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COMPLICATED DYNAMICS IN NONAUTONOMOUS ODES

by Leszek Pieniążek and Klaudiusz Wójcik

Abstract. We present a topological method for detecting complicated dy-
namics in nonautonomous ordinary differential equations (not necesserily
periodic with respect to the time variable). Our main result gives a suf-
ficient condition for the existence of a class of solutions, whose presence
displays some chaotic features of the dynamics. The method is based on
the Ważewski Retract Theorem and the Lefschetz Fixed Point Theorem.
Some applications to the nonautonomous systems in the plane are consid-
ered.

1. Introduction. In this note we study a topological method for detecting
complicated dynamics in the local processes generated by the nonautonomous
ordinary differential equations (not necesserily periodic with respect to the time
variable). We show the existence of a class of solutions, whose presence displays
some chaotic features of the dynamics. The results presented here, in the same
spirit as in [13], [15], [17] are inspired by a lot of papers on the existence of the
multibump orbits ([1], [3], [6], [7], [5], [10]) starting with the novel minimax
method in [12]. In the context of the Lagrangian systems, the multibump orbits
mean the orbits which are close to chains of homoclinics of the limit system
(see [1], [3], [7]). The results of [3] are based on the variational version of the
Birkhoff–Smale–Shilnikov theory. In contrast to the above method, we do not
need any global information on particular solutions of the considered equation.
Our method for detecting chaotic dynamics is based on the existence of some
sets, called admissible proper sets and the knowledge of the values of some
topological invariants of these sets. The notion of the proper pair is based on
the concept of the Ważewski set ([4]) and is an inessential modification of the
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periodic block in [13]. In the case that the right-hand side of the considered
equation is periodic with respect to the time variable, our main result (up to
slightly different notation) improves Th.2 in [15] (cf. [17]). In fact, the method
presented in this paper is adapted to the general nonautonomous systems from
the periodic case in [15], [17], [19]. In order to apply the topological method
introduced in [15], we have to prove the existence of some sets, called periodic
isolating segments, in the extended phase space (see [15]). Basic property of the
segment is that at any point on its boundary the vector field is directed outward
or inward with respect to the segment (compare the notion of the isolating block
in the Conley index theory). Notice that an admissible proper pair (in our
sense) can be easily obtained by gluing translated copies of a periodic isolating
segment. It was observed by Roman Srzednicki in [13] that the fixed point
index of the Poincaré map inside the segment is equal to the Lefschetz number
of the monodromy homeomorphism given by the segment (see Th.7.1 in [13]).
Our Proposition 1 is a non-periodic version of this result. Theorem 2 in [15]
gives a sufficient condition for the chaotic dynamics in the periodic systems in
the sense that the Poincaré map is semiconjugated to the shift on two symbols
and the counterimage (by the semiconjugacy) of any periodic point in the shift
contains a periodic point of the Poincaré map. It follows by our Theorem 1,
that any small perturbation of the T–periodic system for which the results in
[15] show chaos has also complicated dynamics. In the non-periodic case we are
not able to prove the existence of periodic solutions but the map after time T is
still semiconjugated to the Bernoulli shift on some compact set. In particular,
the topological entropy is positive.

In the paper, for practical reasons, we use notation for fixed point index
different from that used in classical books like [8]. We understand the fixed
point index for some subset of the set of fixed points which has an open neigh-
bourhood as the fixed point index in that open set.

2. Proper pairs. Assume that X is a metric space and ϕ : D → X is a
continuous mapping, D ⊂ R×X × R is an open set. We will denote by ϕ(σ,t)

the function ϕ(σ, ·, t).
ϕ is called a local process if the following conditions are satisfied

(1) ∀σ ∈ R, x ∈ X : {t ∈ R : (σ, x, t) ∈ D} is an interval,
(2) ∀σ ∈ R : ϕ(σ,0) = idX

(3) ∀σ ∈ R : ϕ(σ,s+t) = ϕ(σ+s,t) ◦ ϕ(σ,s),
If D = R×X × R, we call ϕ a (global) process. For (σ, x) ∈ R×X the set

{(σ + t, ϕ(σ,t)(x)) ∈ R×X : (σ, x, t) ∈ D}

is called the trajectory of (σ, x) in ϕ. If T is a positive number such that
(4) ∀σ, t ∈ R : ϕ(σ+T,t) = ϕ(σ,t)
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we call ϕ a T–periodic local process. It follows that the interval in (1) is open
and, by (2), it contains 0. Since the domains of the both maps in (3) are equal,
(σ, x, s + t) ∈ D if and only if (σ, x, s) ∈ D and (σ + s, ϕ(σ,s)(x), t) ∈ D.

A local process ϕ on X determines a local flow Φ on R×X by the formula

Φt(σ, x) = (σ + t, ϕ(σ,t)(x)).

Remark 1. The differential equation

(∗) ẋ = f(t, x)

such that f is regular enough to guarantee the uniqueness of solutions of Cauchy
problems associated to (∗) generates a local process as follows. For x(t0, x0; ·),
the solution of (∗) such that x(t0, x0; t0) = x0, we put

ϕ(t0,τ)(x0) = x(t0, x0; t0 + τ).

If f is T–periodic with respect to t then ϕ is a T–periodic local process and
in order to determine all T–periodic solutions of the equation (∗) it suffices to
look for fixed points of ϕ(0,T ) (called the Poincaré map).

We will use the following notation: by π1 : R×X → R and π2 : R×X → X
we denote the projections and for every Z ⊂ R×X and t ∈ R we put

Zt = {x ∈ X : (t, x) ∈ Z}.

Let (U,U−) be a pair of subsets of R×X (i.e. U− ⊂ U ⊂ R×X). We call
(U,U−) a proper pair (for the process ϕ) and U− the exit set of U if:

(i) U and U− are closed ENR’s, U0, U−
0 are compact,

(ii) there exists a homeomorphism

h : R× (U0, U
−
0 ) −→ (U,U−)

such that π1 = π1 ◦ h,
(iii) for every σ ∈ R and x ∈ ∂Uσ there exists a t ∈ R such that ϕ(σ,t)(x) 6∈

Uσ+t,
(iv) U− = {(σ, x) ∈ U : ∃sn > 0 sn → 0 : ϕ(σ,sn)(x) 6∈ Uσ+sn}.

Define a map

τU : U 3 (σ, x) −→ sup{t ≥ 0 : ∀s ∈ [0, t] : Φs(σ, x) ∈ U} ∈ [0,∞].

τU is continuous (by the argument in a proof of the Ważewski Theorem, [4],
[13]).

Let (U,U−) be a proper pair, Ua = Ub, U−
a = U−

b for some a, b ∈ R, a < b.
Define a homeomorphism

ha,b : (Ua, U
−
a ) −→ (Ub, U

−
b ) = (Ua, U

−
a )

by ha,b(x) = π2(h(b, π2h
−1(a, x))) for x ∈ Ua.
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Geometrically, ha,b moves a point x ∈ Ua to Ub = Ua along the arc h([a, b]×
{π2h

−1(a, x)}). Consider the automorphism

µUa,b
: H(Ua, U

−
a ) −→ H(Ua, U

−
a )

induced by ha,b in the singular homology with rational coefficients. Recall that
its Lefschetz number is defined as

Lef(µUa,b
) =

∞∑
n=0

(−1)ntr Hn(ha,b).

In particular, if µUa,b
= idH(Ua,U−

a ) then Lef(µUa,b
) is equal to the Euler char-

acteristic χ(Ua, U
−
a ).

In the sequel we will use the following non-periodic version of the Theorem
7.1 in [13]

Proposition 1. If (U,U−) is a proper pair, Ua = Ub, U−
a = U−

b for some
a, b ∈ R, a < b then the set

FUa,b
= {x ∈ X : ϕ(a,b−a)(x) = x, ∀t ∈ [0, b− a] : ϕ(a,t)(x) ∈ Ua+t}

is compact and open in the set of fixed points of ϕ(a,b−a) and the fixed point
index of ϕ(a,b−a) in FUa,b

is given by

ind(ϕ(a,b−a), FUa,b
) = Lef(µUa,b

).

Proof. Our proof of Proposition 1 is simpler but similar in the spirit to
the proof of Theorem 7.1 in [13]. By Lemma 2.3.1 in [14] FUa,b

is compact and
open in the set of fixed points of the ϕ(a,b−a). Let τ = τU : U → [0,∞]. For
s ∈ [a, b] we define a homeomorphism

hs,b : (Us, U
−
s ) → (Ub, U

−
b ),

by hs,b(x) = π2h(b, π2h
−1(s, x)). Consider a homotopy H : (Ua, U

−
a )× [0, 1] →

(Ub, U
−
b ) = (Ua, U

−
a ) given by

H(x, t) =
{

ha+τ(a,x),b(ϕ(a,τ(a,x))(x)), τ(a, x) ≤ (1− t)(b− a)
ha+(1−t)(b−a),b(ϕ(a,(1−t)(b−a)))(x)), τ(a, x) ≥ (1− t)(b− a)

Put Ht(x) = H(x, t). It is easy to check that Ht(x) = ha,b(x) for x ∈ U−
a ,

t ∈ [0, 1] and H1 = ha,b. By the homotopy property of the Lefschetz number,

Lef(ha,b) = Lef(H0).

Moreover,

Lef(H0) = ind(ϕ(a,b−a), FUa,b
) + ind(H0,Fix(ha,b|U−

a
)),

and by the commutativity property of the fixed point index

ind(H0,Fix(ha,b|U−
a

)) = Lef(ha,b|U−
a

),
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thus the proof is complete, because

Lef(µUa,b
) = Lef(ha,b)− Lef(ha,b|U−

a
).

3. Main result. Let (U,U−) be a proper pair for the process ϕ. We call U
admissible iff there is a sequence {tn}n∈Z ⊂ R such that tn < tn+1, Utn = Ut0 ,
U−

tn = U−
t0

for all n ∈ Z.
Suppose that (U,U−), (Z,Z−) are proper pairs, U ⊂ Z are admissible with

the same sequence {tn}n∈Z unbounded from both below and above, Ut0 = Zt0 ,
U−

t0
= Z−

t0
. Assume that for any n ∈ Z there is an s ∈ (tn, tn+1) such that

Us 6= Zs.
Consider the following conditions

(a) for all n ∈ Z µUtn,tn+1
= idH(Ut0 ,U−

t0
),

(b) there is an n0 ∈ N \ {1} and an authomorphism G : H(Ut0 , U
−
t0

) →
H(Ut0 , U

−
t0

) such that Gn0 = idH(Ut0 ,U−
t0

), for all n ∈ {1, . . . , n0 − 1}
Lef(Gn) = Lef(G) and µZtn,tn+1

= G (n ∈ N),
(c) Lef(G) 6= χ(Ut0 , U

−
t0

) 6= 0.

Remark 2. Let us consider the planar differential equation

ż = eitz̄n.

From the phase portrait one can deduce (comp. [13]) the existence of the
admissible proper pair Z with the sequence tk = 2πk such that Z0 is a regular
2(n + 1)–gon, Z−

0 consists of n + 1 disjoint segments and both the sets Z0 and
Z−

0 are invariant with respect to the rotation by the angle 2π
n+1 . It is easy to

see that
Lef(µZtk,tk+1

) = . . . = Lef(µn
Ztk,tk+1

) = 1,

µn+1
Ztk,tk+1

= idH(Z0,Z−0 ),

so the condition (b) holds with n0 = n + 1.

We will prove the following

Theorem 1. Under assumptions (a), (b), (c) for any subset S ⊂ Z there
is x0 ∈ Ut0 such that
(1) for all t ∈ R, ϕ(t0,t)(x0) ∈ Zt0+t

(2) if n ∈ S then there exists t ∈ (tn−t0, tn+1−t0) such that ϕ(t0,t)(x0) 6∈ Ut0+t,
(3) if n 6∈ S then for all t ∈ [tn − t0, tn+1 − t0], ϕ(t0,t)(x0) ∈ Ut0+t.

For S ⊂ Z, by US we denote the proper pair such that if n ∈ S then

US ∩ ([tn, tn+1]×X) = Z ∩ ([tn, tn+1]×X),
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and if n 6∈ S then

US ∩ ([tn, tn+1]×X) = U ∩ ([tn, tn+1]×X).

Assume that S is a finite set and card(S) = k for some k ∈ N. Let S =
{n1, . . . , nk}, a, b ∈ {tn : n ∈ Z} and a < tn1 < . . . < tnk

< b. Recall that the
set

FUS
a,b

= {x ∈ X : ϕ(a,b−a)(x) = x,∀t ∈ [0, b− a] : ϕ(a,t)(x) ∈ US
a+t}

is compact and open in the set of fixed points of ϕ(a,b−a). Observe that if n ∈ S,
x ∈ FUS

a,b
then τU (ϕ(a,tn−a)(x)) 6= tn+1 − tn. For any subset L ⊂ S by FL we

denote the set of points x ∈ FUS
a,b

such that if n ∈ L then τU (ϕ(a,tn−a)(x)) <

tn+1 − tn and if n ∈ S \L then τU (ϕ(a,tn−a)(x)) > tn+1 − tn. The sets FL over
all subsets L ⊂ S form a compact and disjoint covering of FUS

a,b
. The proof of

Theorem 1 is based on the following

Lemma 1. If card(S) = k then

ind(ϕ(a,b−a), F
S) =

k∑
l=0

(−1)k−l

(
k

l

)
Lef(Gl).

Proof. The case k = 0 follows immediately from Proposition 1. For k ≥ 1
we use the induction with respect to k. Let k = 1. Since FS and F ∅ form a
compact and disjoint covering of FUS

a,b
, by the additivity property of the fixed

point index,

ind(ϕ(a,b−a), FUS
a,b

) = ind(ϕ(a,b−a), F
S) + ind(ϕ(a,b−a), F

∅),

hence by Proposition 1

ind(ϕ(a,b−a), F
S) = Lef(G)− χ(Ut0 , U

−
t0

).

Assume now that the lemma holds for p ≤ k. We prove it for k + 1. Again by
the additivity of the fixed point index,

ind(ϕ(a,b−a), FUS
a,b

) = ind(ϕ(a,b−a), F
S) +

∑
L⊂S,L6=S

ind(ϕ(a,b−a), F
L).
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By Proposition 1 and the inductive step,

ind(ϕ(a,b−a), F
S) =Lef(Gk+1)−

k∑
s=0

(
k + 1

s

) s∑
l=0

(−1)s−l

(
s

l

)
Lef(Gl)

=Lef(Gk+1)−
k∑

s=0

s∑
l=0

(−1)s−l

(
k + 1

s

)(
s

l

)
Lef(Gl)

=Lef(Gk+1)−
k∑

s=0

s∑
l=0

(−1)s−l

(
k + 1

l

)(
k + 1− l

k + 1− s

)
Lef(Gl).

Let s0 ∈ {0, . . . , k} be fixed. We show that the coefficient of Lef(Gs0) equals
(−1)k+1−s0

(
k+1
s0

)
. It is easy to see that this coefficient is equal to[

−
k∑

r=s0

(−1)r−s0

(
k + 1− s0

k + 1− r

)] (
k + 1

s0

)
.

We put m = k + 1− s0. Then
k∑

r=s0

(−1)r−s0

(
k + 1− s0

k + 1− r

)
=

m−1∑
w=0

(−1)w

(
m

m− w

)
=

m−1∑
w=0

(−1)w

(
m

w

)
.

By
m∑

w=0

(−1)w

(
m

w

)
= 0,

we conclude that if m = k + 1 − s0 is even then
∑m−1

w=0 (−1)w
(
m
w

)
= −1 and if

m = k + 1− s0 is odd then
∑m−1

w=0

(
m
w

)
= 1. This finishes the proof.

Corollary 1. (1) Under the assumptions of Theorem 1, if card(S) = k
then

ind(ϕ(a,b−a), F
S) =

∑
n0|s

(−1)k−s

(
k

s

) (
χ(Ut0 , U

−
t0

)− Lef(G)
)
.

(2) In particular, if n0 is even then ind(ϕ(a,b−a), F
S) 6= 0 and if n0 is odd then

ind(ϕ(a,b−a), F
S) 6= 0 iff k is not an odd multiplicity of n0.

Proof. (1) This follows from Lemma 1, because
∑k

s=0(−1)k−s
(
k
s

)
= 0 and

Lef(Gl) =
{

χ(Ut0 , U
−
t0

), n0 | l
Lef(G), otherwise.
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(2) If n0 is even then (−1)k−s = (−1)k for all s such that n0 | s, so the
conclusion follows by (1). The case of n0 odd will be proved in Corollary 2 in
the appendix.

Proof of Theorem 1. Assume first that S is a finite set and n0 is even
or card(S) is even multiplicity of n0.

Let an = t−n, bn = tn (one can see that an → −∞, bn → +∞). If an

is sufficiently small and bn sufficiently large then by Corollary 1(2) there is
yn ∈ FS ⊂ FUS

an,bn
. By the compactness of Ut0 , there is a subsequence of

the sequence {ϕ(an,t0−an)(yn)} ⊂ Ut0 which converges to some x0 ∈ Ut0 . The
standard arguments show that the trajectory of x0 is defined on the whole real
line. Conditions (1) and (3) are easy to verify, thus it remains to prove (2).
Let tm0 ∈ S be fixed. Because

ϕ(a,tm0−a)(yn) = ϕ(t0,tm0−t0)(ϕ(a,t0−a)(yn)),

by the continuity of τU ,

τU (ϕ(a,tm0−a)(yn)) → τU (ϕ(t0,tm0−t0)(x0)).

On the other hand, by the definition of the sequence {yn} there is

0 < τU (ϕ(a,tm0−a)(yn)) < tm0+1 − tm0 ,

thus
0 ≤ τU (ϕ(t0,tn0−t0)(x0)) ≤ tm0+1 − tm0 .

Because τZ(x0) = +∞, Z−
tm0

= U−
tm0

and Z−
tm0+1

= U−
tm0+1

, we in fact obtain

0 < τU (ϕ(t0,tm0−t0)(x0) < tm0+1 − tm0 ,

so (2) holds.
If card(S) is an odd multiplicity of an odd n0 then taking Sm = S ∪ {m}

for a large m we will find points xm satisfying (1), (2), (3) with S replaced by
Sm. The sequence {xm} has a subsequence convergent to some point x and it
satisfies the thesis.

If S is an infinite set then we use the proved finite case and similar argu-
ments based on the compactness of Ut0 .

4. Periodic case. Assume that the vector field f (on a manifold M) is
T–periodic (T > 0) with respect to the time variable. Let U and Z be two
proper sets such that assumptions (a), (b), (c) hold with the sequence tn = nT
(n ∈ Z). As a corollary we obtain
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Theorem 2. (1) There are a compact set I ⊂ M invariant with respect to
the Poincaré map ϕ(0,T ) and a continuous surjective map g : I → Σ2 such that
ϕ(0,T ) is semiconjugated to the shift σ : Σ2 → Σ2 by the map g in I.
(2) If n0 is even then for every n–periodic sequence s ∈ Σ2 its counterimage by
g contains at least one n–periodic point of the Poincaré map.
(3) If n0 is odd and s ∈ Σ2 is an n–periodic sequence in which the symbol 1
appears k–times in every block of length n, k is not an odd multiplicity of n0

then the counterimage of s by g contains an n–periodic point of ϕ(0,T ).

Proof. The set I and map g are defined in the same way they are in
[15]. The surjectivity of g follows from the density of periodic orbits in Σ2 and
Corollary 1.

Remark 3. Let U and W be two periodic isolating segments over [0, T ]
for the equation (∗) (see [15] for the definition). Suppose that U and W fulfil
the assumptions of Theorem 2 in [15] (see also [17], [18], [19] for examples of
concrete differential equations). We define two admissible proper pairs Ũ , W̃
by the conditions

Ũt = Ut modT ,

W̃t = Wt modT ,

for t ∈ R. It follows that all assumptions of our Theorem 1 hold for Ũ , W̃ with
tn = nT , so for any sufficiently small (not necessarily T–periodic) perturbation
of system (∗) there is a compact set Λ which is invariant with respect to ϕ(0,T )

and ϕ(0,T ) restricted to Λ is semiconjugated to the Bernoulli shift with two
symbols. In particular, the topological entropy of ϕ(0,T ) is positive.

5. Applications. In the present section we consider the following planar
nonautonomous equation of the variable z ∈ C

(5.1) ż =
(
1 + (cos(t2) + 2)eiφt|z|2

)
z̄,

for some φ ∈ R.

Theorem 3. Equation (5.1) fulfils the assumptions of Theorem 1 for suf-
ficiently small φ > 0.

Although a proof is similar to the proof of Th.2 in [15], we give it in a detailed
way for the sake of completeness. Our proof of Theorem 3 consists of the
construction of two proper pairs U and Z (admissible with tn = 2π

φ n) satisfying
conditions (a), (b), and (c) in Theorem 1. Z will be a twisted prism with a
square base centered at the origin. Its cross-sections Zt will be obtained by
rotating the base with the angle velocity φ/2 over the t–interval [0, 2π/φ]. The
set U will be a regular square-based prism with broadening ends. Its cross-
sections Ut corresponding to t near the centre of the interval will have the
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small side and they will broaden when t approaches the ends of the interval
(because U,Z should have a common cross-section Ut for t ∈ {0, 2π/φ}).

The remainder of this section will be devoted to a proof of the above theo-
rem. Equation (5.1) coincides with the system of two planar equations:

(5.2)
{

ẋ = x + (cos(t2) + 2)(x2 + y2)(x cos(φt) + y sin(φt)),
ẏ = −y + (cos(t2) + 2)(x2 + y2)(x sin(φt)− y cos(φt)).

By F we denote the vector field in the extended phase space R3 generated by
the right-hand side of system (5.2), i.e.

F (t, x, y) =

 1
x + (cos(t2) + 2)(x2 + y2)(x cos(φt) + y sin(φt))
−y + (cos(t2) + 2)(x2 + y2)(x sin(φt)− y cos(φt))


In the sequel we assume that φ > 0. In order to construct U and Z we will
introduce several auxiliary functions and sets. Let R > 0. Put

Λ1
R(t, x, y) =

1
R2

(x cos(
φ

2
t) + y sin(

φ

2
t))2 − 1,

Λ2
R(t, x, y) =

1
R2

(x sin(
φ

2
t)− y cos(

φ

2
t))2 − 1,

and
LR = {(t, x, y) ∈ R3 : Λi

R(t, x, y) ≤ 0, i = 1, 2},
L−R = {(t, x, y) ∈ R3 : Λ1

R(t, x, y) = 0, Λ2
R(t, x, y) ≤ 0},

L+
R = {(t, x, y) ∈ R3 : Λ1

R(t, x, y) ≤ 0, Λ2
R(t, x, y) = 0}.

Lemma 2. If φ ≤ 1 and R ≥ 3 then

F (t, x, y) · ∇Λ1
R(t, x, y) > 0 ((t, x, y) ∈ L−R),(5.3)

F (t, x, y) · ∇Λ2
R(t, x, y) < 0 ((t, x, y) ∈ L+

R).(5.4)

Proof. We omit the proof, since the lemma is essentially the same as one
in [15].

Now let r > 0 and put

Ξ1
r(t, x, y) =

1
r2

x2 − 1,

Ξ2
r(t, x, y) =

1
r2

y2 − 1,

and
Kr = {(t, x, y) ∈ R3 : Ξi

r(t, x, y) ≤ 0, i = 1, 2},
K−

r = {(t, x, y) ∈ R3 : Ξ1
r(t, x, y) = 0, Ξ2

r(t, x, y) ≤ 0},
K+

r = {(t, x, y) ∈ R3 : Ξ1
r(t, x, y) ≤ 0, Ξ2

r(t, x, y) = 0}.
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Lemma 3. For an arbitrary φ and r ≤ 1
4 ,

F (t, x, y) · ∇Ξ1
r(t, x, y) > 0 ((t, x, y) ∈ K−

r ),(5.5)
F (t, x, y) · ∇Ξ2

r(t, x, y) < 0 ((t, x, y) ∈ K+
r ).(5.6)

Proof. There is

F (t, x, y) · ∇Ξ1
r(t, x, y)(5.7)

=
2
r2

(
x2 + (cos(t2) + 2)(x2 + y2)(x2 cos(φt) + xy sin(φt)

)
F (t, x, y) · ∇Ξ2

r(t, x, y)(5.8)

=
2
r2

(
−y2 + (cos(t2) + 2)(x2 + y2)(xy sin(φt)− y2 cos(φt)

)
For any (t, x, y) ∈ K−

r , there is |x| = r and |y| ≤ r, hence, by (5.7),

F (t, x, y) · ∇Ξ1
r(t, x, y) ≥ 2

r2
(r2 − 6r2 · 2r2) = 2− 24r2,

and (5.5) is satisfied. If (t, x, y) ∈ K+
r then by (5.8) it follows analogously that

F (t, x, y) · ∇Ξ2
r(t, x, y) ≤ −2 + 24r2,

hence (5.6) follows, and Lemma 3 is proved.

Let ω > 0, k ∈ Z and t ∈ [2π
φ k, 2π

φ k + R/ω]. Put

Π1
R,ω(t, x, y) =

1
(R− ω(t− 2π

φ k))2
x2 − 1,

Π2
R,ω(t, x, y) =

1
(R− ω(t− 2π

φ k))2
y2 − 1,

and

Pr,R,ω ={(t, x, y) ∈ [2π
φ k, 2π

φ k + R−r
ω ]×R2 : Πi

R,ω(t, x, y) ≤ 0, i = 1, 2},

P−
r,R,ω ={(t, x, y) ∈ [2π

φ k, 2π
φ k + R−r

ω ]×R2 : Π1
R,ω(t, x, y) = 0, Π2

R,ω(t, x, y)≤0},

P+
r,R,ω ={(t, x, y) ∈ [2π

φ k, 2π
φ k + R−r

ω ]×R2 : Π1
R,ω(t, x, y) ≤ 0, Π2

R,ω(t, x, y)=0}.

Lemma 4. For φ > 0 sufficiently small and ω ≤ r
2

F (t, x, y) · ∇Π1
R,ω(t, x, y) > 0 ((t, x, y) ∈ P−

r,R,ω),(5.9)

F (t, x, y) · ∇Π2
R,ω(t, x, y) < 0 ((t, x, y) ∈ P+

r,R,ω).(5.10)
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Proof.

F (t, x, y) · ∇Π1
R,ω(t, x, y) =

2ωx2

(R− ω(t− 2π
φ k))3

+

2
(R− ω(t− 2π

φ k))2
(
x2 + (cos(t2) + 2)(x2 + y2)(x2 cos(φt) + xy sin(φt))

)
,

F (t, x, y) · ∇Π2
R,ω(t, x, y) =

2ωy2

(R− ω(t− 2π
φ ))3

+

2
(R− ω(t− 2π

φ ))2
(
−y2 + (cos(t2) + 2)(x2 + y2)(xy sin(φt)− y2 cos(φt))

)
.

Let φ > 0 be so small that

(5.11) cos(φt) > 0 for t ∈
[
2π

φ
k,

2π

φ
k +

R− r

ω

]
,

and (t, x, y) ∈ P−
R,ω, so |x| = R − ω(t − 2π

φ k) and |y| ≤ R − ω(t − 2π
φ k). For a

sufficiently small φ > 0 we obtain

F (t, x, y) · ∇Π1
R,ω(t, x, y) > 2ω

r + 2− 2(R− ω(t− 2π
φ k))2φ(t− 2π

φ k)
≥ 2− 6R2φR−r

ω ≥ 1.

Similarly we conclude that if (t, x, y) ∈ P+
R,ω then for a sufficiently small φ > 0

F (t, x, y) · ∇Π2
R,ω(t, x, y) < −2 +

2ω

r
+ 6R2φ

R− r

ω
≤ −1 +

2ω

r
.

We have assumed that ω ≤ r/2 thus the proof of Lemma 4 is finished.

For t ∈ [2π
φ k − R−r

ω , 2π
φ k] we put

Σ1
R,ω(t, x, y) = Π1

R,ω

(
2π

φ
k − t, x, y

)
,

Σ2
R,ω(t, x, y) = Π2

R,ω

(
2π

φ
k − t, x, y

)
,

Sr,R,ω = {(t, x, y) ∈ [2π
φ k − R−r

ω , 2π
φ k]×R2 : Σi

R,ω(t, x, y) ≤ 0, i = 1, 2},

S−r,R,ω = {(t, x, y) ∈ [2π
φ k − R−r

ω , 2π
φ k]×R2 : Σ1

R,ω(t, x, y) = 0, Σ2
R,ω(t, x, y)≤0},

S+
r,R,ω = {(t, x, y) ∈ [2π

φ k − R−r
ω , 2π

φ k]×R2 : Σ1
R,ω(t, x, y) ≤ 0, Σ2

R,ω(t, x, y)=0}.

One can check that
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Lemma 5. For a sufficiently small φ > 0,

F (t, x, y) · ∇Σ1
R,ω(t, x, y) > 0 ((t, x, y) ∈ S−r,R,ω)(5.12)

F (t, x, y) · ∇Σ2
R,ω(t, x, y) < 0 ((t, x, y) ∈ S+

r,R,ω)(5.13)

Lemma 6. If φ < 2ω
R then Pr,R,ω ⊂ LR and Sr,R,ω ⊂ LR.

Proof. Essentially, it is lemma 6 in [15].

Proof of Theorem 2. All the estimates in the above lemmas are sat-
isfied for R = 3, r = 1/4, ω = 1/8, and a sufficiently small φ > 0. Let us
define

U = P 1
4
,3, 1

8
∪K 1

4
∪ S 1

4
,3, 1

8
,

Z = L3.

By Lemmas 2, 3, 4, and 5, pairs (U,U−) and (Z,Z−) are admissible proper
pairs with the sequence tn = 2π

φ n, and

U0 = Z0 = {(x, y) ∈ R2 : |x| ≤ 3, |y| ≤ 3},
U−

0 = Z−
0 = {(x, y) ∈ R2 : |x| = 3, |y| ≤ 3}.

The set Z is a twisted prism with a square base, its successive cross-sections
Zt are obtained by the rotation of Z0 by the angle φt/2 (t ∈ [0, 2π]). Thus we
can take the map (x, y) → (−x,−y) as a homeomorphism h̃ corresponding to
Z. Hence

µZtn,tn+1 ◦ µZtn,tn+1 = idH(U0,U−
0 ), Lef(µW ) = 1.

U is a regular square-based prism, broadening at tn, hence

µUtn,tn+1 = idH(U0,U−
0 ).

Moreover, K 1
6
⊂ L3, so U ⊂ Z and Lemma 6 is valid; hence

χ(U0, U
−
0 ) = −1.

Thus all conditions (a), (b), and (c) are satisfied.

6. Appendix. Let n be an odd natural number. For a p ∈ N and an
r ∈ Z, define:

(6.1) Sn(p, r) =
∑

0≤s≤p
n|s−r

(−1)s−r

(
p

s

)
.

It is easy to check that

Sn(0, r) =
{

(−1)r if r = k · n;
0 otherwise.
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The following two lemmas gather some useful properties of Sn(p, r)

Lemma 7. Sn(p, r) = Sn(p− 1, r) + Sn(p− 1, r − 1).

Proof.

Sn(p, r) =
∑

0≤s≤p
n|s−r

(−1)s−r

(
p

s

)

=
∑

0≤s≤p
n|s−r

(−1)s−r

(
p− 1
s− 1

)
+

∑
0≤s≤p
n|s−r

(−1)s−r

(
p− 1

s

)

=
∑

1≤s≤p
n|s−r

(−1)s−r

(
p− 1
s− 1

)
+

∑
0≤s≤p−1

n|s−r

(−1)s−r

(
p− 1

s

)

=
∑

0≤s≤p−1
n|s+1−r

(−1)s+1−r

(
p− 1

s

)
+

∑
0≤s≤p−1

n|s−r

(−1)s−r

(
p− 1

s

)

=
∑

0≤s≤p−1
n|s−(r−1)

(−1)s−(r−1)

(
p− 1

s

)
+

∑
0≤s≤p−1

n|s−r

(−1)s−r

(
p− 1

s

)
= Sn(p− 1, r − 1) + Sn(p− 1, r).

Lemma 8. The bi-infinite sequence {Sn(p, r)}r∈Z has the following proper-
ties:

1. Sn(p, r) = −Sn(p, r + n);
2. Sn(p, p/2 + α) = Sn(p, p/2− α) for such α that p/2 + α ∈ Z.

Proof. The lemma is obvious for p = 0.
Now suppose that it holds for p− 1.

1.

Sn(p, r) = Sn(p− 1, r) + Sn(p− 1, r − 1)
= −Sn(p− 1, r + n)− Sn(p− 1, r − 1 + n)
= −Sn(p, r + n);
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2.

Sn(p, p/2 + α) = Sn(p− 1, p/2 + α− 1) + Sn(p− 1, p/2 + α)

= Sn(p− 1,
(p− 1)

2
+ α− 1

2
) + Sn(p− 1,

(p− 1)
2

+ α +
1
2
)

= Sn(p− 1,
(p− 1)

2
− α +

1
2
) + Sn(p− 1,

(p− 1)
2

− α− 1
2
)

= Sn(p− 1, p/2− α) + Sn(p− 1, p/2− α− 1)
= Sn(p, p/2− α).

Now we are ready to state an important property of numbers Sn(p, r):

Theorem 4.

Sn(p, r)


= 0 if p−2r

n ∈ 2N + 1
> 0 if p−2r

n ∈ (4k − 1, 4k + 1)
< 0 if p−2r

n ∈ (4k + 1, 4k + 3)

for odd n ∈ N and all p ≥ n− 1.

Proof. Let p = n− 1. Note that p−2r
n cannot be an odd number.

From the definition,

Sn(n− 1, r) = (−1)s−r

(
n− 1

s

)
where s ∈ {0, 1, . . . , n − 1} is such a number that there exists k ∈ N with
s− r = kn. But (−1)s−r = (−1)kn = (−1)k = (−1)

s−r
n = (−1)

r−s
n , so

Sn(n− 1, r) > 0 ⇔ r − s

n
∈ 2N ⇔

[ r

n

]
∈ 2N

⇔ r

n
∈ [2m, 2m + 1) ⇔ p− 2r

n
∈

(
−4m− 1− 1

n
,−4m + 1− 1

n

]
.

Since p is an even number, no number of the form p−2r
n lies in intervals of the

form (2l + 1− 1
n , 2l + 1 + 1

n). Hence

p− 2r

n
∈

(
−4m− 1− 1

n
,−4m + 1− 1

n

]
⇔ p− 2r

n
∈ (−4m− 1,−4m + 1).

Similarly,

Sn(n− 1, r) < 0 ⇔ p− 2r

n
∈

(
−4m + 1− 1

n
,−4m + 3− 1

n

]
⇔ p− 2r

n
∈ (−4m + 1,−4m + 3),

and these equivalences complete the proof for p = n− 1.
Suppose now that the conclusion is true for p− 1.
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1. p−2r
n = 2k + 1

From Lemma 8.2. there follows that Sn(p− 1, r) = Sn(p− 1, p− 1− r),
hence by Lemma 8.1.

Sn(p, r) = Sn(p− 1, r) + Sn(p− 1, r − 1)

= Sn(p− 1, p− 1− r) + Sn(p− 1, r − 1)

= Sn(p− 1, p− 1− r) + Sn(p− 1, p− 1− r + (2r − p))

= Sn(p− 1, p− 1− r) + Sn(p− 1, p− 1− r − (2k + 1)n) = 0

because (2k + 1)n is an odd multiplicity of n.
2. p−2r

n ∈ (4k − 1, 4k + 1)
The numbers (p−1)−2(r−1)

n = p−2r
n + 1

n and (p−1)−2r
n = p−2r

n − 1
n are both

of the form q
n and differ from p−2r

n by 1
n . Since both endpoints of the

interval [4k−1, 4k+1] are of the form q
n and p−2r

n ∈ (4k−1, 4k+1), the
numbers (p−1)−2(r−1)

n , (p−1)−2r
n must lie in [4k−1, 4k+1] and at least one

of them is in the interior of [4k − 1, 4k + 1]. Thus we have the following
inequalities:

Sn(p− 1, r) ≥ 0, Sn(p− 1, r − 1) ≥ 0

and at most one of them is an equality. Hence

Sn(p, r) = Sn(p− 1, r) + Sn(p− 1, r − 1) > 0.

3. p−2r
n ∈ (4k + 1, 4k + 3)

Analogously as above we get:

Sn(p, r) = Sn(p− 1, r) + Sn(p− 1, r − 1) < 0.

As a consequence of the theorem, we obtain:

Corollary 2.
∑

0≤s≤p
n|s

(−1)p−s
(
p
s

)
= 0 ⇐⇒ p/n is an odd number.

Proof.∑
0≤s≤p

n|s

(−1)p−s

(
p

s

)
= (−1)p ·

∑
0≤s≤p

n|s

(−1)s

(
p

s

)
= (−1)p · Sn(p, 0).

References

1. Alessio F., Montecchiari P., Multibump solutions for a class of Lagrangian systems slowly
oscillating at infinity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16, No. 1 (1999), 107–
135.



179

2. Alessio F., Caldiroli P., Montecchiari P., Genericity of the multibump dynamics for almost
periodic Duffing-like systems, Proc. Roy. Soc. Edinburgh Sect. A, 129, No. 5 (1999), 885–
901.

3. Bolotin S., MacKay R., Multibump orbits near the anti-integrable limit for Lagrangian
systems, Nonlinearity (1997), 1015–1029.

4. Conley C.C., Isolated invariant set and the Morse index, CBMS Regional Conf. Ser., No.
38, AMS, Providence R.I., 1978.

5. Coti Zelati V., Montecchiari P., Nolasco M., Multibump homoclinic solutions for a class
of second order, almost periodic Hamiltonian systems, Nonlinear Differential Equations
Appl., 4 (1997), 77–99.

6. Coti Zelati V., Nolasco M., Multibump solutions for Hamiltonian systems with fast and
slow forcing, Boll. Unione Mat. Ital., 2, No. 3 (1999), 585–608.

7. Coti Zelati V., Rabinowitz P.H., Homoclinic orbits for second order Hamiltonian systems
possesing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693–727.

8. Dold A., Lectures on Algebraic Topology, Springer-Verlag, Berlin–Heidelberg–New York,
1980.

9. Hale J.K., Theory of Functional Differential Equations, Springer-Verlag, New York–
Heidelberg–Berlin, 1977.

10. Montecchiari P., Nolesco M., Multibump solutions for perturbations of periodic second
order systems, Nonlinear Anal. TMA, 27 (1996), 1355–1372.

11. Rabinowitz P. H., Multibump solutions for an almost periodically forced singular Hamil-
tonian system, Electronic J. Differential Equations 1995, No. 12 (1995).

12. Séreé E., Looking for the Bernoulli shift, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10
(1993), 561–590.

13. Srzednicki R., Periodic and bounded solutions in block for time-periodic nonautonomous
ordinary differential equations, Nonlinear Anal. TMA, 22, No. 6 (1994), 707–737.

14. Srzednicki R., A Geometric Method for the Periodic Problem in Ordinary Differential
Equations, Seminaire D’Analyse Moderne No. 22, Eds.: G. Fournier, T. Kaczyński,
Universite de Sherbrooke, 1992.

15. Srzednicki R., Wójcik K., A Geometric Method for Detecting Chaotic Dynamics, J. Dif-
ferential Equations, 135 (1997), 66–82.

16. Wiggins S., Global Bifurcation and Chaos. Analytical Methods, Springer-Verlag, New
York–Heidelberg–Berlin, 1988.

17. Wójcik K., Isolating segments and symbolic dynamics, Nonlinear Anal. TMA, 33 (1998),
575–591.

18. Wójcik K., On Some Nonautonomous Chaotic System on the Plane, Internat. J. Bifur.
Chaos, Vol. 9, No. 9 (1999), 1853–1858.

19. Wójcik K., On detecting periodic solutions and chaos in the time periodically forced
ODEs, Nonlinear Anal., Ser. A: Theory Methods, 45, No. 1 (2001), 19–27.

Received June 28, 2002
Jagiellonian University
Institute of Mathematics
Reymonta 4
30-059 Kraków, Poland
e-mail : pieniaze@im.uj.edu.pl
e-mail : wojcik@im.uj.edu.pl

mailto:pieniaze@im.uj.edu.pl
mailto:wojcik@im.uj.edu.pl

	1. Introduction.
	2. Proper pairs.
	3. Main result.
	4. Periodic case.
	5. Applications.
	6. Appendix.
	References

