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PLURIREGULARITY IN POLYNOMIALLY BOUNDED

O–MINIMAL STRUCTURES

by W. Pleśniak

Abstract. Given a polynomially bounded o–minimal structure S and a
set A ⊂ Rn belonging to S, we show that A (considered as a subset of Cn)

is pluriregular at every point a ∈ int A that can be attained by a C∞ arc
γ : [0, ε] → Rn belonging to S, such that γ(0) = a and γ((0, ε]) ⊂ int A. In
particular, if S is a recently found in [22] polynomially bounded o–minimal
structure of quasianalytic functions in the sense of Denjoy–Carleman, then
any set A ⊂ Rn that belongs to S is pluriregular at every point a ∈ int A.

1. Introduction. Let E be a subset of the space Cn. We set

VE(z) = sup{u(z) : u ∈ L(Cn), u ≤ 0 on E},

where L(Cn) = {u ∈ PSH(Cn) : supz∈Cn [u(z) − log(1 + |z|)] < ∞} is the
Lelong class of plurisubharmonic functions with minimal growth. The function
VE is called the (plurisubharmonic) extremal function associated with E (see
[27]). By the pluripotential theory due to E. Bedford and B.A. Taylor (see [9]),
if E is nonpluripolar in Cn (i.e. there is no plurisubharmonic function u on
Cn, u(z) 6≡ −∞ such that E ⊂ {u(z) = −∞}) then the upper semicontinuous
regularization V ∗

E of VE belongs to L(Cn) and is a solution (in Cn \ Ê, where
Ê denotes the polynomial hull of E) of the homogeneous complex Monge–
Ampère equation (ddcV ∗

E)n = 0, which reduces in the one-dimensional case to
the Laplace equation. Therefore V ∗

E is a multidimensional counterpart of the
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classical Green function for C \ Ê. It is a result of Siciak [27] that if E ⊂ Cn

is compact then

VE(z) = sup{ 1
deg p

log |p(z)| : p is a polynomial of deg p ≥ 1

and ‖p‖E ≤ 1} = log ΦE(z),
(1.1)

where ΦE is the (polynomial) extremal function of E introduced by Siciak
in [26].

Suppose now that E is a nonempty bounded open subset of Rn, where
(in the whole paper) Rn is treated as a subset of Cn such that Rn = {z =
(z1, . . . , zn) ∈ Cn : =zj = 0, j = 0, . . . , n}. It has been proved in [20]
that if a ∈ Ē can be attained by a semianalytic arc h : [0, 1] → Ē such
that h(0) = a and h ((0, 1]) ⊂ E then the function VE is continuous at a.
From the above result it follows that if E is a subanalytic set in Rn then E
is pluriregular at every point a of int E (see [20]). This means, by definition,
that the extremal function VE is continuous at a, which is equivalent to saying
that V ∗

E(a) := lim supz→a VE(z) = 0.
On the other hand, by an example due to Sadullaev [24] (see also [3]),

there exist bounded domains E in R2 with C∞ boundary except for a single
point a ∈ ∂E such that there exists a C∞ curve h : [0, 1] 3 t → h(t) ∈ R2

with h ([0, 1)) ⊂ E and h(1) = a for which V ∗
E(a) > 0. It follows that E is

not pluriregular at a being pluriregular at any other point of Ē. Actually,
Sadullaev [24] proved the following

Lemma 1.1. Let f(z) =
∞∑

j=0
akj

zkj be a gap series with kj/kj+1 → 0 as

j → ∞ and with the radius of convergence R = 1. Then the graph A =
{w − f(z) = 0} ⊂ C2 of the function f is plurithin at every boundary point
(z0, w0) ∈ Ā, where |z0| = 1. This means, by definition, that there exists a
neighbourhood U of (z0, w0) and a plurisubharmonic function u in U such that

lim sup
(z,w)→(z0,w0)

(z,w)∈A

u(z, w) < u(z0, w0).

Moreover, the function u can be chosen to be in the Lelong class in C2.

This lemma permits one to show that in the above mentioned semianalyt-
icity accessibility criterion of pluriregularity, the (semi)analytic arc cannot be
in general replaced not only by a C∞ arc but even by a quasianalytic one. We
have
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Example 1.2. Let

f(x) =
∞∑

j=0

2−k2
j xkj+1 ,

where k0 = 2 and kj+1 = k3
j for j = 0, 1, . . . . Then the function f is C∞ on

[0, 1] and
Mkj

(f) := max
x∈[0,1]

|f (kj)(x)| = O(kj !).

Hence f is quasianalytic on [0, 1] in the sense of Denjoy–Carleman (see [7],
[18]). By Lemma 1.1 the set Γ = {(x, y) ∈ R2 : y = f(x), x ∈ [0, 1)} is
plurithin at the point (1, f(1)). Hence, by a known procedure (see [9, Propo-
sition 4.8.2]), one can choose a function u ∈ L(C2) and δ ∈ (0, 1) such that
u(x, f(x)) ≤ −1 if x ∈ [δ, 1) and u(1, f(1)) > 0. Then u(x, y) < 0 in an open
neighbourhood G of Γ ∩ {δ ≤ x < 1} in R2. Set D = {(x, y) : |y − f(x)| <
1
2 inf{dist(f(t), R2 \ G) : t ∈ [δ, x], x ∈ (δ, 1)}. Then D̄ \ {(1, f(1)} ⊂ G.
Since every point b of D̄ \ {(1, f(1)} can be attained by an interval Ib such
that Ib \ {b} ⊂ D, and since V ∗

D̄
= VD̄ = 0 in D, we have V ∗

D̄
(b) = 0 in such

a point b. On the other hand, by [27, Prop. 3.11], V ∗
D̄

= V ∗
D̄\{(1,f(1))}, whence

V ∗
D̄

(1, f(1)) ≥ u(1, f(1)) > 0. This means that the set D̄ is pluriregular at
every point b ∈ D̄ except for (1, f(1)).

Remark 1.3. It has been proved in [19] that the pluriregularity of compact
subsets of Cn is invariant under nondegenerate analytic mappings from Cn to
Ck (with 1 ≤ k ≤ n). By Example 1.2 it is clear that this is not the case
for quasianalytic diffeomorphisms. For, let F (x, y) = (x, y − f(x)), where
f is the function of Example 1.2. Then F (D) is pluriregular at (1, 0) while
F−1(F (D)) = D is not pluriregular at (1, f(1)).

Remark 1.4. In connection with Lemma 1.1. Sadullaev [25] has posed
the question as to whether the arcs

E1 = {(x, y) ∈ R2 : y = xα, x ∈ (0, 1)}
with α irrational, and

E2 = {(x, y) ∈ R2; y = e−1/x, x ∈ (0, 1)}
are plurithin at the origin (as subsets of C2). The question has appeared
difficult and it took nearly 20 years to answering it (in the affirmative) by
Levenberg and Poletsky [11] (case of E1) and Wiegerinck [30] (case of E2).

In spite of discouraged Example 1.2 and Remark 1.3, we are going to show
that under certain conditions quasianalytic mappings do yield new examples
of pluriregular sets. This will be closely related with the recently briskly pro-
gressing theory of o–minimal structures.
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2. O–minimal structures. Let S =
⋃

n∈N
Sn, where each Sn is a family

of subsets of Rn. Following [5], we shall say that the collection S is a structure
on the field (R, +, ·) if:

(S1) Each Sn is a boolean algebra with Rn ∈ Sn;
(S2) Sn contains the diagonal {(x1, . . . , xn) ∈ Rn : xi = xj for 1 ≤ i <

j ≤ n};
(S3) If A ∈ Sn, then A× R and R×A belong to Sn+1;
(S4) If A ∈ Sn+1, then π(A) ∈ Sn, where π : Rn+1 → Rn is the projection

on the first n coordinates;
(S5) S3 contains the graphs of addition and multiplication.

If in addition the structure S satisfies
(S6) S1 consists exactly of the finite union of intervals of all kinds (includ-

ing singletons),
then it is said to be o–minimal (short for “order–mimimal”).

For a fixed structure S on (R, +, · ), we say that a set A ⊂ Rn belongs to S
(or that A is definable in S) if A ∈ Sn. A function f : A → Rm with A ⊂ Rn

belongs to S (or is definable in S) if its graph Γ(f) ⊂ Rn+m belongs to S.
For other set–theoretical and topological properties of structures we refer the
reader to [5].

Given structures S = (Sn) and S′ = (S′
n) on (R, +, · ) we put S ⊂ S′

if Sn ⊂ S′
n for all n ∈ N. Given functions fj : Rn(j) → R with j in some

index set J , we let S(R, +, · , (fj)j∈J) denote the smallest structure on (R, +, ·)
containing the graphs of all functions fj . In the sequel, we shall be interested
in o–minimal structures that are polynomially bounded. This means that for
every function f : R → R belonging to the structure, there exists some N ∈
N (depending on f) such that f(t) = O(tN ) as t → +∞. If S = (Sn)
is a polynomially bounded o–minimal structure and if U ∈ Sn is open and
connected, then by [13] the ring S of all C∞ functions f : U → R belonging
to S is quasianalytic, i.e. for each nonzero f ∈ S and x ∈ U , the Taylor series
at x of f is not zero. Let us recall some examples of o–minimal structures that
are polynomially bounded (cf [5]).

(2.1) Semialgebraic sets (see [2]);
(2.2) The structure S(Ran) with Ran := (R, +, · , (f)) where f ranges over

all functions f : Rn → R (n ∈ N) that vanish identically off [−1, 1]n and
that are germs on [−1, 1]n of analytic functions. This structure consists of the
so-called finitely (or globally) subanalytic functions (see [4], [8]);

(2.3) The structure S(RR
an) with RR

an := (R, +, · , (f), (xr)r∈R) (introduced
by Miller [12]), where f ranges over all restricted analytic functions as in (2.2),
and the function xr : R → R is given by t → tr for t > 0 and 0 for t ≤ 0.
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(2.4) Let Ran∗ = (R, +, · , (f)), where f ranges over all functions f : Rn →
R (for all n ∈ N) that are 0 outside [0, 1]n and are given on [0, 1]n by a
generalized power series F =

∑
cαxα, where α = (α1, . . . , αn) ∈ [0,∞)n, the

coefficients cα are real, xα denotes xα1
1 · · ·xαn

n , the set {α ∈ [0,∞)n : cα 6= 0}
is countable and

∑
|cα|rα < ∞ for some polyradius r = (r1, . . . , rn) with

r1 > 1, . . . , rn > 1. Then the structure S(Ran∗) is o–minimal and polynomially
bounded (see [6]).

By a recent result of J.-P. Rolin, P. Speissegger and A. Wilkie [22] we also
have the following example.

(2.5) Let (g) be the family of all functions g : Rn → R (for all n ∈ N)
defined by g(x) := f(x) if x ∈ In := [−1, 1]n and g(x) := 0 if x /∈ In, where f
ranges over a Denjoy–Carleman class of C∞ functions on In that satisfy

|f (α)(x)| ≤ A(f)|α|M|α| for all x ∈ In and α ∈ Nn
0 .

Suppose that the sequence 1 ≤ M0 ≤ M1 ≤ . . . is strongly logarithmically
convex, that is, for each p ≥ 1,(

Mp

p!

)2

≤ Mp+1

(p + 1)!
· Mp−1

(p− 1)!
,

and quasianalytic in the sense of Denjoy–Carleman (see e.g. [23]), that is
∞∑

p=0

Mp

Mp+1
= ∞.

Then the structure S(R, +, ·, (g)) is o–minimal and polynomially bounded.
Let us note that in [22] the o–minimality of S is established under the

condition for (Mp) to be residually logarithmically convex. By a remark of
Vincent Thilliez [29] this condition can be replaced by a simpler one of (Mp)
to be strongly logarithmically convex.

(2.6) (see [22, Example 3.1. (2)]) Let R be a polynomially bounded o–
minimal structure on the real field. For compact K ⊂ Rn, let CK denote the
collection of all C∞–functions on K that are definable in R. Now fix, for each
n ≥ 1, an arbitrary subcollection Dn of CIn , where In = [−1, 1]n, which is
closed with respect to taking partial derivatives and contains all polynomials.
Let RD be the smallest structure on the real field containing the graphs of all
functions f : Rn → R (for any n) that are the restrictions to In of functions
from CIn and f(x) = 0 if x /∈ In. Then by [13] and [22, Theorems 5.2 and 5.4]
the structure RD is o–minimal and polynomially bounded.

Let S be an o–minimal structure on (R, +, · ) that is polynomially bounded.
It is known (see e.g. [10]) that
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Lemma 2.7. If A ∈ Sn then the distance function dist(·, A) : Rn → R
defined by dist(x,A) = inf

y∈A
|x− y| belongs to S.

By 4.14 (2) of [5] we have

Lemma 2.8. [ Lojasiewicz Inequality] If A ∈ Sn is compact and if
f : A → R is a continuous function belonging to S then for every continuous
function g : A → R belonging to S with f−1{0} ⊂ g−1{0} there exist N > 0
and C > 0 such that |g(x)|N ≤ C|f(x)| for all x ∈ A.

3. Pluriregularity of sets in o–minimal structures. The nice geo-
metric properties of polynomially bounded o–minimal structures S that have
been listed in Section 2 will permit one to prove pluriregularity of sets belong-
ing to such structures. In the sequel we shall consider subsets A ⊂ Rn definable
in S that satisfy at some point a ∈ int A the following

C∞ Curve Selecting Assumption. There is a C∞–function γ : [0, ε] →
Rn belonging to S such that a = γ(0) and γ((0, ε]) ⊂ int A.

We have

Proposition 3.1. Let S be a polynomially bounded o–minimal structure.
Let A ⊂ Rn belong to S and suppose that a ∈ int A. Suppose moreover that A
satisfies at a the above C∞ Curve Selecting Assumption. Then A is pluriregular
at the point a.

Proof. Since A ∈ S, then also int A ∈ S (see [5]). Let γ : [0, ε] → Rn

be a function fulfiling at a the C∞ Curve Selecting Assumption. Since the
boundary ∂A of A belongs to S and since the composition of S–functions is a
S–function (see [5]), by Lemma 2.7 the function

f : [0, ε] 3 t → dist(γ(t), Rn \A) ∈ R
belongs to S. By (S2), the function g : [0, ε] 3 t → t ∈ R also belongs to S.
Clearly we have f−1{0} ⊂ g−1{0}. Hence by  Lojasiewicz’s inequality (Lemma
2.8), one can find a constant C > 0 and a positive integer N such that

(3.1) f(t) ≥ CtN for t ∈ [0, ε].

Let TN
0 γ denote the Taylor polynomial of γ at 0 of order N . Then by (3.1) we

get
dist(TN

0 γ(t), Rn \A) ≥ CtN − |γ(t)− TN
0 γ(t)| ≥ CtN − o(tN )

as t ∈ [0, ε] with t → 0. Hence we can find δ > 0 such that

dist(TN
0 γ(t), Rn \A) > 0 for t ∈ (0, δ].

It follows that the values of the polynomial map h(t) := TN
0 γ(t) lie in int A as

t ∈ (0, δ]. Take now the extremal function VA associated with the set A. By
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definition VA = 0 in int A. It is also known (see e.g. [9]) that any analytic arc
l : [0, δ] 3 t → l(t) ∈ Cn is not plurithin at any point of its graph. Therefore
we get

V ∗
A(a) = V ∗

A(h(0)) = lim sup
t→0,t>0

V ∗
A(h(t)) = lim sup

t→0,t>0
VA(h(t)) = 0.

In other words, the function VA is continuous at a as claimed.

If S is the Rolin–Speissegger–Wilkie structure described in (2.5) or else
any structure described in (2.6), we have the following (see [22, Lemma 5.3])

Lemma 3.2. [Curve Selection Lemma] Let A ⊂ Rn be definable in S and let
a ∈ int A. Then there exists ε > 0 and a C∞ map γ = (γ1, . . . , γn) : [0, ε] → Rn

definable in S, with γj belonging to the quasianalytic class C[−ε,ε](Mp), such
that a = γ(0) and γ((0, ε]) ⊂ int A.

Hence by Proposition 3.1 we get

Corollary 3.3. Let S be an o–minimal structure defined in (2.5) or (2.6).
Let A ⊂ Rn be a definable set in S. Then A is pluriregular at every point of
int A.

Remark 3.4. If E ⊂ Cn is compact, by [27, Prop. 2.13] pluriregularity of
E at every point of E implies continuity of the extremal function VE in the
whole space Cn.

Similarly to results of [20], one can also prove the following

Proposition 3.5. Let A be a fat (A ⊂ int A) subset of Cn that is definable
(as a subset of R2n) in a structure of Corollary 3.3. Then A is pluriregular (in
the sense of Cn) at every point a ∈ int A.

Proof. By Corollary 3.3 the set A is pluriregular in C2n at every point
a ∈ int A ⊂ R2n. Hence by [20, Lemma 7] A is pluriregular at a in Cn.

Example 3.6. Let A = {z ∈ Cn : |h1(z)| < 1, . . . , |hm(z)| < 1}, where
hj(z) = pj(z) + iqj(z) with real functions pj and qj that belong to a fixed
structure of Corollary 3.3 (j = 1, . . . ,m), be nonempty. Then A is pluriregular
at every point of Ē.

The property of pluriregularity of fat subanalytic subsets E of Rn estab-
lished in [20] was essentially strengthened in [14] where it is shown (with the
aid of the Hironaka Rectilinearization Theorem) that if E = int E is compact
then VE is Hölder continuous on E, i.e. it satisfies the condition

(3.2) VE(z) ≤ M(dist(z,E))m for z ∈ Cn with dist(z, E) ≤ 1
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for some positive constants M and m. (Then by B locki’s argument (see e.g.
[1, Remark on p. 213]), VE has to be Hölder continuous on the whole space
Cn.) Since for a compact set E ⊂ Cn we have

VE(z) = sup{(1/deg P ) log |P (z)| : P ∈ C[z1, . . . , zn],

deg P ≥ 1, sup |P |(E) ≤ 1}
(3.3)

(see [27, Theorem 4.12]), by Cauchy’s Integral Formula, from (3.2) one eas-
ily derives that E admits (global) Markov’s Inequality for the derivatives of
polynomials in n variables (see Question 3.8 below). Consequently, one can
construct (in a relatively easy way) a continuous linear operator extending
C∞ Whitney jets on Ē to C∞–functions on the whole space Rn (see [15]).
For other applications of Markov Inequality in differential analysis we refer the
reader to [21].

It follows from the proof of Proposition 3.1 and Lemma 3.2 (see [14, Section
4]) that if A = int A is a compact subset of Rn that is definable in a structure
S of (2.5) or (2.6) then for every point a of A there exist constants M > 0,
m > 0 and δ0 > 0 such that for every δ ∈ (0, δ0)

(3.4) VA(z) ≤ Mδm if z ∈ Cn, |z − a| < δ.

Actually, in order to get (3.4) at a point a ∈ int A it is sufficient to know that
there exists a curve γ ∈ Ck([0, ε]) (k ≥ 1) in Rn such that

(∨) γ(0) = a, γ((0, ε]) ⊂ int A and dist(γ(t), Rn \A) ≥ CtN , 0 ≤ t ≤ ε,

with some positive constants C and N , where N ≤ k. We note that a similar
sufficient condition for the Hölder continuity of VE has been given by Siciak
[28, Prop. 7.6]. The Curve Selection Lemma 3.2, together with  Lojasiewicz’s
Inequality (Lemma 2.8), yields property (∨) in the o–minimal structures de-
fined in (2.5) and (2.6). It is a problem suggested by the referee of finding
other (more general) o–minimal structures that admit property (∨).

By (3.4) we get the (local) Markov Inequality

Corollary 3.7. If A is a definable set in a structure S of (2.5) or (2.6)
then for every point a ∈ int A there exist constants K > 0 and r > 0 such that
we have

|P (α)(a)| ≤ K(deg P )r|α| sup |p|(A)

for any polynomial P ∈ C[x1, . . . , xn] and any α ∈ Nn
0 .

As in the case of subanalytic sets, one can put the following

Question 3.8. If A is a compact definable set of Corollary 3.7, can the
constants M , m and δ0 of property (3.4) be chosen uniformly on A?
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This question has been recently answered in the affirmative by Pierzcha la
[16] (see also [17]). Consequently, the set A of Corollary 3.7 admits a global
Markov Inequality.
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