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REMARKS ON BOUNDED SOLUTIONS FOR SOME

NONAUTONOMOUS ODE

by Zdzis law Dzedzej

Abstract. A Borsuk–Ulam type argument is used in order to prove exis-
tence of nontrivial bounded solutions to some nonautonomous linear dif-
ferential equations.

1. Introduction. The main purpose of the paper is to present a topologi-
cal method of detecting bounded solutions of some nonautonomous differential
equations. We confine ourselves to the simplest linear case in order to be clear
in presentation. The idea is to some extent connected with way of thinking
of the Cracow school (comp. [8], [13]). We consider a process defined by the
equation in the extended phase space. Since the invariant sets are noncompact,
we propose to define another topologically equivalent dynamical system which
can be extended to a compact space. To this end we use Poincaré’s old idea,
which has been used to analyse planar systems.

The aproach seems geometrically simpler than the use of skew-symmetric
flows as in [12], [15]. Perhaps one can here also try to apply techniques from
the Conley index theory [2]. We use an argument of a Borsuk–Ulam-type
instead. Actually, we use the topological fact that there are no homotopically
nontrivial maps f : Sn → Sk, when n < k.
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2. Poincaré compactification of polynomial vector fields. In this
section we shortly recall the procedure described in [7] and [4], following the

Key words and phrases. Nonautonomous equation, bounded solution, flow, process,
Borsuk–Ulam theorem.



158

ideas of Poincaré [10], how a polynomial vector field on Rn induces a vector
field on Sn.

Let X = (P1, P2, ..., Pn) be a polynomial vector field in Rn. We can identify
Rn with the hyperplane Π = {y ∈ Rn+1| yn+1 = 1} tangent to the unit sphere
Sn = {y ∈ Rn+1|

∑n+1
i=1 y2

i = 1} at the north pole. Denote by Sn
+ and Sn

−
the open northern and southern hemisphere, respectively. We consider the
following two diffeomorphisms Φ+ : Rn → Sn

+ and Φ− : Rn → Sn
− given by

Φ±(x) = ± 1
∆(x)(x1, x2, ..., xn, 1), where ∆(x) = (1+

∑n
i=1 x2

i )
1
2 . In this form X

induces a vector field Y in Sn
+∪Sn

− defined by Y (y) = DΦ±x X(x) if y = Φ±(x).
Now assume that k is the maximum of the degrees of Pi. The following the-

orem has been proved in [7], see also [1], [4]. One can find detailed description
of the vector field in local charts there.

Theorem 1. ([7]) The vector field Y can be extended analytically to the
whole sphere Sn after multiplication by the factor yk−1

n+1 and in such a way that
the equator Sn−1 = {y ∈ Sn| yn+1 = 0} is invariant.

The above theorem has been used to investigate the behaviour of the vector
field at infinity. We need this for another purpose. First, observe that in the
case of a linear vector field in Rn you do not need to multiply the induced
vector field in order to extend it to the whole sphere. Thus we can formulate
an immediate consequence of Theorem 1.

Corollary 2. The flow in Rn given by a linear vector field X is conjugate
to the flow in the upper hemisphere Sn

+ given by the induced vector field Y and
the latter has such an extension to the closed hemisphere that the equator is
an invariant set.

Proposition 3. Given a flow in Rn defined by a linear vector field X,
there exists a flow defined on the closed unit disc Dn = {y ∈ Rn ||y|| ≤ 1}
such that the open disc and the boundary are invariant sets and the flow on
the open disc is topologically equivalent to the original flow in Rn.

Proof. By means of the projection π(y1, y2, ..., yn+1) = (y1, y2, ..., yn) we
obtain a homeomorphism h : Sn

+ → intDn, which gives the equivalence of the
flows on the northern hemisphere and on the disc. On the other hand, the flow
on the hemisphere is topologically equivalent to the one in Rn because they
are conjugate.

Let us observe that the described procedure works for vector fields whose
rate of growth at infinity is not bigger that the polynomial growth of degree n
(in Corr. 2 and Prop. 3 with at most linear growth).
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3. G–spaces and G–index. We are going to use cohomology of the Čech
type. The Čech cohomology theory has the continuity property, which says
that if a cohomology class vanishes on a closed set, then it vanishes on a
neighbourhood of this set. Throughout the paper, the group Z2 of integers
mod 2 will be used as a coefficient group in cohomology.

Let G be the group Z2. Assume that G acts freely on a paracompact
space X. We call X a G–space. Any such G–space admits an equivariant map
h : X → EG into a classifying space EG; any two such maps are equivariantly
homotopic ( see [5] Thm 8.12 and Thm 6.14). The map h induces a map
ĥ : X/G → BG := EG/G on the orbit spaces. Consequently, one has a
uniquely determined homomorphism

ĥ∗ : H∗(BG,Z2) → H∗(X/G,Z2).

In our special case G = Z2, the space EG can be identified with the sphere
of infinite dimension S∞ with a free antipodal action of G. The orbit space is
the infinite dimensional projective space P∞.

Let us recall the definition of the G–index indGX, for a G–space X (see
e.g. [14]).

Definition 1. We say that the G–index of X is not less than k if the
homomorphism ĥk : Hk(BG,Z2) → Hk(X/G,Z2) is a monomorphism.

Most of the properties of the G−index are immediate consequences of this
definition. In particular, monotonicity says:

If G acts freely on X and Y , and f : X → Y is an equivariant map,
then indGY ≥ indGX.

The dimension property:
If dimX < m then indGX < m, where dim denotes the covering dimension.

An important special case of the above says:
If indgX = 0 then X 6= ∅.

The consequence of the continuity of Čech cohomology is the following
continuity property:

Let G act freely on X and A ⊂ X be a compact G–space. Then there is
an open neighbourhood U of A in X which is a G–space such that indGU =
indGA.

We shall use the important property that indGSn = n. The concept of the
G–index was first defined by Yang [16] for G = Z2 and extended to other more
general settings by several authors, notably to actions of compact Lie groups
by Fadell and Husseini [6].
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4. Nonautonomous systems. We consider the following linear nonau-
tonomous system of differential equations in Rn:

(1) x′(t) = A(t)x(t)

where A : R → Mn×n is a continuous map from the real numbers to the space
of square matrices.

Let us make the following assumptions
(A1) A(t) = A+ for t ≥ t1,
(A2) A(t) = A− for t ≤ t2 ,
(A3) the matrices A+, A− are hyperbolic i.e. have no eigenvalues

with real part 0.
Let us denote by k the number of eigenvalues λ of A− with Reλ < 0, and

by l the number of eigenvalues λ of A+ with Reλ < 0.
Now we are ready to formulate our main result.

Theorem 4. If k 6= l, the equation (1) has a nontrivial bounded solution.

Proof. It is well known that the equation (1) determines a process in the
extended phase space Rn+1 given by the vector field X(x, t) = (A(t)x, 1). In
the meaning of [11] this is a skew-product flow on Rn+1.

Now we can apply the procedure from section 2. But we do this first with
the vector field x 7→ A(t)x with fixed t.Then for each fixed x, we can apply the
same procedure to the vector field t 7→ 1 in R. More explicitly, we can multiply
this constant vector field by a smooth, even and positive-valued function k(t)
such that K(0) = 1 and limt→∞ k(t) = 0, e.g. k(t) = exp(−|t|). In this way
we obtain a skew-product flow on a solid cylinder Dn × [−1, 1] . This flow
ϕ considered in the interior of the cylinder is topologically equivalent to the
original one.

Let us assume for simplicity that t1 = 1
2 , t2 = −1

2 ( otherwise we rescale
the procedure).

The obtained flow is very simple to observe. Invariant sets are e.g.

Dn × {−1}, Dn × {1}, ∂Dn × [−1, 1], {0} × [−1, 1]

The orbits connecting points (0,−1) and (0, 1) correspond to bounded so-
lutions of the equation (1). Thus it is enough to prove that there exists an
orbit different from the trivial one {0}× (−1, 1) which starts from (0,−1) and
ends at (0, 1).

On the other hand, observe that, by our assumptions, for each point (x, t)
with t > −1, the ω- limit set is contained in Dn × {1}. Moreover, since A+ is
hyperbolic, it is either (0, 1) or a subset of ∂Dn × {1}.

Furthermore, the horizontal sections of the flow below −1
2 -level are copies

of the level −1, and similarly above the level 1
2 .
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Let us suppose that there are no nontrivial orbits connecting (0,−1) and
(0, 1).

Considering the flow on Dn×{−1}, the dimension of the unstable manifold
of the hyperbolic stationary point 0 is n − k. We can take a small sphere
Sε = Sn−k−1 in it.

Consider a sphere at a bit higher level Sn−k−1 × {−1 + δ}. An orbit
of every point from this set has to approach a neighbourhood of a sphere
Sn−l−1 × {1} ⊂ ∂Dn × {1} ( a sphere in the unstable subspace).

We have a natural antipodal action of G = Z2 on the cylinder (x, t) 7→
(−x, t). This is an obvious observation that the construction in Section 1
preserves the property that the flow is equivariant, since the central projection
is an odd map. We choose a G2-invariant neighbourhood V of Sn−l−1 × {1}.
Since the set Sn−k−1×{−1+ δ} is compact, there is a finite time τ0 such that,
for each point (x, t) ∈ Sn−k−1 × {−1 + δ}, ϕτ0(x, t) ∈ V .

Therefore, we have defined an equivariant map β : Sn−k−1×{−1+δ} → V .
By the continuity of the G–index, indGV = n− l − 1. Thus we have just

proved the inequality n− k − 1 ≤ n− l − 1.
In the same way, using the reverse time, we prove that n− l−1 ≤ n−k−1.

therefore we obtain l = k contrary to our assumption.

Remarks. First let us observe that assumptions (A1), (A2) may be weak-
ened by limt→±∞ = A±.

Note that a similar proof could also works in the nonlinear case with the
uniqueness and global existence assumptions satisfied. We should then assume
that the right-hand side of the equation is odd, of polynomial growth, with the
only hyperbolic stationary point at 0. Our result seems to be complementary
to a theorem of Sacker and Sell (see [3], [11]).
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