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SOME VERSION OF GOWERS’ DICHOTOMY

FOR BANACH SPACES

by Anna Maria Pelczar

Abstract. In this paper another version of Gowers’ dichotomy for Banach
spaces, involving topologies of special type on the Cartesian product of
Banach spaces, is presented. These topologies are closely related to the
game used by W. T. Gowers in his proof of the dichotomy.

1. Introduction. In this paper we will present some version of an impor-
tant special case of general Gowers’ dichotomy theorem, namely

Theorem 1.1. A Banach space contains either an unconditional basic se-
quence or a HI (hereditarily indecomposable) subspace.

First we will recall basic notions and introduce some notation.
Given a real Banach space E, by B = BE (resp. S = SE) we denote the

closed unit ball (resp. the unit sphere) in E. Given x ∈ E and r > 0 we put
B(x, r) = x + rB and S(x, r) = x + rS.

Let E be a real Banach space with a basis {en}∞n=1. Given a vector x =∑∞
n=1 xnen, the support of x, written supp x, is the set {n ∈ N : xn 6=

0}. Given two non-zero vectors x, y ∈ E we write x < y, if max(supp x) <
min(supp y). We will also write 0 < x for any non-zero vector x ∈ E. A block
basis is a sequence a1 < a2 < . . . of non-zero vectors, a block subspace – a
closed subspace spanned by a block basis.

A basis {en} is called unconditional if there exists a constant C such that
for any sequence {an} of scalars and any sequence {εn} with each εn of absolute
value one we have ∥∥∥∥∥

∞∑
n=1

εnanen

∥∥∥∥∥ ≤ C

∥∥∥∥∥
∞∑

n=1

anen

∥∥∥∥∥ .
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A space E is decomposable if it can be written as a direct sum F +G with
F and G infinite dimensional.

A space E is HI (hereditarily indecomposable) if no subspace G of E is
decomposable.

All spaces considered here will be closed and infinite dimensional.

2. Some topologies on the Cartesian product of a Banach space.
Let T be a topology on a Banach space E. By T ◦ we denote a topology on
E × E given by the formula

T ◦ = (T × Td) ∩ (Td × T ),

where Td is the discrete topology on E.
Notice that the family of sets of the form V =

⋃∞
n=1 Vn, where for n ≥ 1

Vn =
⋃

(x,y)∈Vn−1

(
{x} × (y + Zx,y)

)
∪ ((x + Zx,y)× {y}) ,

with {Zx,y} – neighbourhoods of the origin in (E, T ), forms a basis of neigh-
bourhoods of the origin in the topology T ◦.

Fix now a filtering family L of subspaces of E. Given a vector x ∈ E put
Lx = {x + L, L ∈ L}. Then the family {Lx, x ∈ E} forms a basis of neigh-
bourhoods for some topology on E. Denote this topology by TL. Transforming
slightly the form of the neighbourhood of the origin discussed above we get a
basis of neighbourhoods of the origin in T ◦

L consisting of the sets of the form

W =
∞⋃

n=1

Wn, where W1 = L0,0, and for n ≥ 1

W2n =
⋃

(x,y)∈W2n−1

{(x + z, y) : z ∈ Lx,y} ,

W2n+1 =
⋃

(x,y)∈W2n

{(x, y + z) : z ∈ Lx,y}

(W)

for some Lx,y ∈ L.
In other words, an element of such a neighbourhood is a pair of finite sums

of vectors taken from suitable subspaces:

(z1 + z3 + · · ·+ z2n−1, z2 + z4 + · · ·+ z2n), where z1 ∈ L0,0,

z2i ∈ Lz1+···+z2i−1,z2+···+z2i−2 , z2i+1 ∈ Lz1+···+z2i−1,z2+···+z2i

where all subspaces are taken from the family L and n ∈ N.

In the next section we shall need a topology on E ×E of a form similar to
T ◦, but comparable to the norm topology T‖·‖ × T‖·‖. To achieve this we shall
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“thicken” T ◦
L by adding balls of an arbitrarily small diameter on both axes of

E × E. We discuss this in detail below.
Given a vector topology T on E we define a topology T • on E×E (examined

in [3]) by the formula:

T • = (T × T‖·‖) ∩ (T‖·‖ × T ).

An argumentation similar to the previous one shows that there is a basis
of neighbourhoods of the origin in the topology T • given by the family of sets
of the form V =

⋃∞
n=1 Vn, where for n ≥ 1

Vn =
⋃

(x,y)∈Vn−1

(
B(x, εx,y)× (y + Zx,y)

)
∪

(
(x + Zx,y)×B(y, εx,y)

)
,

where εx,y > 0, and {Zx,y} are neighbourhoods of the origin in (E, T ).
As before, fix a filtering family L of subspaces of E. By C(L) denote the

family of cylinders with axes from the family L:

C(L) = {C(L, ε), L ∈ L, ε > 0}, where C(L, ε) = L + B(0, ε).

Let TC(L) be the topology given by C(L) as a basis of neighbourhoods of the
origin.

As in the previous case, there is a basis of neighbourhoods of the origin in
T •
L consisting of sets of the form

U =
∞⋃

n=1

Un, where U1 = C(L0,0, ε0,0), and for n ≥ 1

U2n =
⋃

(x,y)∈U2n−1

{(x + z, y + w) : z ∈ C(Lx,y, εx,y), w ∈ B(0, εx,y)} ,

U2n+1 =
⋃

(x,y)∈U2n

{(x + w, y + z) : z ∈ C(Lx,y, εx,y), w ∈ B(0, εx,y)}

(U)

for some subspaces Lx,y ∈ L and scalars εx,y > 0.
In other words, an element of such a neighbourhood is a pair of finite sums

of vectors, obviously more complicated than in the case of T ◦
L:

(z1+w2+z3+w4+· · ·+w2n−2+z2n−1+w2n, w1+z2+w3+z4+· · ·+w2n−1+z2n),

where zi are chosen from suitable cylinders, wi – from suitable balls.

3. Application of the game theory. The definition of the neighbour-
hoods of the origin in the topologies considered before seemed to be compli-
cated, but the construction of these neighbourhoods appears to be quite nat-
ural while using the game-theory language: neighbourhoods of the form (W)
or (U) correspond to strategies of players in some two-player games which we
shall define below.
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Given a family L of closed infinite dimensional subspaces of E and a set
σ of finite sequences of vectors of E we define a two-player game of type I as
follows: in the first step, the first player S chooses a subspace M1 ∈ L and
then the second player P picks a vector z1 ∈ M1. In the second step, the player
S chooses a subspace M2 ∈ L, then the player P – a vector z2 ∈ M2. They
continue in this way, alternately choosing subspaces (the player S) and vectors
(the player P) in them.

The player P wins the game if (z1, . . . , zn) ∈ σ for some n ∈ N. If it does
not happen for any n ∈ N, the player S wins.

A strategy of the player S is a method of choosing subspaces, defined for
all possible moves of the player P, ie. a strategy is given by a function that for
every n ≥ 1 associates with every possible sequence of subspaces and vectors
M1, z1,M2, z2, . . . ,Mn, zn chosen by players S and P in the first n steps of some
game, a subspace Mn+1 to be chosen by the player S in the (n + 1)−th step.
A strategy of the player P is defined analogously.

A strategy of the player S (resp. P) is winning if applying it the player S
(resp. P) wins every game.

Assume now that the family L is filtering. We will explain now how strate-
gies of the player S correspond to the (W)–form neighbourhoods of the origin
in T ◦

L.
Given a strategy S of the player S define the neighbourhood of the form

(W) by induction. Put W0 = M1. With W0, . . . ,Wn defined, construct Wn+1

by defining for every (x, y) ∈ Wn the subspace Lx,y as follows. Fix a vector
(x, y) ∈ Wn. Then for some finite sequence {zi} of vectors we have x =∑

z2i−1, y =
∑

z2i, where z1 ∈ L0,0, z2i ∈ Lz1+···+z2i−1,z2+···+z2i−2 , z2i+1 ∈
Lz1+···+z2i−1,z2+···+z2i with subspaces defined by the form of W1, . . . ,Wn. Now
let Lx,y be the subspace chosen by the player S according to the strategy
S in (n + 1)−th step in the game where in the previous steps the following
objects were chosen: L0,0 ∈ L , z1 ∈ L0,0, Lz1,0 ∈ L, z2 ∈ Lz1,0, Lz1,z2 ∈ L,
z3 ∈ Lz1,z2 , Lz1+z3,z2 , z4 ∈ Lz1+z3,z2 ,. . . , and in n−th step zn ∈ Lz1+···+zn−2,y

(if n ∈ 2N + 1) or zn ∈ Lx,z2+···+zn−2 (if n ∈ 2N).
And the other way round, given a (W)–form neighbourhood W of the

origin in E × E define a strategy S of the player S by induction. Put M1 =
L0,0. Fix a rule S ′: if a sequence z1, . . . , zn of vectors chosen by the player P
during some game satisfies (

∑
z2i,

∑
z2i−1) ∈ W , then the player S chooses

Mn+1 = L∑
z2i,

∑
z2i−1

. Using the form (W) of the neighbourhood W , one can
prove by induction that if during the first n steps of the game the player S was
chosing subspaces according to the rule S ′, then for the player P’s any choice
of zn+1, the sequence z1, . . . , zn+1 also satisfies (

∑
z2i,

∑
z2i+1) ∈ W . Hence

the rule S ′ covers all possible choices of the player P and gives a strategy S of
the player S.
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Fix a set A ⊂ E × E. We define the set ρ(A) by the formula

ρ(A) =
{

(z1, . . . zn) ∈ En,
(∑

z2i−1,
∑

z2i

)
∈ A, n ≥ 1

}
.

Consider the game of the type I with the set σ = ρ(A) and a filtering family
L. Then by the previous argument the player S has a winning strategy if and
only if there exists a neighbourhood of the origin in T ◦

L disjoint from A, and
the player P has a winning strategy if and only if in every neighbourhood of
the origin in T ◦

L there is a vector belonging to A. Hence the following lemma
holds true:

Lemma 3.1. Consider a game of type I with a filtering family L of subspaces
and a set σ = ρ(A) for some A ⊂ E × E. Then

1. the player S has a winning strategy ⇐⇒ (0, 0) 6∈ A
T ◦
L

2. the player P has a winning strategy ⇐⇒ (0, 0) ∈ A
T ◦
L

In a similar way one can construct a neighbourhood of the origin in the
topology T •

C(L). Given a filtering family L of subspaces of E and a set σ̃ of
finite sequences of pairs of vectors of E we define a two-player game of type
II as follows: in the first step, the first player S chooses a subspace M1 ∈ L
and ε1 > 0, then the second player P picks two vectors z1 ∈ C(M1, ε1) and
w1 ∈ B(0, ε1). In the second step, the player S chooses a subspace M2 ∈ L and
ε2 > 0, then the player P chooses vectors z2 ∈ C(M2, ε2) and w2 ∈ B(0, ε2).
They continue in this way, choosing alternately subspaces and scalars (the
player S) and pairs of vectors (the player P) in cylinders and balls defined by
the player S’s choice. As before, the player P wins if ((z1, w1), . . . , (zn, wn)) ∈ σ̃
for some n ∈ N. If it never happens, the player S wins.

Assume the family of L is filtering. As in the previous case, (U)–form
neighbourhoods of the origin in T •

C(L) correspond to strategies of the player S
in the type II game.

Fix a set A ⊂ E × E. By ρ̃(A) we denote the set

ρ̃(A) =
{

((z1, w1), . . . , (zn, wn)) ∈ (E × E)n,
(
∑

z2i−1 +
∑

w2i,
∑

z2i +
∑

w2i−1) ∈ A, n ≥ 1

}
As in the previous case, we get the following

Lemma 3.2. Consider a game of type II with a filtering family L of sub-
spaces of E and a set σ̃ = ρ̃(A) for some A ⊂ E × E. Then

1. the player S has a winning strategy ⇐⇒ (0, 0) 6∈ A
T •
C(L)

2. the player P has a winning strategy ⇐⇒ (0, 0) ∈ A
T •
C(L)
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4. “Topological” version of Gowers’ dichotomy. In this section we
show a close relationship between properties of topologies defined previously
on the one hand and notions of unconditional basic sequences and HI spaces
on the other. Afterwards we will be ready to present Gowers’ dichotomy in
terms of topologies on E × E of the form T •. At this point, one should also
notice that in his proof of the dichotomy W. T. Gowers used a game of type I
with the family of block subspaces and some set of sequences of blocks.

First we will present the connection between the existence of unconditional
basic sequences and properties of topologies on E × E of the form T •.

Given a scalar r > 0 we put

Sr = {(x, y) ∈ S × S : ‖x− y‖ ≤ r}.

The following theorem was proved in the paper [3]:

Theorem 4.1. Let E be a Banach space. Suppose that for some scalar
r > 0 and some vector topology T weaker than the norm topology holds the
following

(0, 0) 6∈ Sr
T •

.

Then there exists an unconditional basic sequence in E with the unconditional
basic constant ≤ 2

r .

We will show now that also the inverse implication (however with different
ratio between constants) holds true.

Proposition 4.2. Let E be a Banach space. Suppose there is an uncon-
ditional basic sequence with the unconditional basic constant C. Then there
exists a metrizable vector topology on E weaker than the norm topology such
that:

(∗) (0, 0) 6∈ S 1
1+C

T •
.

Proof. Let {en} be the unconditional basic sequence in E. By L denote
the closed subspace spanned by the sequence {en}. Then for every sequence
x1 < · · · < xn of vectors in L we have∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ ≤ C

∥∥∥∥∥
n∑

i=1

(−1)ixi

∥∥∥∥∥ .

Given n ≥ 1 denote by Ln the closed subspace spanned by the sequence
{en, en+1, en+2, . . . }. Put

S̃L =
{

(a, b) ∈ SL × SL : ∃ a1 <. . .<an, ai ∈ L, a =
∑

a2i−1, b =
∑

a2i

}
.
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Notice that for any vectors x, y ∈ S and a scalar r ∈ (0, 2] the following
implication holds:

‖x− y‖ ≤ r =⇒ 2− r

r
‖x− y‖ ≤ ‖x + y‖.

Indeed, for x, y ∈ S we have ‖x−y‖+‖x+y‖ ≥ 2, hence ‖x+y‖ ≥ 2−r ≥
2−r

r ‖x− y‖.
Therefore S̃L ∩ S 1,5

1+C
= ∅.

Using this property one can easily prove that (0, 0) 6∈ S 1,5
1+C

T ◦
{Ln} . However,

for the topology of the form T •, which is essentially weaker, we shall need some
argument based on taking sufficiently small diameters of balls and cylinders.

We will show that the topology T = TC({Ln}) satisfies (∗). By Lemma 3.2
it is enough to prove that in a type II game for the family {Ln}∞n=1 and the
set ρ̃(S 1

1+C
) the player S has a winning strategy.

We define the strategy by induction. First we define scalars to be chosen
by the player S: for n ≥ 1 put εn = 1

2n+1 ε for some ε > 0. Put M1 = L.
Now let (z1, w1), . . . , (zn, wn) be the pairs of vectors chosen by the player P
and M1, . . . ,Mn be the subspaces chosen by the player S in the first n steps
of a game. For i = 1, . . . , n pick some vector ai ∈ B(zi,

1
2i ε) ∩Mi with a finite

support. Put Mn+1 = Lmn+1 for mn+1 satisfying supp ai < mn+1 for every
i ≤ n.

We will show now that the strategy defined above is winning. Let (z1, w1),
. . . , (zn, wn) be the pairs of vectors chosen by the player P in some game, such
that vectors

x =
∑

z2i−1 +
∑

w2i , y =
∑

z2i +
∑

w2i−1

are of the norm one. Take vectors a1, . . . , an corresponding to z1, . . . , zn. By
the choice of {ai}, we have a1 < · · · < an and ‖zi − ai‖ ≤ 1

2i ε for every i ≤ n.
Hence vectors a =

∑
a2i−1 and b =

∑
a2i satisfy ‖a − x‖ ≤ 2ε, ‖b − y‖ ≤ 2ε

and thus ∥∥∥∥ a

‖a‖
− b

‖b‖

∥∥∥∥ ≤ ‖a− b‖+ 4ε ≤ ‖x− y‖ + 8ε.

Moreover, since
(

a
‖a‖ ,

b
‖b‖

)
∈ S̃L, we have∥∥∥∥ a

‖a‖
− b

‖b‖

∥∥∥∥ ≥ 1, 5
1 + C

.

If ε is sufficiently small then ‖x − y‖ > 1
1+C , which ends the proof of the

proposition.
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Now we show a connection between HI property and properties of some
topology on E × E of the form T •.

Given a Banach space E denote by TE the topology on E given by the
family of all open unbounded and absolutely convex sets as a prebasis of neigh-
bourhoods of the origin. We recall

Theorem 4.3. ([2]) Let E be a Banach space. Then E is a HI space if
and only if the topology TE is weaker than the norm topology on E.

We have the following

Proposition 4.4. Let E be a Banach space. Then the following conditions
are equivalent:

1. E is HI space,
2. for any scalar r > 0 we have (∗∗) (0, 0) ∈ Sr

T •
E ,

3. there exists a scalar r > 0 such that (∗∗) (0, 0) ∈ Sr
T •

E .

Proof. 1. =⇒ 2. By Theorem 4.1, (∗∗) holds for every vector topology
weaker than the norm topology. By Theorem 4.3, the topology TE is weaker
than the norm topology, hence TE satisfies (∗∗).

Implication 2. =⇒ 3. is obvious.
3. =⇒ 1. Notice that the set Sr is closed in the topology T •

‖·‖, hence by
(∗∗) the topology T •

E is weaker than T •
‖·‖. It follows that the topology TE is

weaker than the norm topology T‖·‖ which implies HI.

Now we are ready to present the following version of Gowers’ dichotomy
(Theorem 1.1):

Theorem 4.5. Let E be a Banach space. Then there exists a closed infinite
dimensional subspace L of E such that:

either there exist a scalar r > 0 and a vector topology T on L weaker than
the norm topology, such that

(0, 0) 6∈ Sr
T •

,

or for any (equiv. for some) scalar r > 0

(0, 0) ∈ Sr
T •

L ,

where TL is the topology on L given by the family of all open unbounded and
absolutely convex sets in L as a prebasis of neighbourhoods of the origin.

Remark. One should notice that by contradicting the first condition in
Theorem 4.5 we get the following condition:
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for any scalar r > 0 and for any vector topology T on E weaker than the
norm topology there is

(0, 0) ∈ Sr
T •

.

What Gowers’ dichotomy gives us is the fact that in such a situation for some
closed infinite dimensional subspace L of E the supremum of all vector topolo-
gies on L weaker than the norm topology in L, ie. TL (which a priori does not
need to be weaker than the norm topology in L) also satisfies

(0, 0) ∈ Sr
T •

L .

References

1. Gowers W.T., A new dichotomy for Banach spaces, Geom. Funct. Anal., 6 (1996), 1083–
1093.

2. Pelczar A.M., On a certain property of hereditarily indecomposable Banach spaces, Univ.
Iagel. Acta Math., 37 (1999), 263–273.

3. Tutaj E., Some geometries on the unit sphere in Banach Spaces I, II, Bull. Polish Acad.
Sci. Math., 33 (1985), 35–43, 45–50.

Received October 12, 1999
Jagiellonian University
Institute of Mathematics
Reymonta 4
30-059 Kraków, Poland
e-mail : apelczar@im.uj.edu.pl

mailto:apelczar@im.uj.edu.pl

	1. Introduction
	2. Some topologies on the Cartesian product of a Banach space
	3. Application of the game theory
	4. ``Topological'' version of Gowers' dichotomy
	References

