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HOMOTOPICAL DYNAMICS

by Wacław Marzantowicz

Abstract. In this paper we give a review of some recent results of study
the dynamics of a map f with use of topological invariants. We restrict
our consideration to these invariants which are determined by the homo-
topy class of f . Our main object of interest is the set of homotopy minimal
periods of f , i.e., the set of natural numbers which are minimal periods
for all maps which are homotopic to f . We also show that the same tools
are useful in the study of minimal periods of a map of the sphere which
commutes with a free homeomorphism and in establishing that the loga-
rithm of spectral radius of a map of compact nilmanifold is a lower bound
for the topological entropy.

1. Homotopical Dynamics. Let f : X → X be a self-map of a compact
connected polyhedron X .

Definition 1.1. We say that an invariant of f describes the dynamics of
f if it depends on {fn}n∈N .

Example 1.2. Below we include a list of invariants describing the dyna-
mics.

Let Pm(f) = Fix (fm) be the set of points of period m , and Pm(f) =
Pm(f) \

⋃
k<m

P k(f) be the set of points for which m is the minimal period.

Then the set of all periodic points P (f) :=
⋃
m

Fix (fm) =
⋃
m

Pm(f) is such an

invariant.
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Also the set of all minimal periods, denoted by Per(f) , the topological
entropy, denoted by h(f) (see [9] for a definition of entropy), the spectral
radius of the induced map H∗(f ; R) on the real cohomology spaces, denoted by
sp (f) (cf. [39] and Section 4), are invariants describing the dynamics.

Also the asymptotical Lefschetz and Nielsen numbers, denoted by L∞(f)
and respectively N∞(f) (cf. [11, 19]), give such exemplifications as well.
Other invariants which describe the dynamics of f are the set of non-wandering
points (cf. [9]), denoted by Ω(f) , and discrete Conley index, denoted by
Con(f) (cf. [33]).

Definition 1.3. We say that an invariant characterizes the homotopy dy-
namics of f if it has the same value for every g homotopic to f .

It follows from the definition that sp (f) , L∞(f) , N∞(f) , and Con(f)
are homotopy dynamics invariants. On the other hand, P (f) and Per(f) are
not homotopy invariants (cf. Examples 1.5, 4.4). Neither is h(f) , because it
is not continuous with respect to C0–topology of Map(X, X) (cf. [9]).

Definition 1.4. Define the set of homotopy minimal periods as the set

HPer(f) :=
⋂
g'f

Per(g) ,

i.e., m ∈ N is a homotopy minimal period of f if it is the minimal period for
every g homotopic to f .

By definition HPer(f) ⊂ Per(f) and the inclusion is proper in general.

Example 1.5. Let us take f = id S1 . Of course f ' gα, where g = gα is the
rotation by α , a small irrational angle. Then Per(gα) = ∅, and HPer(f)⊂

6=
Per(g).

For a map of a smooth manifold any homotopy dynamics invariant provides
an information about the rigid part of dynamics, because a small perturbation
of a map f is homotopic to it. In particular, the following is true.

Remark 1.6. If X is a smooth manifold then HPer(f) = HPer(h) for
any small perturbation h of f .

For given r ∈ Z , let z 7→ zr be a map of S1 . We have HPer(f) = ∅ for
r = 1 ; HPer(f) = {1} for r = 0 . For r = −1 , let us consider the map f which
is the composition of the map z 7→ z and a homeomorphism h : S1 → S1 which
has two fixed points {−1, 1} and pushes points of the upper hemisphere from
{1} towards {−1} , and points of the lower hemisphere from {−1} , towards
{1} . Since h is homotopic to the identity, deg f = −1 . On the other hand,
P (f) = {−1, 1} , thus Per = {1} , which shows that HPer(f) = {1} , because
L(f) 6= 0 for every map of deg(f) = −1 .
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The set of homotopy minimal periods (under another name) was first stu-
died for selfmaps of the circle M = S1 by S. Efremova in [7] and L. Block,
J. Guckenheimer, M. Misiurewicz, L. S. Young in [4]. They wanted to prove
an analogue of the Šarkovskii theorem of [37] for the circle maps. As the result
they got the following theorem.

Theorem 1.7. Let f : S1 → S1 be a map of the circle and Af = r ∈ Z =
M1×1(Z) the degree of f.

There are three types of the sets of minimal homotopy periods of f :
(E) HPer(f) = ∅ if and only if r = 1 .
(F) HPer(f) 6= ∅ and is finite if and only if r = −1 or r = 0.

Then HPer(f) = {1}.
(G) HPer(f) = N for the remaining r, i.e. |r| > 1, with except one special

case r = −2 when HPer(f) = N \ {2} .

Next L. Alsedá, S. Baldwin, J. Llibre, R. Swanson, and W. Szlenk examined
the case M = T 2 in [1]. To give a description of the set of the homotopy
minimal periods (which they called “the minimal set of periods”) they used the
Nielsen theory. Their main theorem, after a reformulation in our terms, may
be stated as follows.

Theorem 1.8. Let f : T 2 → T 2 be a map of the torus, A ∈ M2×2(Z) the
linearization of f, and χA(t) = t2 − at + b be its characteristic polynomial.

There are three types of the sets of minimal homotopy periods of f :
(E) HPer(f) = ∅ if and only if −a + b + 1 = 0 .
(F) HPer(f) is nonempty and finite for 6 cases corresponding to one of the

six pairs (a, b) listed below
(0, 0), (−1, 0), (−2, 1), (0, 1), (−1, 1), (1, 1).

Then HPer(f) ⊂ {1, 2, 3 } . Moreover, the sets TA and HPer(f) are as fol-
lows:

Cases of Type (F)
( a, b) TA HPer(f)
( 0, 0) N {1}
( 0, 1) N \ 4N {1, 2}
(−1, 0) N \ 2N {1}
(−1, 1) N \ 3N {1}
(−2, 1) N \ 2N {1}
( 1, 1) N \ 6N {1, 2, 3}

(G) HPer(f) is infinite for the remaining a , and b . Furthermore, HPer(f)
is equal to N for all pairs (a, b) ∈ Z2 with the exception of the following
special cases listed below. We say that a pair (a, b) ∈ Z2 satisfies
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condition 10 if a 6= 0 and a + b + 1 = 0 ,
condition 20 if a + b = 0 ,
condition 30 if a + b + 2 = 0 respectively,

and (a, b) is not one of the pairs of case (E) and (F).
The table below sets forth the special cases.

(a, b) TA HPer(f)
(−2, 2) N N \ {2, 3}
(−1, 2) N N \ {3}
(0, 2) N N \ {4}

(a, b) : (a, b) satisfies 10 N \ 2N N \ 2N
(a, b) : (a, b) satisfies 20 N N \ {2}
(a, b) : (a, b) satisfies 30 N N \ {2}

A qualitative progress in methods had been made by B. Jiang and J. Llibre
who gave a description of the set of homotopy minimal periods for the torus
M = T d , with any d ∈ N ([20]). To prove a general theorem (cf. Theorem
3.2), they applied a fine combinatorics argument and a deep algebraic number
theory theorem they proved, but also used a topological result of You ([43, 44])
on the periodic points on tori. The mentioned number theory theorem is close
to A. Schinzel’s theorem on prime divisors (cf. [38]).

It was natural to ask whether this theorem can be extended onto larger
classes of compact manifolds containing the tori, namely: compact nilmani-
folds, compact completely slovable solvmanifolds, exponential solvmanifolds.
This paper gives a survey of recent results that include: a general description
of the set of homotopy minimal periods for the maps of a compact nilmanifold
(Theorem 3.2) and compact completely solvable solvmanifold, their exemplifi-
cation for dimension 3 (Theorems 3.10, 3.14) with a detailed list, specification
for homeomorphisms (Theorems 3.12,3.15) and consequences in the form of
Šarkovskii type theorems (Theorems 3.11, 3.16).

We begin with a background on the above classes of manifolds and present
a construction of the so-called linearization Af of a map X → X of such a
manifold (Definition 2.6). It is an integral d × d matrix, d the dimension of
X , and is essential in formulation of the main theorems, thus in the description
of the set of homotopy minimal periods. It properties can be also used for a
proof of the Shub conjecture on an estimate of the topological entropy of a
continuous map of a compact nilmanifold (Theorem 4.5). Finally, we display
that a fine modification of Nielsen theory of periodic points can be used to
prove the existence of infinitely many minimal periods (thus infinitely many
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periodic points) for a continuous map of the sphere provided it commutes with
a free homeomorphism of a finite order (Theorems 5.7, 5.5).

2. Nilmanifolds and linearization of a map.

Definition 2.1. Let Γ ⊂ G be discrete, co-compact subgroup of a con-
nected Lie group G of dimension d . (A co-compact subgroup is called uni-
form). We say that G is nilpotent if the central tower Gi := [Gi+1, G],
Γi := Gi ∩ Γ, :

G0 = e < G1 < G2 < · · · < Gk−1 < Gk = G, and

is finite. Then finite is also corresponding tower for Γ , Gi := Gi ∩ Γ

Γ0 = e < Γ1 ≡ Zs1 < Γ2 < · · · < Γk−1 < Γk = Γ ,

and each Γi is uniform in Gi (cf. [3, 24, 35]).

Definition 2.2. We say that a compact manifold X of dimension d is
a nilmanifold if it is the quotient space G/Γ of a simple-connected nilpotent
group G by a uniform discrete subgroup Γ ⊂ G ([3, 24, 35]).

Example 2.3. T d := Rd/Zd ≡ (S1)d is the torus.
If d ≤ 2 then it is the only example.

For a ring R with unity (e.g. R = R, R = C ) let Nn(R) denote the group
of all unipotent upper triangular matrices whose entries are elements of the
ring R, i.e. 

1 r12 · · · · · r1n

0 1 r23 · · · · r2n

0 0 1 r34 · · · r3n

· · · · · · · ·
· · · · · · 1 rn−1 n

0 0 · · · · 0 1

 .

— Iwasawa manifolds: Nn(R)/Nn(Z) and Nn(C)/Nn(Z[ı]), where Z[ı] is the
ring of Gaussian integers are examples of nilmanifolds of dimension 3 not dif-
feomorphic to the torus. They are called Heisenberg manifolds. The Iwasawa
3-manifold N3(R)/N3(Z) , is called “Baby Nil”

It is known ([3]) that for d = 3 every nilmanifold is, up to diffeomorphism,
of the form N3(R)/Γp,q,r, where the subgroup Γp,q,r, with fixed p, q, r ∈ N
consists of all matrices of the form1 k

p
m

p·q·r
0 1 l

q

0 0 1

 , where k, l, m ∈ Z.
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Moreover, as a complete set of representatives of the diffeomorphims classes of
such manifolds we can take the family {N3(R)/Γ1,1,r} , r ∈ N .

Fadell and Husseini in [8] showed that the category of compact nilmanifolds
is equivalent to the category of manifolds of so called nilpotent class defined
below by an inductive procedure.

Definition 2.4. Let N denote a class of compact connected manifolds
satisfying the following two conditions:

N.1 N contains all tori (products of circles)
N.2 N contains also total spaces X of fibrations: Given any map g : X →

X , where X ∈ N is not a torus, there is a fiber map f

T
f1→ T

↓ ↓
X

f→ X
↓ ↓
B

f̄→ B ,

where p is a principal T–fibration, T a torus, B ∈ N and f ' g .

Note that the exact sequence of homotopy of (F ⊂ X, p, B) , F = T s,
s < d yields that the group π1(X) = Γ is an extension of the form

π1(T s) = Zs ⊂ π1(X) = Γ→ π1(B) = Γ/Zs .

Moreover, the Fadell–Husseini fibration allows us to associate with f a
d× d integral matrix A = Af by inductive procedure described below.

Definition 2.5. For X = T d we define Af as the matrix of homomor-
phism induced by f on π1(T d) ' H1(T d; Z) ' H1(T d; Z) ' Zd . Note that
this matrix defines a linear map of Rd preserving Zd and such that the induced
map [Af ] : T d → T d is homotopic to f .

In general, we define the linearization matrix by induction on the dimension
of nilmanifold.

Definition 2.6. Let f : X → X , X ∈ N , dim X = d , be given as
a fiber map of the Fadell–Husseini fibration (f1, f, f̃) of (T d1 , X, B), B ∈
N , dim B = d̃ with Af1 , Af̃ the linearizations of f1 and f̃ , respectively.
We call the integral d× d matrix

A = Af ∈Md×d(Z), Af := Af1 ⊕Af̃

the linearization of f .
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It is easy to show that the matrix Af express the Lefschetz number of f
by the following formula (cf. [10, 14]).

Theorem 2.7. Let f : X → X , dim X = d be a map of nilmanifold and
A = Af the linearization of matrix of f . Then

L(fm) = det(I −Am)

for every m ∈ N .

The important property of a self-map f of compact nilmanifold relates the
Lefschetz number of f with the Nielsen number making the latter effectively
computable.

Theorem 2.8. [Anosov Theorem] For a map f of nilmanifold we
have

N(f) = |L(f)| .

For a proof see [2], [8]. The formula was first proved for a torus map
in [6].

By the definition (Def. 2.2) a compact nilmanifold x is so-called Eilenberg–
Moore K(Γ, 1)–space (cf. [41]), because π1(X) = Γ and πk(X) = 0 for k > 1 .
Consequently the set [X, X] of homotopy classes of self-maps of M is in one-
to-one correspondence with the set of all homomorphisms of the fundamental
group π1(X) = Γ ([41]). The uniform and discrete subgroups of nilpotent
groups have additionally a property of the extension of a homomorphism, called
the rigidity property.

Proposition 2.9. Let X = G/Γ be a compact nilmanifold and π1(X) =
Γ its fundamental group. Then [X, X] ←→ Hom(Γ, Γ) . Moreover, every
homomorphism φ : Γ→ Γ has a unique extension Φ : G→ G .

For a proof see [35].

The linearization matrix Af (cf. Definitions 2.5 and 2.6) is also well-defined
if f is a self-map of an NR–manifold X (cf. [22]). The later is a subclass of
all compact solvmanifolds (cf. Def. 2.10) containing so called exponential solv-
manifolds (see Def. 2.12, also [3, 22], [17] for the definition and more details
on exponential manifolds). It is remarkable that Af has a nice analytical de-
scription if X is so called completely solvable solvmanifold (cf. Theorem 2.13).

Definition 2.10. The compact quotient G/Γ , G of solvable Lie group
by a uniform closed subgroup Γ is called solvmanifold. If Γ is a discrete
subgroup, then the solvmanifold is called special.

For a given Lie group G let G denote its Lie algebra, which is isomorphic,
as the vector space, to the tangent space Te at the neutral element of G .
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Definition 2.11. A solvable Lie group G is called completely solvable
if for every X ∈ G and the adjoint (linear) map ad X : G → G we have
σ(ad X) ⊂ R , where σ(A) denotes the spectrum of the quadratic matrix A .

Definition 2.12. A Lie group G is called exponential if exp : TeG = G →
G is onto ⇐⇒ σ(ad X) ∩ ıR = ∅ ,

For a map of a compact completely solvable manifold the matrix Af of
linearization of f can be defined in an analytic way described below (cf. [17]).
This definition is based on the following theorem.

Theorem 2.13. (Hattori) Let (Λ∗G∗, δ) be the Chevalley–Eilenberg dif-
ferential complex of invariant exterior forms associated with the Lie algebra G
of a simply connected, completely solvable Lie group G . If Γ ⊂ G is a uniform
discrete subgroup, then

H∗(G/Γ; R) ∼= H∗(Λ∗G∗, δ).
This theorem was first showed for a compact nilmanifold by Nomizu (cf. [34]).

For a proof of the version stated here see [36].
Consequently, we can construct a d×d matrix by the following procedure:

First we derive the homomorphism f∗ induced on the fundamental group Γ =
π1(X), X = G/Γ of X :

f 7→ (φ := f∗) : Γ→ Γ .

Next, we extend this homomorphism φ to a unique continuous homomorphism
Φ of G , by Proposition 2.9:

φ 7→ Φ : G→ G .

Finally, we take the derivative of the homomorphism (a continuous homomor-
phism of a Lie group is analytic) at the neutral element of G :

Φ 7→ A := DΦe : (G = TeG)→ G .

In this way we get a matrix A , in general different than Af of Definition 2.6
but still having the property L(f) = det(I −A) (cf. [17]).

3. Main theorems.

Definition 3.1. Let f : X → X be a map of compact nilmanifold and A
its linearization (Def. 2.6). Put

N ⊃ TA := {m ; det(I −Am) 6= 0} .

We call TA set of algebraic minimal homotopy periods.

By an obvious reason if m /∈ TA then m /∈ HPer(f) , because L(fm) =
N(fm) = 0 (cf. [20], [14]). Our main theorem gives a characterization of
the set of minimal homotopy periods for a map of a compact nilmanifold, or
compact completely solvable solvmanifold.
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Theorem 3.2. Let f : X → X be a map of a compact nilmanifold, or
compact completely solvable solvmanifold, of dimension d , A = Af its lin-
earization, and TA ⊂ N as above.

Then HPer(f) ⊂ TA and it is in one of the following three (mutually
exclusive) types:

(E) HPer(f) = ∅ ⇐⇒ N(f) = L(f) = 0 ⇐⇒ 1 ∈ σ(A) ;
(F) HPer(f) is nonempty and finite ⇐⇒ all eigenvalues of A are either

zero or roots of unity;
(G) HPer(f) is infinite and TA \HPer(f) is finite.

Moreover, for all d there are finite sets P (d) , Q(d) of N such that HPer(f) ⊂
P (d) in Type F and TA \HPer(f) ⊂ Q(d) in Type (G).

It is worth of pointing out that the statement of this theorem is the same
as that of its correspondent in the case where X is the torus T d (cf. [20]).

It was noted in [14] that the combinatorics and number theory argument
of Jiang, Llibre proof for torus map carries over the nilmanifold case. However,
a proof required a new topological assertion — a partial Wecken theorem for
periodic points. To formulate it we need the notion of the “periodic” Nielsen
numbers introduced by Boju Jiang in [18].

Definition 3.3. Let f : X → X be a map of a finite polyhedron X .
Then one can define two numeric homotopy invariants of f , called Nielsen
n–periodic numbers, and denoted by NPn(f) , and NFn(f) such that

NPn(f) ≤ #Pn(f) NFn(f) ≤ #Pn(f) = Fix (fn) .

A definition is a little bit technical so we refer to [18] for it.

The main topological component of the proof of Theorem 3.2 was the fol-
lowing fact shown in ([14] Th. B).

Theorem 3.4. Let f : X → X be a selfmap of a compact nilmanifold X .
If NPn(f) = 0 then f ' g , for some g : X → X such that Pn(g) = ∅ .

If X = T d is a torus the corresponding result was already known ([43, 44])
and used by Jiang and Llibre in [20]. As a matter of fact, the quoted result of
You [44] was even in a stronger form that corresponds to Theorem 3.6 stated
below.

The original proof of Theorem 3.4 essentially used the fact that X is a
nilmanifold, but very soon Jezierski noted that it is a fact of general theory of
periodic points, i.e. does not depend on a special structure of manifold (cf. [12].

Theorem 3.5. Let f : X → X , be a map of a PL–manifold with dim X ≥
4 , and NΦn(f) = 0 then f ' g such that Fix (gn) = ∅ .
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Next Jezierski studied this problem in full generality proving a correspon-
dent of the Wecken theorem for periodic points which was conjectured by
Halpern in early eighties and called “Halpern conjecture” in the literature
(cf. [13]).

Theorem 3.6. Let f : X → X be a map of a PL–manifold with dim X ≥ 4
and NΦn(f) = q , then f ' g such that #Fix (gn) = q .

Another tools for the proof of Theorem 3.2, besides already mentioned The-
orem 3.4, are Proposition 2.7, Theorem 2.8 and the following Möbius’ formula:

N(fm) =
∑
k|m

NPk(f) ⇐⇒ NPm(f) =
∑
k|m

µ(m/k)N(fk) .

A description of HPer(f) is attainable due to an observation established
by Boju Jiang and Llibre by a fine combinatorial argument (cf. [20]).

Theorem 3.7. Let f : X → X be a map of a compact nilmanifold. Then
m /∈ HPer(f) if and only if either N(f) = 0 or N(fm) = N(fm/p) for some
prime factor p of m .

Finally, we show that there exists P (d) such that N(fm) > N(fm/p) for
all m ∈ TA (i.e. N(fm) 6= 0 ), m > P (d) . A nontrivial estimate from below
of the rate of convergence of an algebraic number of module 1 is necessary. We
need a new notation. Let α be an algebraic number of degree d and w(x) =
a0x

d +a1x
d−1 + + · · ·+ ad its minimal polynomial with roots α1, . . . , αd . The

measure of α is defined as

M(α) := a0

d∏
i=1

max{1, |ai|} .

The crucial is a characterization of an algebraic number: B. Jiang–Llibre, also
Mignotte ([20]):

Theorem 3.8. For every algebraic number α of degree d and every m ∈ N
such that αm 6= 1 , we have

|1− αm| >
1
2
e−9αH2

, where

a = max
{
20, 12.85| log α|+ 1

2
log M(α)

}
,

H = max
{
17,

d

2
log m + 0.66d + 3.25

}
.

The below inequality was obtained as a consequence of Theorem 3.8 in [20].
It is used to prove the last part of Theorem 3.2.
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Corollary 3.9. Let ρ := sp (A) . Then

N(fm)
N(fn)

>
ρm/2 − 1

e9d(41.4+ d
2

log ρ)(d log m)2
.

Recently a computer program in “Mathematica”, deriving HPer(Af ) for a
given A was written by Komendarczyk and the author in [23]. The dependence
of the length of interval [1, P (d)] and [1, Q(d)] of the statement of Theorem 3.2
only on the dimension d is not necessary for such a program, because we work
with a fixed A . Moreover, under additional assumption that σ(A) ∩ {z = 1}
consists only of nontrivial roots from unity, a modification the inequality 3.9
drastically cuts the interval of searching.

3.1. Lower dimensions — a complete description. It is natural to give a
complete list of all sets of homotopy minimal periods in the case if the dimension
of a manifold is small. Note that proofs of the corresponding theorems for
X = S1 , and X = T 2 (Theorems 1.7 and 1.8 — cf. [4, 1]) already contain
such a list in their formulations. In the paper [20] Jiang and Llibre gave such a
list for maps of M = T 3 including a separate table for homeomorphisms. An
aim of the work [15] was to give such a list for a three dimensional nilmanifold
not homeomorphic to the torus. The corresponding theorem says the following.

Theorem 3.10. Let f : X → X be a map of three-dimensional compact
nilmanifold X not diffeomorphic to T 3 . Let A = A1 ⊕ Ā ∈ M3×3(Z) be the
matrix induced by the fibre map f = (f1, f̄) and χA(t) = χA1(t) · χĀ(t) =
(t− d)(t2 − at + b) be its characteristic polynomial. Then d = b and there are
three types for the minimal homotopy periods of f :

(E) HPer(f) = ∅ if and only if d = 1 or −a + d + 1 = 0 .
(F) HPer(f) is nonempty and finite only for 2 cases corresponding to d = 0

combined with one of the two pairs (a, b)
(0, 0) , and (−1, 0) .

Then we have HPer(f) = {1}. Moreover, the sets TA and HPer(f)
are the following:

( d, a, b) TA HPer(f)
( 0, 0, 0) N {1}
( 0,−1, 0) N \ 2N {1}

(G) HPer(f) is infinite for the remaining (d, a, b = d).
Furthermore, HPer(f) is equal to N for all triples (d, a, b = d) ∈ Z3 except
the following special cases listed below.
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Special Cases of Type (G)

( d, a, b) TA HPer(f)
a + d + 1 = 0, with a 6= 0, N \ 2N N \ 2N
and d /∈ {−2, −1, 0, 1}

( 0, −2, 0) N N \ {2}
(−1, 1, −1) N \ 2N N \ 2N
(−1, −1, −1) N \ 2N N \ 2N
(−2, 1, −2) N \ 2N N \ 2N
(−2, 0, −2) N N \ {2}
(−2, 2, −2) N N \ {2}

Moreover, for every pair subset S1 ⊂ S2 ⊂ N , appearing as HPer(f) and
TA listed above there exists a map f : X → X such that HPer(f) = S1 and
TA = S2 .

A proof is based on a classification of all homomorphisms of the nilpontent
group Γ1,1,r (cf. 2.9). What is remarkable that a condition on an integer
3× 3 matrix A for being a linearization of a map does not depend on r , and
consequently relies upon a condition on a matrix for being a homomorphism of
the Heisenberg algebra (cf. Example 2.3). Note also that an algebraic condition
on linearization for M 6∼= T 3 is more restrictive since χ(A) = χ(A1) χ(A) =
(t − d)(t2 − at + b) is the product here. But additionally the topology yields
that r = deg f1 = deg f̄ = det Ā = b (cf. [15]).

As a consequence of the derived list of all sets of homotopy minimal peri-
ods we got the following Šarkovskii type theorem for a map of compact three
dimensional nilmanifold.

Corollary 3.11. If a self map of a 3-nilmanifold different than 3-torus
is such that 3 ∈ HPer(f) then N \ 2N ⊂ HPer(f) ⊂ Per(f) . If 2 ∈ HPer(f)
then N = HPer(f) = Per(f) . In particular, the first assumption is satisfied if
L(f3) 6= L(f) and the second if L(f2) 6= L(f) .

As for the torus case (cf. [20]) we specified the classification for homeomor-
phisms.

Theorem 3.12. Let f : X → X be a homeomorphism of three-dimensional
compact nilmanifold X not diffeomorphic to T 3 . Let A = A1⊕Ā ∈M3×3(Z)
be the linearization matrix and χA(t) = (t − d)(t2 − at + b) its characteristic
polynomial.

Then d = b = ±1 and consequently HPer(f) = ∅ iff d = 1 (i.e. if f
preserves the orientation), or d = −1 and a = 0 . In particular, HPer(f) = ∅
for every preserving orientation homeomorphism. For d = −1 (i.e. if f
reverses the orientation) and the remaining a we have HPer(f) = N with the
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only two exceptions occuring for a = 1 or a = −1 . For these special cases
TA = HPer(f) = N \ 2N .

The statement follows from Theorem 3.10 and the fact that d = ±1
(cf. [15]).

It is worth of pointing out that the proof of Theorem 3.2 for the completely
solvable solvmanifolds followed the argument of [15] and did not depend on
Theorem 3.6. Consequently, the use of Theorem 3.6 cuts it essentially and let
us to extend it onto maps of NR–manifold. On the other side, the supposed
structure of the completely solvable solvmanifolds is of importance if we wish
to identify [X, X] with Hom(Γ,Γ] , in respect of the rigidity property 2.9. A
direct computation shows (cf. [17]).

Lemma 3.13. Let A : G → G be any endomorphism of Lie algebra of a
three-dimensional connected, solvable, completely solvable group G . Then it
has the following form with respect to the basis {X ,Y,Z}

A =

 a 0 0
b r s
c u v

 ,

where the coefficients satisfy the following conditions:
either r = v = s = u = 0 and a ∈ Z is an arbitrary integer,
or there exists a coefficient r, u, s, v different from 0 and then a ∈ {−1, 1} .
Moreover we have:

1. if a = −1 then r = v = 0 ;
2. if a = 1 then s = u = 0 .

It led to the correspondent classification theorem for three dimensional
completely solvable solvmanifolds (cf. [17]).

Theorem 3.14. Let f : X → X be a map of a compact three dimen-
sional completely solvable special solvmanifold which is not diffeomorphic to
a nilmanifold. Let next M3×3(Z) be the linearization. Then we have three
mutually disjoint cases:

(E) HPer(f) = ∅ iff L(f) = 0 iff a = 1 or ( a = −1 and s u = 1 ) .
(G) HPer(f) = N iff a 6= {−2,−1, 0 + 1} and r = s = u = v = 0 ;

HPer(f) = N \ {2} iff a = −2 r = s = u = v = 0 ;
HPer(f) = N \ 2N iff a = −1 , |s u| ≥ 2 and r = v = 0 .

(F) HPer(f) = {1} in the remaining cases.

It is worth to emphasize that there exists a countable family {Xn = G/Γn}
of not diffeomorphic three–dimensional, completely solvable special solvmani-
folds, where G is the unique connected, simple–connected completely solvable
Lie group corresponding to the Lie algebra of Lemma 3.13.
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As in the case of nilmanifolds we specified this theorem for homeomorphisms
and got a Šarkovskii type theorem ([17]).

Corollary 3.15. For any homeomorphism f : X → X of a compact
special three dimensional completely solvable solvmanifold which is not diffeo-
morphic to a nilmanifold, HPer(f) is either empty or consists of the single
number 1 .

Corollary 3.16. For a map as in Theorem 3.14 we have Šarkovski type
implications: 2 ∈ HPer(f) implies HPer(f) = N . If HPer(f) contains an
even number then N\{2} ⊂ HPer(f) . If HPer(f) contains at least two numbers
then N \ 2N ⊂ HPer(f) .

4. Topological entropy.

Definition 4.1. Let X be a compact metric space, e.g. a compact man-
ifold and f : X → X a self-map of X . We assign with f a real number
h(f) ≥ 0 , or ∞ , called the topological entropy of f . Here we assume that
X is a compact smooth manifold of dimension d .

For a given metric ρ, n ∈ N, and a self-map f : X → X we define a new
metric

ρn(x, y) := max
0≤i≤n

ρ(f i(x), f i(y)).

For a given ε > 0 put
rn(f, ε) := min # ε–net,

Sn(f, ε) := max# ε–separated set.

h(f) := lim
ε→0

lim
n→∞

1
n

log rn(f, ε) =

= lim
ε→0

lim
n→∞

1
n

log Sn(f, ε).

For more details on the entropy see [10]. Roughly speaking, if h(f) > 0
then the dynamics of f is complex (rich).

Let H∗(f) : H∗(X; R) → H∗(X; R) be the linear map induced by f on
the cohomology space

H∗(X; R) :=
d
⊕
0

H i(X; R) .

Recall that if X is a compact smooth manifold then the singular, Čech, simpli-
cial, cellular, or de Rham cohomology theory are equivalent (cf. [41]). Denote
by σ(f) the spectrum of the linear map

H∗(f) : H∗(X; R)→ H∗(X; R)
induced by f : X → X . Next, by sp (f) we denote the spectral radius of the
map H∗(f).
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Michael Shub ([39]) posed the following conjecture about the topological
entropy.

Conjecture 4.2. Let f : X → X be a C1–map. Then

log sp (f) ≤ h(f) .

Misiurewicz and Przytycki in [32] proved that the estimate (4.2) holds for a
continuous map of the torus T d . This led to conjecture posed by A. Katok that
if we assume a special topological form of the manifold X then the estimate
(4.2) holds for every continuous self-maps [21].

Conjecture 4.3. Let X be a manifold with the universal cover homeo-
morphic to the Euclidean space Rd . Then

∀ C0–map f : X → X , log sp (f) ≤ h(f) .

Conjecture 4.2 was proved by Yomdin ([42]) if f is a C∞−map and for a
few special cases under the general C1 assumption (cf. [10, 25, 26, 27]). For
example, Misiurewicz and Przytycki showed that h(f) ≥ log |deg(f)| ([31]).

Note that Conjecture 4.2 is not true for a C0–map as follows from the
following example given by Shub in [39].

Example 4.4. Let hd : S1 → S1 be a map of the circle of degree d ≥ 2 ,
e.g. h(z) := zd . Let next φ : [0, 1] → [0, 1] be a map given as φ(t) :=

√
t .

Representing S2 as the suspension of S1 i.e. S2 = S1 × [0, 1]/ ∼ where
S1 × {0} ∼ ∗, S1 × {1} ∼ ∗ and (x, t) ∼ (x, t) if t 6= 0, 1 , we map

f([z, t]) := [(hd(z), φ(t))] .

Then deg f = deg hd = d . The set of non-wandering points of f (thus also
periodic points) consists of two (fixed) points [S1 × {0}] and [S1 × {1}] . The
same holds for any n–dimensional sphere Sn .

Note that this map is locally near the South Pole equivalent to 2zd‖z‖−1 ,
thus not differentiable. Moreover, observe that every map f : U → C of a
neighborhood U of 0 which in the polar coordinates is of the form f(θ, ρ) =
(d · θ, φ(ρ) φ(r) > r , for r > 0 , can not be smooth at 0 . Indeed, then
|det Df(0)| ≥ 1 , because Dr ⊂ f(Dr) for every disc Dr . But the later yields
that f is a local diffeomorphism at 0 , contrary to its form along the angle
coordinate.

Recently an extension of the result of [32] onto larger class of manifolds
than tori has been shown (cf. [28]).

Theorem 4.5. A. Let f : X → X be a continuous self-map of a compact
nilmanifold X of dimension d . Then

log(sp (f)) ≤ h(f) .



130

A step in the proof of Theorem 4.5 is the following fact.

Proposition 4.6. Let f : X → X be a self-map of a compact nilmanifold

X of dimension d and A ∈Md×d be the linearization of f and ∧A :=
d
⊕
0
∧lA

the sum of all skew-symmetric powers of A . Then sp (f) ≤ sp (∧A) .

Proposition 4.6 can be derived from a linear algebra argument applied to
the spectral sequence of the Fadell–Husseini fibration of Def. 2.4 or from a use
of the de Rham complex of invariant forms on X (cf. [28]).

Next, it seems that one can modify the argument of [32] to show that

Proposition 4.7. We have log sp (∧A) ≤ h(f) .

Theorem 4.5 follows from Propositions 4.6 and 4.7 (cf. [28]).

Remark 4.8. Remark that if L(f) = det(I − A) 6= 0 then Theorem 4.5
follows directly from Proposition 4.6 and the Ivanov theorem ([11]).

Indeed, Ivanov (also Jiang [19]) showed that

(1) log N∞(f) := lim sup
n

1
n

log N(fn) ≤ h(f) .

On the other hand an elementary linear algebra argument shows that:

N∞(f) =

{
sp (∧A) if 1 /∈ σ(A) ,

0 if 1 ∈ σ(A) .

Note that and N(f) = |L(f)| by the Anosov theorem. Consequently,
L(f) 6= 0 ⇐⇒ N(f) 6= 0, or equivalently f 6∼ g, where g is a fixed point free
map then.

5. A symmetry that originates periodic points. There are many def-
initions of chaos. We shall use the following with a very week requirement on
the map f .

Definition 5.1. Let f : X → X be a map. We say that f originates
chaos if either

Per(f) ⊂ N is an infinite set or

m 7→ #Pm(f) is unbounded.

From Theorem 1.7 it follows that for a circle map if |deg f | > 1 then f
originates chaos in the above meaning. The same is not true for maps of Sn ,
n ≥ 2 , as follows from the Shub example (cf. Example 4.4).

One can ask what condition on f : Sn → Sn , together with the necessary
|deg f | > 1 implies the existence of infinitely many periodic points. From the
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main theorem of [40] it follows that it is enough to assume that f is a C1

map to have positive topological entropy, but it does not imply the existence
of infinitely many periodic points in general. In [16] we showed that every
continuous map f : Sn → Sn , n ≥ 1 , of deg f = r , where |r| ≥ 2 , originates
chaos provided it commutes with a free homeomorphism g : Sn → Sn of a finite
order. The sequence {#Fix fk} is unbounded and then Per(f) is infinite.

Definition 5.2. Let X be a smooth manifold and g : X → X a homeo-
morphism of the finite order m . We say that g is free if for every x ∈ X and
1 ≤ k ≤ m , gk(x) = x implies k = m .

Equivalently, we say that an action of the cyclic group {g} ' Zm on X is
given by (k, x) 7→ gk(x) . If g is free then this action is called a free action.

Definition 5.3. Let X be a smooth manifold with an action of a cyclic
group Zm defined by a homeomorphism g : X → X . A map f : X → X is
Zm–equivariant if f α = α f , for each α ∈ Zm . Note that f is Zm–equivariant
if it commutes with the generator of action, i.e. f(gx) = gf(x) .

A homotopy H : X × [0, 1]→ X is equivariant iff

z ∈ X, t ∈ [0, 1], α ∈ Zm implies H(αx, t) = αH(x, t)

Suppose that we have a free action of Zm on Sn , n ≥ 2 , i.e. given a free
homeomorphism g : Sn → Sn of order m . To formulate our result we need a
new notation.

Definition 5.4. Let m = pa1
1 . . . pas

s , ai > 0 , be the decomposition of
m into prime powers. Let k be a natural number. We represent k as k =
pb1
1 .... pbs

s p
as+1

s+1 ...par
r , where p1, ..., pr are distinct primes satisfying pi|m ⇐⇒

i ≤ s , bi ≥ 0 . Finally we put k′ := pb1
1 ....pbs

s .

We are in position to formulate the main result of this section.

Theorem 5.5. Let g : Sn → Sn n ≥ 1 be a free homeomorphism, and
f : Sn → Sn a map commuting with g . Suppose that deg f 6= −1, 0, 1 . Then
for every k ∈ N we have

#Fix fmk ≥ m2 k′ ,

where k′ is defined above.
In particular, for k = ms we have

#Fix fms+1 ≥ ms+2 .

To show this theorem we employed (see [16]) a fine modification of Nielsen
number NFn(f) which estimates #Fix (fn) (cf. Definition 3.3). It can be
applied to the map f/G induced by f on the quotient space X/G , which is
then a generalized lens space. By this way we got an estimate of #Fix ((f/G)n)
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(this estimate is not true if a map of X/G is not of the form f/G ). Finally, by
a geometrical reason these fixed points of (f/G)n give fixed points of fn m .

As a consequence we get:

Corollary 5.6. Under the above assumptions

lim sup
l→∞

#Fix(f l)
l

≥ m .

For a cyclic group of prime order the method allows us also to estimate the
number of m–periodic points of f , with m being the minimal period. Fix a
prime number p|m and restrict the action to Zp ⊂ Zm .

Theorem 5.7. Let f : Sn → Sn be a continuous map which commutes
with a free homeomorphism g of Sn of prime order p . If deg(f) 6= ±1 then
for each s ∈ N there exist at least p−1 mutually disjoint orbits of f of periodic
points each of length ps . Thus

#Pps(f) ≥ (p− 1)ps .

The same is true for any map homotopic to f by equivariant maps.
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