] that could be
called non-classical due to the fact that boundary conditions on a part of the
boundary surface or on the entire boundary surface are either overdetermined or
underdetermined, or the conditions on the boundary are connected with the con-
ditions inside the body (so called non-local problems).
The author’s earlier work [14] deals with the solution of a non-classical three-

dimensional thermoelasticity problem. The problem is to define the temperature
on the upper and lower faces of the parallelepiped so that on some two planes
inside the body that are parallel to the bases normal displacements or tangential
ones would take a priori defined values.
The current article sets and solves non-classical two-dimensional elasticity prob-

lems for the homogeneous isotropic elastic half-space by the boundary element
method (BEM) [15]. The considered problems do not coincide with the above-
mentioned non-classical problems and are of a great applicable importance and
are totally different from the above-mentioned problems, the method of solution
(BEM) and the mathematical formulation.
Finally, there are test examples given showing the value of normal stress supposed

to apply to the section of the half-plane boundary to obtain the pre-given stress
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or displacement at the segment inside the body. The numerical results of these
problems are obtained and appropriate graphics with discussion are presented.

2. Statement of the problems

Let us set some non-classical static problems for the homogeneous isotropic half
plane (See. Fig.1).
It is known that a homogeneous system of elastic static equilibrium in displace-

ments in the Cartesian system of coordinates has the form [16]{
(λ+ µ) θ,x + µ∆u = 0
(λ+ µ) θ,y + µ∆v = 0

in S (1)

where λ = νE
(1−2ν)(1+ν) , µ = E

2(1+ν) are Lamé constants, E is elasticity modulus,

and ν Poissons’s ratio; ∆ (·) = (·),xx + (·),yy is a Laplacian, θ = divU⃗ = u,x + v,y;

U⃗ = (u, v) is the displacement vector; (·),x = ∂(·)
∂x , (·),y = ∂(·)

∂y ; (·),xx = ∂2(·)
∂x2 ;

(·),yy = ∂2(·)
∂y2 .

Figure 1. Illustration of localization problems of stresses and displacements for the elastic half plane.

2.1. Statement of a problem when normal stress is applied to the segment
inside a half plane

Let us consider a non-classical problem for the half plane S (see Fig. 1), when the
tangent stress along the entire border and normal stress along boundary segment
|x| > c, y = 0 are equal to zero. Along the segment |x| ≤ c, y = −b inside the
body, the value of normal stress σyy is known. So, let us find the solutions to the
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system of equilibrium equations (1) satisfying the following boundary conditions:

for |x| < ∞ and y = 0 : σyx = 0,
for |x| > c and y = 0 : σyy = 0,
for |x| ≤ c and y = −b : σyy = −P0(x),

(2)

where P0(x) is the sufficiently smooth function given along the segment [−c; c] .
We can formulate the stated problem as follows: let us find the kind of distribu-

tion of normal stress σyy along section |x| ≤ c, y = 0 of the boundary of a half
plane (see Fig. 1) so that the normal stress along segment |x| ≤ c, y = −b inside
the body is equal to the values of given function P0(x).

2.2. Statement problem when normal displacement is given on the segment
lying inside a half plane

Let us consider a non-classical problem, when along the entire border of the half
plane S (see Fig. 1) the tangent stress is equal to zero, and normal displacement uy
on segment |x| ≤ c, y = −b lying inside the body is known. Besides, the normal
stress along the part |x| ≥ c, y = 0 of the boundary is equal to zero. Thus, we
have the following boundary conditions:

for |x| < ∞ and y = 0 : σyx = 0,
for |x| > c and y = 0 : σyy = 0,
for |x| ≤ c and y = −b : uy = −U0(x),

(3)

where U0(x) is the sufficiently smooth function given along the segment [−c; c].
We can formulate this problem as follows: let us find the distribution of normal

stress σyy along the part |x| ≤ c, y = 0 of the boundary of the half plane when the
normal displacement along the segment |x| ≤ c, y = −b lying inside the half plane
S equals −U0(x).

3. Solving stated problems

Let us solve the stated problems by BEM. When solving the boundary value prob-
lems for the half plane by BEM, we use a singular solution of the Flamant problem
(see Appendix A).

3.1. Solving problem (1), (2)

Let us divide segments |x| ≤ c, y = 0 and |x| ≤ c, y = −b into N segments
(elements) of the same size 2a and smaller sizes (i.e. a = c/N ). We mean that

constant normal stresses P j
y act on each jth element of length 2a with center (xj , 0)

of segment |x| ≤ c, y = 0. We need to find such values of these stresses, for which
the values of the normal stresses in middle points (xi, − b) of each ith segment
with a length of 2a along segment |x| ≤ c, y = −b inside the body will be equal to
the given value of −P0(x

i).
Normal stress in the center of the ith element lying on segment |x| ≤ c, y = −b

caused by the action of constant normal load P j
y on the jth element of segment
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|x| ≤ c, y = 0 will be found by inserting y = −b, x = xi − xj in the fourth formula
of (A.1).

σyy(x
i, −b) = 1

π

[(
arctan b

xi−xj−a − arctan b
xi−xj+a

)
+ b(xi−xj+a)

(xi−xj+a)2+b2 − b(xi−xj−a)
(xi−xj−a)2+b2

]
P j
y .

The normal stress in the center of the ith element lying on segment |x| ≤ c, y = −b
will be equal to the following sum:

σyy(x
i, −b) =

N∑
j=1

AijP j
y , i = 1, 2, ... , N,

where for the influence coefficients Aij has the following formula

Aij = 1
π

[(
arctan b

xi−xj−a − arctan b
xi−xj+a

)
+ b(xi−xj+a)

(xi−xj+a)2+b2 − b(xi−xj−a)
(xi−xj−a)2+b2

]
.

Thus, we obtain the following system of N linear algebraic equations with N
unknown quantities P j

y , j = 1, 2, . . . , N .

N∑
j=1

AijP j
y = P0

(
xi
)
, i = 1, 2, ... , N. (4)

If solving (4) system in relation to the unknown quantities P j
y by means of any

standard method of numerical analysis (by method of Gauss in our case), then

we can assume that the set problem is solved and σj
yy = P j

y , j = 1, . . . , N (see
Appendix ).
After solving these equations, we can express the displacements and stresses at

any point
(
xi, yk

)
of the body by means of other linear combination of load P j

y .
For example, the stresses and displacements have the following form:

σxx(x
i, yk) = − 1

π

∑N
j=1

[(
arctan yk

xi−xj−a − arctan yk

xi−xj+a

)
− yk(xi−xj+a)

(xi−xj+a)2+(yk)2
+ yk(xi−xj−a)

(xi−xj−a)2+(yk)2

]
P j
y ,σyy(x

i, yk)

= − 1
π

∑N
j=1

[(
arctan yk

xi−xj−a − arctan yk

xi−xj+a

)
+ yk(xi−xj+a)

(xi−xj+a)2+(yk)2
− yk(xi−xj−a)

(xi−xj−a)2+(yk)2

]
P j
y ,σxy(x

i, yk)

= 1
π

∑N
j=1

(
yk
)2 [ 1

(xi−xj+a)2+(yk)2
− 1

(xi−xj−a)2+(yk)2

]
P j
y ,

i = 1, 2, ... , M1, k = 1, 2, ... , M2.

ujx(xi, yk) = − 1
2πµ

∑N
j=1

{
(1− 2ν)

[(
xi − xj − a

)
arctan yk

xi−xj−a

−
(
xi − xj + a

)
arctan yk

xi−xj+a − πa
]

+ (1− ν) yk
ln((xi−xj−a)2+(yk)2)
ln((xi−xj+a)2+(yk)2)

}
P j
y ,

(5)
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ujy(xi, yk) =
1

2πµ

∑N
j=1

{
−yk (1− 2ν)

(
arctan yk

xi−xj−a − arctan yk

xi−xj+a

)
+ (1− ν)

[(
xi − xj − a

)
ln
(
(xi − xj − a)2 +

(
yk
)2)

−
(
xi − xj + a

)
ln
(
(xi − xj + a)2 +

(
yk
)2)

+
(
L− xj + a

)
ln
(
L− xj + a

)2 − (
L− xj − a

)
ln
(
L− xj − a

)2]}
P j
y .

3.2. Solving problem (1), (3)

Let us divide segments |x| ≤ c, y = 0 and |x| ≤ c, y = −b into N segments (ele-
ments) with equal 2a and smaller lengths. We mean that constant normal stresses

P j
y act on each jth segment of segment |x| ≤ c, y = 0, each with the length of 2a

and with the center (xj , 0). We must find such values of these stresses, for which
the values of normal displacement in middle point (xi, − b) of each ith element
with length 2a of |x| ≤ c, y = −b segment inside the body should be equal to the
given value of −U0(x

i).

Normal displacement ujy(xi, −b) in the center (xi, − b) of the ith element lying

on the segment |x| ≤ c, y = −b caused by the action of constant load P j
y on the

jth element lying of segment |x| ≤ c, y = 0 will be found by inserting y = −b,
x = xi − xj and L = L− xj in the second formula from formula (A.1).

ujy(xi, −b) =
P j

y

2πµ

{
−b (1− 2ν)

(
arctan b

xi−xj−a − arctan b
xi−xj+a

)
+ (1− ν)

[(
xi − xj − a

)
ln
(
(xi − xj − a)2 + b2

)
−
(
xi − xj + a

)
ln
(
(xi − xj + a)2 + b2

)
+
(
L− xj + a

)
ln
(
L− xj + a

)2 − (
L− xj − a

)
ln
(
L− xj − a

)2]}
.

Next, the normal displacement in the center of the ith element lying on the
segment |x| ≤ c, y = −b will be computed with the following formula:

uy(x
i, −b) =

N∑
j=1

BijP i
y, i = 1, 2, ... , N,

where we have the following formula for influence coefficients Bij :

Bij = 1
2πµ

{
−b (1− 2ν)

(
arctan b

xi−xj−a − arctan b
xi−xj+a

)
+ (1− ν)

[(
xi − xj − a

)
ln
(
(xi − xj − a)2 + b2

)
−
(
xi − xj + a

)
ln
(
(xi − xj + a)2 + b2

)
+
(
L− xj + a

)
ln
(
L− xj + a

)2 − (
L− xl − a

)
ln
(
L− xj − a

)2]}
.

Thus, the set problem is reduced to solving the following system of linear alge-
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braic equations (N equations with N unknown values):

N∑
j=1

BijP i
y = −U0(x

i) , (6)

If we solve system (6) in relation to unknown values P j
y , then the set problem

can be considered as solved, like the problem set in 3.1.

4. Testable examples and discussion

4.1. Numerical simulations of problems in stresses

By using the MATLAB software, we obtained numerical values of the normal
stresses along the segment AB (the given normal load) and distribution of nor-
mal stresses along the segment A1B1 (the obtained normal stress ) shown in Fig. 1
for the following data: c = 1m, 2m, 3m, 4m and b = 5m, 6, 5m, 8m, 10m;
N = 120; P = 10kg

/
cm2. Below are represented graphics of some of the obtained

result. Namely, Fig. 2 and Fig. 3 show normal load a) P0(x) = P ·x2 and b) P0(x) =
P · x3, respectively, along AB segment and distribution of obtained normal stress
σyy = Py along A1B1 segment, when c = 1m and b = 5m, 6, 5m, 8m, 10m.
Moreover, represented 3D graphics of the distribution of stresses and displace-

ments in the body according to the domain −c < x < c, − 30 < y < −10, when
c = 1m, b = 30m for steel E = 2 × 106kg

/
cm2, ν = 0.3 (see Fig. 4 - Fig.7) and

technical rubber E = 2 × 102kg
/
cm2, ν = 0.42 (see Fig.8 and Fig.9). Formula

(5) evidences that the stresses in the stress problems do not depend on Young’s
modulus and Poison’s ratio. As for the displacement, the normal displacement is
less and tangential displacement is bigger in steel than in technical rubber.

Figure 2. The load P0(x) = P · x2 along the segment AB and distribution of obtained normal stress Py

along the segment A1B1, when c = 1m.
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Figure 3. The load P0(x) = P · x3 along the segment AB and distribution of obtained normal stress Py

along the segment A1B1, when c = 1m.

Figure 4. Distribution of stresses in the domain −c < x < c, − 30 < y < −10, when c = 1m, b = 30m, (in
stresses for the problem, when P0(x) = P · x2).

4.2. Numerical simulations of problems in displacements

For the following data: E = 2 × 102kg
/
cm2, ν = 0.42 or E = 2 × 106kg

/
cm2,

ν = 0.3; c = 1m, 2m, 3m, 4m and b = 5m, 6, 5m, 8m, 10m; N = 120,
P = 10m numerical values of normal displacements at the segment AB (the given
normal displacement) and distribution normal stresses at the segment A1B1 (the
obtained normal stress ) are obtained (see Fig. 1). Below graphics of some obtained
results are represented. Namely, Fig. 10 and Fig.12 shows normal displacement
a) U0(x) = P · x2 and b) U0(x) = P · x3, respectively, along AB segment and
distribution of the obtained normal stress σyy = Py along A1B1 segment, when
c = 1m and E = 2 × 106kg

/
cm2, ν = 0.3, and on Fig. 11, Fig. 13, when c = 1m

and E = 2× 102kg
/
cm2, ν = 0.42.
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Figure 5. Distribution of stresses for steel or technical rubber in domain −c < x < c, − 30 < y < −10,
when c = 1m, b = 30m( in stresses for the problem, when P0(x) = P · x3.

Besides, 3D graphics of distribution of stresses and displacements in the body
which occupies domain −c < x < c, − 30 < y < −10 are represented, when c =
1m, b = 30m for the steel (see Fig. 14 - Fig.17) and the technical rubber (see Fig. 18
- Fig.21). In this case, stresses σyy and σxx in the steel are too big, while tangent
stress τxy is less as compared to the technical rubber. In addition, the normal
displacement in both materials are almost equal, while tangent displacement is
bigger in steel than in technical rubber.
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Figure 6. Distribution of displacements for steel in domain −c < x < c, − 30 < y < −10, when c = 1m,
b = 30m, E = 2× 106kg

/
cm2, ν = 0.3 (in stresses for the problem, when P0(x) = P · x2).

Figure 7. Distribution of displacements for steel in domain −c < x < c, − 30 < y < −10, when c = 1m,
b = 30m, E = 2× 106kg

/
cm2, ν = 0.3 (in stresses for the problem, when P0(x) = P · x3.
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Figure 8. Distribution of displacements for technical rubber in domain −c < x < c, −30 < y < −10, when
c = 1m, b = 30m, E = 2× 102kg

/
cm2, ν = 0.42 (in stresses for the problem, when P0(x) = P · x2).

Figure 9. Distribution of displacements for technical rubber in domain −c < x < c, −30 < y < −10, when
c = 1m, b = 30m, E = 2× 102kg

/
cm2, ν = 0.42 (in stresses for the problem, when P0(x) = P · x3).
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Figure 10. Displacement U0(x) = P · x2 along segment AB and distribution of obtained normal stress Py

along segmentA1B1, when c = 1mand E = 2× 106kg
/
cm2, ν = 0.3(steel).

Figure 11. Displacement U0(x) = P · x3 along segment AB and distribution of obtained normal stress Py

along segmentA1B1, when c = 1mand, E = 2× 106kg
/
cm2, ν = 0.3(steel).

Figure 12. Displacement U0(x) = P · x2 along segment AB and distribution of obtained normal stress Py

along segmentA1B1, when c = 1mand, E = 2× 102kg
/
cm2, ν = 0.42(technical rubber).

5. Conclusions

In the paper some non-classical problems are stated. The essence of the problems
is as follows: we must find the distribution of the normal stress along part A1B1
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Figure 13. Displacement U0(x) = P · x3 along segment AB and distribution of obtained normal stress Py

along segment A1B1, when c = 1m and, E = 2× 102kg
/
cm2, ν = 0.42(technical rubber).

Figure 14. Distribution of stresses for steel in domain−c < x < c, −30 < y < −10, when c = 1m, b = 30m,
E = 2× 106kg

/
cm2, ν = 0.3 (in displacements for the problem, when U0(x) = P · x2).

(see Fig. 1) of the border of the half plane so that normal stress σyy or normal
displacement uy along a segment parallel to the border of a given length distanced
from the border by b within the body should be equal to the value of the given
function. The set problems are solved by BEM [15]. There are test examples given
showing the value of normal stress supposed to apply to the section of the half-
plane boundary to obtain the pre-given stress (P0(x) = P ·x2 or P0(x) = P ·x3) or
displacement (U0(x) = P · x2 or U0(x) = P · x3, P = constant) along the segment
inside the body. Using the MATLAB’s software the numerical results of these
problems are obtained and appropriate graphics with discussion are presented.
The problems considered in the work can be used in practice. For instance,

in soils and rocks, materials that are susceptible to cracking and faulting when



Vol. 22, No. 1, 2018 53

Figure 15. Distribution of stresses for steel in domain −c < x < c, − 30 < y < −10, when c = 1m,
b = 30m, E = 2× 106kg

/
cm2, ν = 0.3 (in displacements for the problem, when U0(x) = P · x3).

Figure 16. Distribution of displacements for steel in domain−c < x < c, − 30 < y < −10, when c = 1m,
b = 30m, E = 2× 106kg

/
cm2, ν = 0.3 (in displacements for the problem, when U0(x) = P · x2).
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Figure 17. Distribution of displacements for steel in domain−c < x < c, − 30 < y < −10, when c = 1m,
b = 30m, E = 2× 106kg

/
cm2, ν = 0.3 (in displacements for the problem, when U0(x) = P · x3).

Figure 18. Distribution of stresses for technical rubber in domain −c < x < c, − 30 < y < −10, when
c = 1m, b = 30m, E = 2× 102kg

/
cm2, ν = 0.42 (in displacements for the problem, when U0(x) = P · x2).
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Figure 19. Distribution of stresses for technical rubber in domain −c < x < c, − 30 < y < −10, when
c = 1m, b = 30m, E = 2× 102kg

/
cm2, ν = 0.42 (in displacements for the problem, when U0(x) = P · x3).

Figure 20. Distribution of displacements for technical rubber in domain −c < x < c, −30 < y < −10, when
c = 1m, b = 30m, E = 2× 102kg

/
cm2, ν = 0.42 (in displacements for the problem, when U0(x) = P · x2).
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Figure 21. Distribution of displacements for technical rubber in domain −c < x < c, −30 < y < −10, when
c = 1m, b = 30m, E = 2× 102kg

/
cm2, ν = 0.42 (in displacements for the problem, when U0(x) = P · x3).

sheared, as well materials used to demolish military structures or in underground
facilities.

Appendix

Flamant problem

The problem of a concentrated force applied perpendicular to the surface of
an elastic isotropic half-plane is known as Flamant problem. The solution of the
Flamant problem can be found in many courses of elasticity, for example, see [17,
18]. It is an example of singular solutions in the static theory of elasticity.
In the case of distribution of constant normal stresses py (x) = Py along the

segment −a ≤ x ≤ a, y = 0 with a finite length we will have [15].

ux = − Py

2πµ

{
(1− 2ν) [(x− a) θ1 − (x+ a) θ2 − πa] + (1− ν) y ln

((
r21
/
r22
))}

,

uy = Py

2πµ {− (1− 2ν) y (θ1 − θ2) + (1− ν)
[
(x− a) ln r21 − (x+ a) ln r21+

+ (L+ a) ln (L+ a)2 − (L− a) ln (L− a)2
]}

,

σxx = −Py

π

[
θ1 − θ2 + y (x− a)

/
r21−y (x+ a)

/
r22
]
, (A.1)

σyy = −Py

π

[
θ1 − θ2 − y (x− a)

/
r21+y (x+ a)

/
r22
]
,

σxy = −Py

π y2
(
1
/
r21 − 1

/
r22
)

where θ1 = arctan (y/ (x− a)) , θ2 = arctan (y/ (x+ a)) , r21 = (x− a)2 +

y2, r22 = (x+ a)2 + y2, L is any arbitrary constant and means that uy displace-
ment will be measured relatively to the displacement of any x = ±L point of the
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boundary of a half-plane (reference point).

Figure 22. Distances to the extreme points and corresponding angles.

When y = 0, σyy is as follows: σyy = −Py(θ1 − θ2) /π.
According to Fig.22, when y = 0 then θ1 = θ2, with the exception of the segment

|x| < a, where θ1 = −π and θ2 = 0. Thus, we find that σyy = 0 when |x| > a, and
σyy = Py when |x| < a.

References

[1] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and
surface waves, J. Appl. Phys, 54 (1983), 4703-4710

[2] A.S. Khachikyan, On harmonic and biharmonic problems for equations with nonclassical boundary
conditions (in Russian), Izv. Nats. Akad. Nauk Armen. Mekh., 59, 4 (2006), 24-31

[3] V.G. Sarkisyan, A plane elasticity problem with nonclassical boundary conditions. Actual problems
of continuum mechanics, Proceedings of International Conference devoted to the 95th anniversary of
Academician NAN of Armenia N. Kh. Arutyunyan, Yerevan, (2007), 373-376

[4] A.V. Bitsadze, Onthe theory of nonlocal boundary value problems (Russian), Dokl Akad Nauk SSSR,
277, 1 (1984), 17-19

[5] D.G. Gordeziani, A class of nonlocal boundary value problems in elasticity theory and shell theory (in
Russian), Theory and numerical methods of calculating plates and shells, Tbilis Gos Univ, II (1984),
106-127

[6] E.I. Obolashvili, Solution of nonlocal problems in plane elasticity theory (Russian), Current problems
i nmathematical physics, Tbilis Gos Univ, II (1987), 295-302

[7] L.A. Agalovyan, The solution asymptotics of classical and nonclassical, static and dynamic boundary-
value problems for thin bodies, J. Int. Appl. Mech., 38, 7 (2002), 765-782

[8] Dehghan Mehdi, Numerical solution of a non-local boundary value problem with Neumann’s boundary
conditions Commun Numer Methods Eng., 19, 1 (2002), 1-12

[9] J. Sladek, V. Sladek, Z.P. Baant, Non-local boundary integral formulation for softening damage, Int.
J. Numer. Meth. Eng., 57, 1 (2003), 103-116

[10] G. Avalishvili, M. Avalishvili, D. Gordeziani, On some non-classical two-dimensional models for
thermoelastic plates with variable thickness, Bull. Georgian Natl. Acad. Sci. (N.S.), 4, 2 (2010), 27-34

[11] D. Gordeziani, E. Gordeziani, T. Davitashvili, G. Meladze, About the solution of some nonlocal
boundary and initial-boundary value problems (in Russian), GESJ Comput. Sci. Telecommun., 3, 26
(2010), 161-169

[12] G. Avalishvili, M. Avalishvili, D. Gordeziani, On integral nonlocal boundary value problems for some
partial differential equations, Bull Georgian Nat. Acad. Sci. (N.S.), 5, 1 (2011), 31-37 .

[13] H.M. Ma, X.-L. Gao, J.N. Reddy, A non-classical Mindlin plate model based on a modified couple
stress theory, Acta Mechanica, 220, 1 (2011), 217-235

[14] N. Khomasuridze, R. Janjgava, N. Zirakashvili, Some non-classical thermoelasticity problems for a
rectangular parallelepiped, Meccanica, 49, 6 (2014), 1337-1342

[15] S.L. Crouch, A.M. Starfield, Boundary Element Methods in Solid Mechanics, GEORGE, ALLEN &
UNWIN, London-Boston-Sydney, 1983

[16] Y.N. Rabotnov, Mechanics of Deformable Solids, Nauka, Moskow, 1988
[17] S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, 3rd edn. New. York: McGraw-Hill, 1970



58 Bulletin of TICMI

[18] M.H. Sadd, Elasticity; Theory, Applications and Numerics, Second Edition, Amsterdam. Boston.
Heodelberg. London. New. York. Oxford. Paris. San Diego. San Francisco. Singapore. Sydney. Tokyo,
Elsevier, 2009


	Information for the Authors.pdf
	Information for the Authors
	Information for the Authors
	Information for the Authors

