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ON THE GENERALIZED RETRACT METHOD FOR

DIFFERENTIAL INCLUSIONS WITH CONSTRAINTS

by Grzegorz Gabor

Abstract. In the paper, we study the problem of existence of solutions to
differential inclusions remaining in prescribed closed subsets of a Euclidean
space. We find some new homological and homotopical sufficient conditions
for existence of such trajectories. Strong deformations and multivalued
admissible deformations are used as main tools.

Introduction. In the paper we study the problem of existence of trajec-
tories of the first-order differential inclusion

(1) ẋ(t) ∈ F (x(t))

remaining in a given closed set K ⊂ Rn for every t ≥ 0. Such trajectory is
said to be viable in K while the set V iabF (K) of all initial points of viable
trajectories in K is called the viability kernel. So, our problem is equivalent to
the question of non-emptiness of the viability kernel of a given set K.

The above notions have been studied by many authors in several contexts.
We refer the reader to book [3] for rich (but not full) bibliography and examples
of applications in such fields as optimal control, Hamilton–Jacobi equations,
equilibria, etc. Note that viability corresponds to (semi-)invariance problems
in dynamical systems and multivalued dynamical systems.

For differential equations having unique solutions, Ważewski ([21], The-
orem 2) proved a powerful result which gives rather general conditions on
behaviour of trajectories on ∂K implying the existence of a solution remaining
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method, strong deformation retracts, Lipschitz approximations, viability theory, multival-
ued dynamical systems, positive semi-invariance.

Supported by Polish Scientific grant KBN No. 2 P03A 015 25.



142

forever in K. This famous result has been called the Ważewski retract method
or the Ważewski topological principle.

Differential inclusions as well as differential equations without uniqueness
bring us some difficulties. In particular, it may occur that there are some
trajectories starting from a boundary point and leaving K immediately and
some other which go inside, simultaneously. There are several papers dealing
with the class of problems without the uniqueness of solutions (see e.g. [14], [4],
[5]) but, as a necessary assumption, the authors have only considered situations
where the sets of so-called “egress” and “strict egress” points are equal. The
common point of these works lies in using the so-called multivalued retraction,
which will be discussed in section 2. The difficulty is that, in a multivalued
case, we usually meet two different exit sets:

K−(F ) := {x0 ∈ ∂K | ∀x ∈ SF (x0) : x leaves K immediately},

Ke(F ) := {x0 ∈ ∂K | ∃x ∈ SF (x0) : x leaves K immediately},
where “immediately” means that for every ε > 0 there is 0 < t < ε such that
x(t) 6∈ K. When there is no ambiguity, we shall write shortly K− and Ke.
Here SF (x0) stands for the set of trajectories starting from x0.

We have K− ⊂ Ke and Ke is usually essentially larger. The question
arises: which of these exit sets is more important or more appropriate for our
considerations? As we shall see, it depends on methods we would like to use.
We shall describe it in the paper.

The second branch of the history of our problem is connected with the
Conley index theory which has been developed since 70’s in many directions
(see [17] and references therein). Beside lots of results concerning continuous
flows there have also been published some papers on the multivalued case (e.g.
[19, 15, 16]).

The following result by Cardaliaguet (see [6, 7]) gives a connectedness
type sufficient condition for existence of viable trajectories, which, while nar-
row from the topological point of view, concerns a large class of multivalued
problems.

Proposition 0.1. Let K be a closed convex subset of Rn or a closed con-
nected C1 n–manifold in Rn with a boundary ∂K and F be a compact convex
valued upper semicontinuous map with at most a linear growth. If the set K−

is closed and not connected, then V iabF (K) 6= ∅.

The above result motivates us to try to weaken regularity assumptions on
the set K and use more general homological or homotopical conditions instead
of connectedness. This was the main aim of the paper [11]. Now, we also deal
with this topic and develop some parts of [11].
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Let us explain how the paper is organized.
After some background included in Section 1, we divide our considerations

into two sections.
In Section 2 we present some new sufficient conditions for the existence of

viable trajectories in terms of homology groups, admissible maps and multi-
valued retractions and deformations. Theorem 2.1 is the main result of the
section.

Formulations of results of Section 3 use the notion of a (single-valued)
strong deformation but under stronger assumptions on the regularity of sets
K and K−. The main result of this section, Theorem 3.3, forms an essential
progress in comparison with analogous results in [11]. We apply some useful
selection and approximation lemmas, which are themselves interesting.

1. Preliminaries. In the paper we use the following notation: by IntA,
A (or clA) and ∂A we denote the interior, closure and boundary of a subset A
of a metric space X, an open ball centered at x0 and with radius r is denoted
by B(x0, r). The unit ball in a Euclidean space is denoted shortly by B1. We
use also notation | · | for the Euclidean norm. By dM (x) (or dist(x,M)) we
denote the distance from a point x to a closed set M . The distance between
two sets N,M will be always denoted by dist(N,M) := inf{dM (x) | x ∈ N}.
All spaces are assumed to be metric.

The set-valued map F : Rn ( Rn is called a Marchaud1 map if F is upper
semicontinuous (in short: u.s.c.) with compact convex values and at most a
linear growth (that is, there is a constant c > 0 such that |F (x)| := sup{|y| | y ∈
F (x)} ≤ c(1 + |x|), for every x).

It is known ([3], Theorem 3.3.5) that for each x0 ∈ Rn there is an absolutely
continuous solution (which is called a trajectory) to the Cauchy problem

(2) ẋ(t) ∈ F (x(t)) for a.e. t ≥ 0, x(0) = x0 ∈ Rn.

Moreover, it satisfies the estimates:

|x(t)| ≤ (|x0|+ 1)ect for all t ≥ 0

and
|ẋ(t)| ≤ c(|x0|+ 1)ect for a.e. t ≥ 0.

Take b > c. The set SF (x0) of all absolutely continuous solutions to (2) is
viewed as a subset of the Banach space

C := {x ∈ C([0,∞),Rn) | sup
t≥0
|x(t)|e−bt <∞}

1Let us note that in the same time (the 30’s) that class of maps was independently
introduced in the context of differential inclusions by Zaremba in his PhD thesis.
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equipped with the norm

||x||C := sup
t≥0
|x(t)|e−bt.

Lemma 1.1. ([3], Theorem 2.4.4, Corollary 5.3.3, and [1]) If F is a Mar-
chaud map, then SF : Rn ( C is u.s.c. with non-empty compact Rδ values2.
Moreover, if F is Lipschitz, then SF is also lower semicontinuous.

We denote SF (K) :=
⋃

x∈K SF (x).

Let K ⊂ Rn be a closed set.

Definition 1.2. We say that a trajectory x(·) for F starting from x0 ∈ K
is viable in K if x(t) ∈ K for every t ≥ 0. A set K is said to be viable3 under
F , if, for each x0 ∈ K, there is at least one trajectory x ∈ SF (x0) which is
viable in K. The largest closed subset of K viable under F (possibly empty,
in general) is called a viability kernel of K, and is denoted by V iabF (K). It
may be proved (see [3], Theorem 4.1.2) that V iabF (K) consists of all points
x0 ∈ K such that there is a viable trajectory for F in K starting from x0.

Using the notion of the viability kernel we can formulate the Viability
Theorem as follows.

Proposition 1.3. ([3], Theorem 3.3.2) One has K = V iabF (K) if and
only if

F (x) ∩ TK(x) 6= ∅ for every x ∈ K.

Here TK(x) stands for the Bouligand contingent cone toK in a point x ∈ K
defined as:

TK(x) :=
{
v ∈ Rn | lim inf

h→0+

dist(x+ hv,K)
h

= 0
}
.

When the set K is not viable, the viability kernel can be not only smaller
than the whole set K, but even empty. In the paper we look for topological
sufficient conditions for the non-emptiness of V iabF (K). We shall use exit
sets defined in Introduction. It is important from the analytical point of view
that it is possible (see [8], Lemma 5.2) to characterize the exit set in terms
of tangent cones. In particular, one can check whether the exit set K−(F ) is
closed, which is a basic assumption in many results.

2A space X is a compact Rδ–set provided it is homeomorphic to an intersection of a
decreasing sequence of compact contractible spaces. In particular, it is acyclic.

3In terms of multivalued dynamical systems, we can say that K is weakly positively
invariant.
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In the paper we use the so-called exit function τK : SF (Rn) → [0,∞]
defined as follows:

τK(x) :=
{

inf{t > 0 | x(t) 6∈ K}, for x not viable,
∞, for x viable.

It is known (see [3], Lemma 4.2.2) that, for any closed set K, the map τK is
upper semicontinuous (as a generalized real function).

Define also the function ρK : SF (K)→ [0,∞],

ρK(x) := inf{t > 0 | x(t) ∈ Ke}.

Lemma 1.4. ([11], Lemma 1.9) Assume that Z ⊂ K and no trajectory
starting from Z remains in K. The function ρK(·) is lower semicontinuous
(l.s.c.) on Z provided

(3) for each x0 ∈ Ke \Ke and x ∈ SF (x0), x([0,∞)) ∩Ke = ∅.
In particular, if the set Ke is closed, then ρK(·) is l.s.c.

Remark 1.5. There are important examples where (3) holds for non-closed
Ke. For instance, in considerations in [2], Ke \Ke is a singleton in which F is
equal to zero. Second example can be found in [18], Section 5. Notice also that
if Ke \Ke 6= ∅, then assumption (3) implies immediately that V iabF (K) 6= ∅.
Therefore (3) will be used only in results on localization of initial points of
viable trajectories; in other results we will assume that the set Ke is closed.

Let us finally recall some important information on multivalued admissible
maps which we use in the next section.

A map p : X → Y is said to be a Vietoris map provided p is onto, proper
(i.e. p−1(A) is compact, for any compact subset A of Y ), and the set p−1(y)
is acyclic4 for any y ∈ Y . A multivalued map ϕ : X ( Y is called admissible
(in the sense of Górniewicz [12]) if there exists a space Γ and two single-
valued maps p : Γ → X and q : Γ → Y such that p is a Vietoris map, and
q(p−1(x)) ⊂ ϕ(x), for every x ∈ X. We say that the pair (p, q) above is a
selected pair of ϕ and denote it by (p, q) ⊂ ϕ. Of course, ϕ may have many
selected pairs. From the Vietoris theorem (see [13], Theorem 8.9) it follows
that a Vietoris map p induces an isomorphism p∗ : Ȟ(X)→ Ȟ(Y ).

It enables to consider for any selected pair (p, q) of ϕ a homomorphism

Ȟ(X)
p−1
∗−→ Ȟ(Γ)

q∗−→ Ȟ(Y ).

We define
ϕ∗ := {q∗p−1

∗ | (p, q) ⊂ ϕ}.
4With respect to the Čech homology functor with compact carriers and coefficients in

Q. It means that Ȟn(p−1(y)) = 0 for n > 0 and Ȟ0(p
−1(y)) = Q.
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If ϕ : X ( Y is acyclic, i.e. it has compact acyclic values, then for any two
selected pairs (p, q), (p′, q′) of ϕ, there is q∗p−1

∗ = q′∗(p
′)−1
∗ ([13], Proposition

40.4). Hence, since every single-valued map is acyclic, we can obtain f∗, for

f : X → Y , considering both diagrams X
pf←− Gr(f)

qf−→ Y and X idX←− X f−→
Y , where pf (x, y) = x and qf (x, y) = y.

Proposition 1.6. ([13], Theorem 40.5) Let ϕ : X ( X1 and ψ : X1 ( X2

be two admissible maps. Then the composition ψ◦ϕ : X ( X2 is an admissible
map and, for each selected pairs (p1, q1) ⊂ ϕ and (p2, q2) ⊂ ψ, there exists a
selected pair (p, q) ⊂ ψ ◦ ϕ such that (q2)∗(p2)−1

∗ (q1)∗(p1)−1
∗ = q∗p

−1
∗ .

We will need the following.

Proposition 1.7. ([11], Proposition 6.4) Let ϕ : X ( X1 and ψ : X1 (
X2 be two admissible maps. If ϕ = i : X ↪→ X1 (resp. ψ = i : X1 ↪→ X2), then

(4) (ψ ◦ i)∗ = {q∗p−1
∗ i∗ | (p, q) ⊂ ψ},

resp.

(5) (i ◦ ϕ)∗ = {i∗q∗p−1
∗ | (p, q) ⊂ ϕ}.

It is easy to see that, for any two admissible maps, if ϕ ⊂ ψ, then ϕ∗ ⊂ ψ∗.
Two admissible maps ϕ,ψ : X ( Y are homotopic (written ϕ ∼ ψ) pro-

vided there exists an admissible map χ : X × [0, 1] ( Y such that χ(·, 0) ⊂ ϕ
and χ(·, 1) ⊂ ψ.

Proposition 1.8. ([13], Theorem 40.11, Corollary 40.12) For any two
admissible maps ϕ,ψ : X ( Y , if ϕ ∼ ψ, then ϕ∗ ∩ ψ∗ 6= ∅.

In particular, if ϕ : X ( X and ϕ ∼ idX , then IdȞ(X) = q∗p
−1
∗ , for some

selected pair (p, q) of ϕ.

2. First approach: homological one. The aim of this section is to
prove the following result being a generalization of Theorem A in [11] (see also
Theorem 12 in [10]).

Theorem 2.1. Let K be a closed subset of Rn and F : Rn ( Rn be a
Marchaud map. Assume that the set Ke is closed and

(6)

there is a subset A ⊂ K, Ke ⊂ A,
and there exists a retraction r : A→ Ke

such that x([0, τK(x)]) ⊂ A
for every x0 ∈ Ke and every x ∈ SF (x0).

If the homomorphism i∗ : Ȟ(Ke)→ Ȟ(K) induced by the inclusion map is
not an isomorphism, then V iabF (K) 6= ∅.
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Before the proof, let us give some comments.

Comment 1. Our assumption (6) excludes, roughly speaking, the situation
where some trajectories starting from a component of Ke leave K through
another one.

Comment 2. We may illustrate the importance of assumption (6) with the
following example.

Let

K := ([−1, 2]× [−2, 2]) \
{
(x, y) ∈ R2 | x > 0,−x2 < y < x2

}
and let f : R2 → R2 be given by

f(x, y) :=



(1, 2
√
y), 0 ≤ y ≤ 1,

(1,−2
√
−y), −1 ≤ y < 0,

(1, 2
√

2− y), 1 < y ≤ 2,
(1,−2

√
y − 2), y > 2,

(1,−2
√
y + 2), −2 ≤ y < −1,

(1, 2
√
−y − 2), y < −2.

One can check that the set Ke consists of exactly three points, so Ȟ(Ke) 6∼=
Ȟ(K) but assumption (6) is not satisfied (look at the origin which belongs to
Ke). Obviously, V iabF (K) = ∅.
Comment 3. One can easily find (even in the Lipschitz single-valued case)
examples where assumption (6) holds, Ȟ(Ke) ∼= Ȟ(K) and V iabF (K) = ∅.
Comment 4. Assumption (6) is weaker and more suitable than the following
one considered in Theorem A in [11]:

(7) for every x0 ∈ Ke(F ) and every x ∈ SF (x0), x([0, τK(x)]) ⊂ Ke(F ).

The importance of the replacing assumption (7) by (6) is visible in the following
simple example.

Let K := B1 ⊂ R2 and F : R2 ( R2,

F (x, y) := {(x+ u,−y + v) ∈ R2 | u ∈ 1
2
[−y, y], v ∈ 1

2
[−x, x]}.

It is easy to check that

K− = cl

{
(x, y) ∈ ∂B1 | inf

u∈F (x,y)
〈u, (x, y)〉 > 0

}
=

=

{
(x, y) ∈ ∂B1 | x2 ≥ 5 +

√
5

10

}
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and

Ke = cl

{
(x, y) ∈ ∂B1 | sup

u∈F (x,y)
〈u, (x, y)〉 > 0

}
=

=

{
(x, y) ∈ ∂B1 | x2 ≥ 5−

√
5

10

}
.

To check (6) it is sufficient to notice that, for every (x, y) ∈ ∂B1 with x > 1
5

(x < −1
5), one has infu∈F (x,y)〈u, (1, 0)〉 > 0 (resp. infu∈F (x,y)〈u, (−1, 0)〉 > 0),

and Ke ⊂ A := {(x, y) ∈ B1 | |x| > 1
5}. It is seen that Ke is a retract of A, and

each trajectory x starting in Ke satisfies x([0, τK(x)]) ⊂ A. Note that there
exist trajectories starting in Ke which do not satisfy condition (7).

Proof of Theorem 2.1. Assume, on the contrary, that there is no viable
trajectory in K. Consider the multivalued homotopy H : K × [0, 1] ( K,

H(x0, t) :=⋃
x∈SF (x0)

{
x([tρK(x), tτK(x)]), if tτK(x) ≤ ρK(x),
x([tρK(x), ρK(x)]) ∪ r(x([ρK(x), tτK(x)])), if tτK(x) > ρK(x).

The map H can be described as the following composition

K × [0, 1]
SF×id
( SF (K)× [0, 1]

J×id
( SF (K)× [0,∞)× [0, 1] k→ K,

where (SF×id)(x0, t) := SF (x0)×{t}, (J×id)(x, t) := {x}×[ρK(x), τK(x)]×{t}
and

k(x, s, t) :=
{
x(st), if st 6∈ [ρK(x), τK(x)],
r(x(st)), if st ∈ [ρK(x), τK(x)].

Since ρK is l.s.c. (see Lemma 1.4) and τK is u.s.c., one can see that the map J
is a compact convex valued u.s.c. map. Properties of r and the solution map
SF (·) imply that H, as a composition of admissible maps, is admissible. It is
seen that H(x0, t) 3 x0 for every x0 ∈ Ke. Moreover, H joins H(·, 0) = idK

with H(·, 1) = i ◦ Φ : K ( K, where Φ : K ( Ke,

(8) Φ(x0) :=
⋃

x∈SF (x0)

r(x([ρK(x), τK(x)])).

Consider the diagram
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Ke

Ke
-

- K

K

�
�

�
�

�

Φ ◦ i Φ

i

i

i ◦ Φ

◦ ◦ ◦

From Proposition 1.8 applied to H, IdȞ(K) ∈ (i ◦ Φ)∗, which means that
IdȞ(K) = i∗q∗p

−1
∗ for some selected pair (p, q) of Φ (comp. (5)) and hence,

i∗ is onto. On the other hand, since idKe ⊂ Φ ◦ i, from (4) one obtains
IdȞ(Ke)

= q̄∗p̄
−1
∗ i∗ for some selected pair (p̄, q̄) ⊂ Φ. This implies that i∗ is

injective and so, an isomorphism; a contradiction.

We can call the map H in the above proof a strong admissible (multivalued)
deformation and H(·, 1) a multivalued admissible retraction. Hence, we can
formulate the above statement in a slightly more general way, namely: the
viability kernel is non-empty if there is no strong admissible deformation of K
onto Ke. The notions given above lead us also to the following.

Corollary 2.2. Let K be a closed subset of Rn and F : Rn ( Rn be
a Marchaud map. Assume that Ke is closed and (6) is satisfied. Then, if
there is no multivalued admissible retraction of K onto Ke, V iabF (K) 6= ∅. In
particular, if K is connected and Ke is disconnected, then V iabF (K) 6= ∅.

Note that the notions of admissible deformation and admissible retraction
are more appropriate for invariance problems than the notion of a multivalued
retraction5 considered e.g. in [4, 5, 14]. Indeed, one can easily find a multival-
ued retraction of a finite dimensional ball onto its boundary (!). Admissibility
of a map is just a suitable property, which is useful in topological fixed point
theory and some related topics (see [13] and references therein).

Using similar arguments as in the proof of Theorem 2.1 we can also prove
the result on localization of initial states of viable trajectories inK, generalizing
analogous results by Ważewski and others (see [4, 5, 14]).

5We say that a multivalued map Φ : X ( A, A ⊂ X is a multivalued retraction provided
Φ is a compact connected valued u.s.c. map with x ∈ Φ(x) for every x ∈ A.
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Corollary 2.3. Let K be a closed subset of Rn and Z ⊂ K be an arbitrary
subset. Assume that F : Rn ( Rn is a Marchaud map satisfying (3) and

(9)

there is a subset A ⊂ K, Ke ⊂ A,
and there exists a retraction r : A→ Ke

such that x([ρK(x), τK(x)]) ⊂ A
for every x0 ∈ Z and every x ∈ SF (x0).

If there is an admissible multivalued retraction of Ke onto Z ∩ Ke and
there is no admissible multivalued retraction of Z onto Z ∩Ke, then there is a
trajectory x(·) starting from Z \Ke and viable in K.

In the proof, we construct an admissible map Φ : Z ( Ke given by (8) and
compose it with the admissible retraction given in assumptions. We obtain
an admissible retraction of Z onto Ke ∩ Z and finish the proof. Note that in
proving the upper semicontinuity of the map Φ, we have to use Lemma 1.4,
since the set Ke does not have to be closed.

3. Second approach: through deformation retracts. It is seen that
every strong deformation (single-valued) is a strong admissible deformation.
Therefore, it would be better to formulate sufficient conditions for non-empti-
ness of the viability kernel in terms of strong deformations. The aim of this
section is to study when it is possible in a multivalued case.

We start with a preliminary result which is rather obvious because of well-
known selection theorems.

Proposition 3.1. ([11], Proposition 3.1) Let K be a closed subset of Rn

and F be a locally Lipschitz Marchaud map such that Ke = K− is closed.
If K− is not a strong deformation retract of K, then V iabF (K) 6= ∅.

To prove the proposition, it is sufficient to take any locally Lipschitz selec-
tion f of F , which surely has the same exit set as F . Assuming V iabF (K) = ∅,
we can perform a standard construction of a strong deformation of K onto K−

using regularity of f . Some immediate consequences of Proposition 3.1 are
given in [11].

Unfortunately, the situation (essentially multivalued) where Ke = K− is
rare. Usually K− ⊂ Ke and K− 6= Ke. The important question arises: is it
possible to find a locally Lipschitz selection or arbitrarily near approximation
f of F such that K−(f) = K−(F )?

Looking for a suitable selection we would like to find the one with f(x) ∈
F (x) ∩ TK(x) on Ke \K−. Let us note the main difficulty in what we need.
Even for a very regular set K (when TK(·) is locally Lipschitz) and for a
locally Lipschitz map F , the map F (·)∩TK(·) may be not lower semicontinuous
(l.s.c.). So, there are no appropriate general selection theorems. Nevertheless,
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in [11], the authors proved some interesting results under suitable regularity
assumptions on K and the map F . Let us give a slight restriction of one of
the results in [11].

Theorem 3.2. (comp. [11], Theorem 3.16) Let K be a C1,1 n–manifold
in Rn with a boundary ∂K and F : Rn ( Rn be a Marchaud locally Lipschitz
map such that K− is closed, M = Ke \K− is a compact Lipschitz neighborhood
retract (the retraction is Lipschitz) and the following conditions are satisfied:

(i) For each x ∈M and y ∈ ∂F (x), the cone TF (x)(y) is a half-space;
(ii) For the Hamiltonian

H(x, p) := min{〈v, p〉 | v ∈ F (x)},

the derivative ∂H
∂p (x, p) = ArgMinv∈F (x)〈v, p〉 exists and is locally Lips-

chitz on M × (Rn \ {0}).
If K− is not a strong deformation retract of K, then V iabF (K) 6= ∅.

We refer to [11] for the proof and other related results. Let us only give
two comments.

Comment 1. Values of F are very regular (a bit more than strictly convex). As
an example of such situation we can consider the control problem

(10)
{
ẋ = f(x) +A(x)u
u ∈ U = B1,

where f : Rn → Rn and A : Rn → L(Rn,Rn) are locally Lipschitz. Then the
map F (x) := f(x) +A(x)U satisfies (i)–(ii).

Comment 2. The class of neighborhood locally Lipschitz retracts is quite large.
It contains, e.g., all proximate retracts, that is, sets M with a neighborhood
U of M such that the projection

πM (x) := {y ∈M | |y − x| = inf
u∈M
|u− x|}

is single-valued. In particular, it contains all C1,1 manifolds.

Now, we prove the main result of this section and compare it with Theo-
rem 3.2.

Theorem 3.3. Let K = IntK be a closed sleek6 subset of Rn and F :
Rn ( Rn be a Marchaud map such that K− is a closed strong deformation
retract of its certain open neighborhood V in K. Assume that Int TK(x) 6= ∅
for every x ∈ K \K−.

If K− is not a strong deformation retract of K, then V iabF (K) 6= ∅.
6We say that a set K is sleek, if the cone map TK(·) is lower semicontinuous.
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The comparison we mentioned above will be given again in the form of
some comments.

Comment 1. Recall that sleekness means that TK(·) is l.s.c. which is essentially
less than being Lipschitzean.

Comment 2. F may be not Lipschitzean (only u.s.c.).

Comment 3. Assumption Int TK(x) 6= ∅ eliminates “too sharp corners” of the
set K.

Comment 4. Retractness assumption says that K− is an NDR (neighborhood
deformation retract) in K (see [20]). This situation very often appears if K−

is a neighborhood retract of K.

To prove Theorem 3.3, we need some lemmas.

Lemma 3.4. ([9], Lemma 3.2) Let K ⊂ Rn be a compact set and F be
such that Ks is closed. Then, for any open neighborhood V0 of Ks in Rn, there
exist an open neighborhood VF of Ks in Rn and ε0 > 0 such that, for every
p ∈ VF ∩K, 0 < ε ≤ ε0 and every locally Lipschitz ε–approximation7 f of F ,
there is p 6∈ V iabf (K) and Sf (p)([0, τK(p)]) ⊂ V0 ∩ K, where τK is the exit
function for f .

Lemma 3.5. Let A be a closed subset of Rn. Assume that F : Rn ( Rn,
Ψ : A ( Rn are convex valued, F is u.s.c., and Ψ satisfies the following
condition:

(11)
For every x ∈ A there exist yx ∈ F (x) ∩ IntΨ(x)
and an open neighborhood V (x) of x in X
such that yx ∈ IntΨ(z) for each z ∈ V (x) ∩A.

Then, for every ε > 0, there exist an open neighborhood Ωε of A in Rn and a
locally Lipschitz map f : Rn → Rn such that

(i) f is an ε–approximation of F ,
(ii) f is a selection of Int ψ(·) on A.

Let us note that assumption (11) is satisfied if, e.g., Ψ is l.s.c. and

F (x) ∩ IntΨ(x) 6= ∅ for every x ∈ A.

Proof of Lemma 3.5. Denote Am := A ∩ B(0,m), m ≥ 1. For a given
ε > 0, consider the open covering of A1 in X,

U(x) := B(x, ε/2) ∩ {x′ ∈ Rn | F (x′) ⊂ F (x) + ε/2B1}, x ∈ A1.

7By an ε–approximation of F we mean a single-valued map f such that
dconv F (B(x,ε))f(x) < ε for every x. This condition is slightly weaker than the usual one

considered in approximation techniques (“conv” is added, comp. [13]).
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Since A1 is compact, we find a finite open star-refinement V1 ={V1, . . . , Vk1}
of {U(x)}x∈A1 i.e., for every i ∈ {1, . . . , k1}, there is x̄ ∈ A1 such that

st(Vi,V1) :=
⋃
{Vj ∈ V1| Vj ∩ Vi 6= ∅} ⊂ U(x̄).

For m ≥ 2 and x ∈ Am \Am−1 we consider also

U(x) ⊂ B(x, ε/2) ∩ {x′ ∈ Rn | F (x′) ⊂ F (x) + ε/2B1}, U(x) ∩Am−1 = ∅,

and find, analogously, a finite open star-refinement Vm of {U(x)}x∈Am such
that

Vm ={V1, . . . , Vkm−1 , Vkm−1+1, . . . , Vkm},
Vkm−1+i ∩Am−1 = ∅, i = 1, . . . , km − km−1.

By assumption (11), we find, for every x ∈ A (x ∈ Am \ Am−1), a point
yx ∈ F (x) ∩ IntΨ(x) and open neighborhoods V (x) ⊂ U(x), Vi ∈ Vm of x in
X such that V (x) ⊂ Vi and yx ∈ IntΨ(z) for each z ∈ V (x) ∩A.

Let V := {V (x1), . . . , V (xl), . . .} be a locally finite covering of A chosen so
that

{V (x1), . . . , V (xl1)} is a covering of A1,

{V (x1), . . . , V (xl2)}, l2 ≥ l1, is a covering of A2 and A1 ∩
l2⋃

i=l1+1

V (xi) = ∅,

and, for any other m,

{V (x1), . . . , V (xlm)}, lm ≥ lm−1 is a covering of Am

and Am−1 ∩
lm⋃

i=lm−1+1

V (xi) = ∅.

Take a locally Lipschitz partition of unity {λi}∞i=1 subordinated to V. De-
note Ωε :=

⋃l
i=1 V (xi) and define f : Ωε → Rn,

f0(x) :=
∞∑
i=1

λi(x)yi,

where yi := yxi . Of course, f0 is locally Lipschitzean. Moreover, by convexity
of values of Ψ, f0 is a selection of IntΨ(·) on A.

Let x ∈
⋃∞

i=1 V (xi). Then, in fact, there ism ≥ 1 such that x ∈
⋃lm

i=1 V (xi).
Since V is a star-refinement of {U(x)}x∈A, there is x̄ ∈ A (in fact, x̄ ∈ Am)
such that x, xi ∈ U(x̄) for each i ∈ {1, . . . , lm} with x ∈ V (xi). Therefore,
yi ∈ F (xi) ⊂ F (x̄) + ε/2B1 and, since F (x̄) is convex, f0(x) ∈ F (x̄) + ε/2B1.
Hence, f0(x) ∈ F (B(x, ε)) + εB1 which means that f0 is an ε–approximation
of F .
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Let f1 : Rn → Rn be any locally Lipschitz ε–approximation of F . Using a
locally Lipschitz function u : Rn → [0, 1] such that u ≡ 1 on A and u ≡ 0 on
Rn \ Ωε, we join f0 and f1 obtaining f : Rn → Rn,

f(x) := u(x)f0(x) + (1− u(x))f1(x),

which is still an ε–approximation of F and a selection of IntΨ(·) on A. The
proof is complete.

Lemma 3.6. Let X ⊂ Rn and A ⊂ X be a closed subset. Assume that
Ψ : X ( Rn is convex valued, and satisfies the following condition:

(12)
For every x ∈ X there exist yx ∈ Ψ(x) and an open neighborhood
V (x) of x in X such that yx ∈ Ψ(z) for each z ∈ V (x)
with yx = 0 for every x ∈ A.

Then there exists a locally Lipschitz selection f : Ωε → Rn of Ψ such that
f(x) = 0 for every x ∈ A.

Proof. Without loss of generality we may assume that the covering
{V (x)}x∈X is countable and locally finite, and V (x) ∩ A = ∅ for every x 6∈
A. Let {λi}∞i=1 be a locally Lipschitz partition of unity subordinated to this
covering.

Define f : X → Rn,

f(x) :=
∑

i∈I(x)

λi(x)yxi ,

where I(x) := {i ∈ N | x ∈ V (xi)}. Obviously, f is locally Lipschitzean.
Moreover, by convexity of values of Ψ, f is its selection. Since, for every
x ∈ A, {yxi | i ∈ I(x)} = {0}, we obtain that f(A) = {0}.

Proof of Theorem 3.3. Assume that V iabF (K) = ∅. Let VF ⊂ V be
as in Lemma 3.4, chosen for V . Take an open neighborhood Ω0 of K− in K
such that Ω0 ⊂ VF .

For an arbitrary small ε > 0 define the following auxiliary map Fε : Rn (
Rn,

Fε(x) := F (x) + δε(x)B1,

where δε(x) := min{dΩ0
(x), ε}. Then K−(Fε) = K−(F ) and

Fε(x) ∩ Int TK(x) 6= ∅ for every x ∈ K \ Ω0.

Let Ω ⊃ Ω0 be an open subset in K such that Ω ⊂ VF . From Lemma 3.5 it
follows that there exists a locally Lipschitz ε–approximation f of Fε such that
f(x) ∈ Int TK(x) for every x ∈ K \ Ω. Therefore, K−(f) ⊂ Ω.
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Take an open set U in K such that Ω ⊂ U ⊂ U ⊂ VF . Consider the map
Γ : K ( [0,∞),

Γ(x) := [τK\U (x), τK(x)].

This map does not have to be l.s.c. Nevertheless, it satisfies the following
condition:

For every x ∈ K, there exist γx ∈ Γ(x) and an open neighborhood
V (x) of x in K such that γx ∈ Γ(z) for any z ∈ V (x).

Indeed, it is sufficient to take γx ∈ Γ(x) such that Sf (x)(γx) ∈ U \K−(f) if
x 6∈ K−(f)∪K−, and γx = 0 if x ∈ K−(f)∪K−, and use regularity of f . From
Lemma 3.6 it follows that there exists a continuous selection γ : K → [0,∞)
of Γ with γ(x) = 0 for every x ∈ K−(f) ∪K−. Notice that Sf (x)(γ(x)) ∈ V
and γ(x) ≤ τK(x) for every x ∈ K.

Define the homotopy h : K × [0, 1]→ K,

h(x, t) :=
{
Sf (x)(2tγ(x)), if 0 ≤ t ≤ 1

2 ,
k (Sf (x)(γ(x)), 2t− 1) , if 1

2 < t ≤ 1.

One can see that h is continuous, h(·, 0) = idK and h(x, 1) ∈ K− for every
x ∈ K. Moreover, for every x ∈ K−, there is γ(x) = 0 and hence h(x, t) =
k(x, t) = x for any t ∈ [0, 1]. We conclude that K− is a strong deformation
retract of K; a contradiction.
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