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ULTRAINCREASING DISTRIBUTIONS

OF EXPONENTIAL TYPE

by Katarzyna Grasela

Abstract. In this paper Fourier transform images of Gevrey ultradistri-
bution spaces are described. It is proved that such spaces with the strong
topology in regard to natural duality are of the M∗ type in the sense of
Silva. It is also proved that the space of test functions of such images is a
locally convex convolution algebra of the LN∗ type. The received results
complete one known statement of Hörmander.

1. Introduction. The objective of this paper is to study some locally
convex topological vector spaces. Namely, we will consider the space which is
the image under the Fourier transform of the space of functions defined on Rn

which have compact supports and are ultradifferentiable in the sense of Gevrey.
This Fourier transform image is the subspace of the vector space of all entire
functions of exponential type. Therefore, our research completes Hörmander’s
known statement [2, V.2, Lemma 12.7.4], which is essentially used in the proof
of existence of the solution of a Cauchy problem for the hyperbolic equation
(see, [2, V.2, 12.7.5]).

The dual space of the considered Fourier transform image is larger than
the known space of all analytic functionals on Rn [2, V.1,9.1]. On the other
hand, this dual space does not belong to the class of spaces considered in [6].

We shall prove that the considered spaces of entire functions of exponential
type have the structure of the inductive limit of a sequence of Banach spaces,
such that inclusions mappings are compact. It means that the space of entire
functions of exponential type belongs to the known class LN∗ of the locally
convex topological vector spaces investigated by S. di Silva [4]. Therefore, its
dual space, called the space of ultraincreasing distributions of exponential type
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belongs to the known class M∗ (cf. [4]), so it has the structure of the projective
limit of a sequence of Banach spaces with compact projections.

We shall also prove that the space of entire functions of exponential type
is a topological algebra with respect to convolution.

2. Main results. For given real number ℵ such that 1 < ℵ < e, arbitrarily
chosen vector ν = (ν1, . . . , νn) ∈ int Rn

+ and vectors a = (a1, . . . , an), b =
(b1, . . . , bn) ∈ Rn such that b � a (i.e. bj > aj for j ∈ {1, . . . n}), we define the
space of entire functions of exponential type

Eν,[a,b] =
{

Φ : Cn 3 ζ 7−→ Φ(ζ) ∈ C, ‖Φ‖Eν,[a,b]
<∞

}
with the norm

‖Φ‖Eν,[a,b]
= sup

k∈Zn
+

sup
ζ∈Cn

∣∣ζkΦ(ζ) e−H[a,b](η)
∣∣

νkkkℵ ,

where ζ = ξ + iη = (ζ1, . . . , ζn) ∈ Cn, ξ = (ξ1, . . . , ξn) and η = (η1, . . . , ηn)
are in Rn, ζk = ζk1

1 . . . ζkn
n , νk = ν1

k1 . . . νn
kn , kkℵ = k1

k1ℵ . . . kn
knℵ, k =

(k1, . . . , kn) ∈ Zn
+ and

H[a,b](η) = sup
t∈[a,b]

(t, η), ((t, η) =
n∑

j=1

tjηj)

is the supporting function of n–dimensional cube [a, b] :=
{
t = (t1, . . . , tn) ∈

Rn : tj ∈ [aj , bj ], ∀ j = 1, . . . , n
}
.

We also define the space of ultradifferentiable functions in the sense of
Gevrey

Gν,[a,b] =
{
φ(t) ∈ C∞(Rn) : suppφ ⊂ [a, b], ‖φ‖Gν,[a,b]

<∞
}

with the norm

‖φ‖Gν,[a,b]
= sup

k∈Zn
+

sup
t∈[a,b]

|Dkφ(t)|
νkkkℵ ,

where Dk = Dk1
1 . . . Dkn

n , D
kj

j = (−i)kj
∂kj

∂tjkj
. One can prove that Gν,[a,b] is a

Banach space.
Now let us consider the inductive limit of spaces Eν,[a,b]; we will denote it

by E(Cn)

E(Cn) =
⋃
ν�0

⋃
b�a

Eν,[a,b] = lim ind
ν,[a,b]

Eν,[a,b],
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where all injections Eν,[a,b] ↪→ Eν′,[a′,b′]

(
ν ′ � ν; [a, b] ⊂ [a′, b′]

)
are continuous.

In the same way we define

G(Rn) =
⋃
ν�0

⋃
b�a

Gν,[a,b] = lim ind
ν,[a,b]

Gν,[a,b].

For such spaces we can write the Fourier transform

F : G(Rn) 3 φ 7−→ φ̂(ζ) :=
∫

Rn

φ(t) e−i(t,ζ) dt.

It will be shown later that F
(
G(Rn)

)
= E(Cn). Therefore, we can also consider

the dual Fourier transform

F ′ : E′(Cn) 7−→ G′(Rn),

where G′(Rn) and E′(Cn) denote spaces of linear continuous functionals on
G(Rn) and E(Cn), respectively. In the dual spaces G′(Rn) and E′(Cn), we
consider the strong topology. We shall prove the following statement.

Theorem 1. The following topological isomorphisms

F
(
G(Rn)

)
' E(Cn), F ′(E′(Cn)

)
' G′(Rn)

are valid. Moreover, E(Cn) is an LN∗–space and E′(Cn) is an M∗–space in the
sense of Silva.

First we shall prove the following auxiliary statement. Let us construct the
locally convex inductive limits of Banach spaces

E[a, b] =
⋃
ν�0

Eν,[a,b] = lim ind
ν�0

Eν,[a,b],

where injections Eν,[a,b] ↪→ Eν′,[a,b] are continuous and

G[a, b] =
⋃
ν�0

Gν,[a,b] = lim ind
ν�0

Gν,[a,b]

with continuous injections Gν,[a,b] ↪→ Gν′,[a,b] for any ordered pair ν ′ � ν.
From the Denjoy–Carleman theorem [2, Theorem 1.3.8] it follows that the
space G[a, b] is not trivial.

Lemma 1. F
(
G[a,b]

)
= E[a,b].
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Proof. Let φ ∈ Gν,[a,b] and φ̂ = Φ. Hence D̂kφ(ζ) = ζkΦ(ζ) and for all
ζ, k there is

|ζkΦ(ζ)| ≤ eH[a,b](η)

∫
[a,b]

|Dkφ(t)| dt

≤ νkkkℵeH[a,b](η)‖φ‖Gν,[a,b]

n∏
j=1

(bj − aj).
(2.1)

Hence the inclusion F
(
Gν,[a,b]

)
⊂ Eν,[a,b] follows.

Now we take Φ ∈ Eν,[a,b]. We will prove that ξlΦ(ξ) is summable on Rn for
all l ∈ Zn

+. In Rn we consider the following sets

Ω0 =
{
ξ : νe < ξ

}
,

Ω1 =
{
ξ : |ξ1| > ν1e, |ξ2| ≤ ν2e, . . . , |ξn| ≤ νne

}
,

Ω2 =
{
ξ : |ξ1| ≤ ν1e, |ξ2| > ν2e, . . . , |ξn| > νne

}
,

· · · · · · · · · · · · · · · · · ·
Ω2n =

{
ξ : ξ � νe

}
,

where νe < ξ means that νje ≥ ξj for each j ∈
{
1, . . . , n

}
. It is obvious that

Rn = Ω0 ∪ Ω1 ∪ . . . ∪ Ω2n . For ξ ∈ Ω0 and all η ∈ Rn, there is

|Φ(ζ)| ≤ νkkkℵ|ξ|−keH[a,b](η) ‖Φ‖Eν,[a,b]
, for all k ∈ Zn

+.

Therefore, for k = (0, . . . , 0) we obtain

|Φ(ζ)| ≤ C0 e
−

∑n
1

∣∣∣∣ ξj
νj e

∣∣∣∣ 1
ℵ

eH[a,b](η) ‖Φ‖Eν,[a,b]
,

where C0 = max
ξ∈Ω0

e

∑n
1

∣∣∣∣ ξj
νj e

∣∣∣∣ 1
ℵ

. If ξ ∈ Ω1, there exists k = (k1, 0, . . . , 0) ∈ Zn
+

such that(
|ξ1|
ν1e

) 1
ℵ
− 1 < k1 <

(
|ξ1|
ν1e

) 1
ℵ

in particular
ν1k1

ℵ

|ξ1|
<

1
e

and for all η ∈ Rn the following estimation holds:

|Φ(ζ)| ≤ |ξ−k1 |ν1
k1kk1ℵ

1 eH[a,b](η) ‖Φ‖Eν,[a,b]

≤ e−k1 eH[a,b](η) ‖Φ‖Eν,[a,b]
≤ e

1−
∣∣∣ ξ1

ν1e

∣∣∣ 1
ℵ
eH[a,b](η) ‖Φ‖Eν,[a,b]

≤ C1 e
−

∑n
1

∣∣∣∣ ξj
νj e

∣∣∣∣ 1
ℵ

eH[a,b](η) ‖Φ‖Eν,[a,b]
,
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where C1 = e max
|ξ2|≤ν2e

. . . max
|ξn|≤νne

e

∑n
2

∣∣∣∣ ξj
νje

∣∣∣∣ 1
ℵ

. Similarly, for any ξ ∈ Ω2 the fol-

lowing inequality holds:

|Φ(ζ)| ≤ C2 e
−

∑n
1

∣∣∣∣ ξj
νj e

∣∣∣∣ 1
ℵ

eH[a,b](η) ‖Φ‖Eν,[a,b]

for all η ∈ Rn and C2 = en−1 max
|ξ1|≤ν1

e

∣∣∣ ξ1
ν1e

∣∣∣ 1
ℵ
. Now we proceed by induction. For

ξ ∈ Ω2n there exists k = (k1, . . . , kn) ∈ Zn
+ such that(

|ξj |
νje

) 1
ℵ
− 1 < kj <

(
|ξj |
νje

) 1
ℵ (

in particular
νjkj

ℵ

|ξj |
<

1
e

)
for all j ∈

{
1, . . . , n

}
. Thence, for all η ∈ Rn, there is

|Φ(ζ)| ≤ |ξ−k| νkkkℵ eH[a,b](η) ‖Φ‖Eν,[a,b]

≤ e−|k| eH[a,b](η) ‖Φ‖Eν,[a,b]
≤ e

n−
∑n

1

∣∣∣∣ ξj
νj e

∣∣∣∣ 1
ℵ

eH[a,b](η) ‖Φ‖Eν,[a,b]
,

where |k| =
∑n

1 kj . Thus, combining the inequalities received above and taking
C = max

{
en, . . . , C2, C1, C0

}
, we obtain

∀ζ ∈ Cn |Φ(ζ)| ≤ C e
−

∑n
1

∣∣∣∣ ξj
νj e

∣∣∣∣ 1
ℵ

eH[a,b](η) ‖Φ‖Eν,[a,b]
.(2.2)

If we take n = 1 then from the de l’Hospital formula, for each number m ∈ N
there is

(2.3) lim
ξj→+∞

(1 + ξj)
me

−(
ξj

ν+j e
)
1
ℵ

= lim
ξj→+∞

m!ℵm(eνj)
me

−(
ξj

νj e
)
1
ℵ

.

Therefore, for ξj (j = 1, . . . , n) sufficiently large and for each m ∈ N, there

exists constant Cj
m,ν such that e

−
∣∣∣∣ ξj

νje

∣∣∣∣ 1
ℵ

≤ Cj
m,ν

(1+|ξj |)m . Since
n∏
1

(1 + |ξj |) ≥ 1 +
n∑
1
|ξj | there is

(2.4) e
−

∑n
1

∣∣∣∣ ξj
νj e

∣∣∣∣ 1
ℵ

≤ C̃m,ν∏n
1 (1 + |ξj |)m ≤ C̃m,ν

(1 + |ξ|)m , C̃m,ν =
n∏
1

Cj
m,ν .
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Therefore, for each m ∈ N, there exists constant Cm,ν = C · C̃m,ν such that the
following inequality

(2.5) ∀ζ ∈ Cn , |Φ(ζ)| ≤ Cm,ν

(1 + |ξ|)m eH[a,b](η) ‖Φ‖Eν,[a,b]

is valid. If we take η = 0 and m = l + n + 1, than for some constant Cl,ν we
get

|ξlΦ(ξ)| ≤ |ξ|l Cm,ν

(1 + |ξ|)m ‖Φ‖Eν,[a,b]
=

|ξ|l Cm,ν

(1 + |ξ|)l(1 + |ξ|)n+1

≤
Cl,ν

(1 + |ξ|)n+1 ‖Φ‖Eν,[a,b]
.

As a consequence of this inequality, the function ξlΦ(ξ) is summable on Rn.
There exists F−1Φ = φ and

(2.6) Dkφ(t) =
1

(2π)n

∫
Rn

ξkΦ(ξ) ei(t,ξ) dξ, k ∈ Zn
+.

From inequality (2.5) for m = n+ 1 there follows that the following integral

φ(t) =
1

(2π)n

∫
Rn

Φ(ζ) ei(t,ζ) dξ, ζ ∈ Cn

converges and, since i(t, ζ) = i(t, ξ)− (t, η) and inequality (2.5) holds for m =
n+ 1 the following inequality holds:

(2.7) |φ(t)| ≤ Cν,a,b exp
[
− (t, η) +H[a,b](η)

] ∫
Rn

dξ

(1 + |ξ|)n+1

for all η ∈ Rn and constant Cν,a,b = Cm,ν‖Φ‖Eν,[a,b]
. By replacing η with rη,

where r → ∞ in inequality (2.7), we imply that φ(t) 6= 0, provided (t, η) ≤
H[a,b](η) for all η ∈ Rn, hence t ∈ [a, b]

(
see [2, Theorem 4.3.2]

)
. It means that

suppφ ⊂ [a, b].
From (2.6) and (2.2) we obtain the following estimate

(2.8) |Dkφ(t)| ≤ Ca,b,ν

∫
Rn

|ξk| e
−

n∑
1
| ξ

eν |
1
ℵ

dξ, k ∈ Zn
+.

By calculating the previous integral we obtain:∫
Rn

|ξk| e
−

n∑
1
| ξ
eν
|
1
ℵ

dξ = 2(eν)k+1ℵn Γ
(
ℵ(k1 + 1)

)
· · ·Γ

(
ℵ(kn + 1)

)
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for all k ∈ Zn
+. Using the following asymptotic equality

(2.9) Γ
(
ℵ(kj + 1)

)
≈ (kj + 1)kjℵ

we obtain

(2.10) |Dkφ(t)| ≤ 2Ca,b,νℵn (eν)k+1 (k + 1)kℵ, k ∈ Zn
+,

and

(2.11)
|Dkφ(t)|
(eν)kkkℵ

≤ C̃
(k + 1

k

)kℵ
.

Since suppφ ⊂ [a, b] and inequality (2.11) holds, there is φ ∈ Geν,[a,b]. Hence
the inclusion Eν,[a,b] ⊂ F

(
Geν,[a,b]

)
follows.

Taking into account the randomness of the vector ν and the properties of
inductive limit, we receive: E[a,b] = F

(
G[a,b]

)
.

Now let us explain relation (2.9).
Since Γ(x) =

√
2πxx− 1

2 e−x exp( θ
12x), x > 0, 0 < θ < 1 [5, 12.33], then for a

sufficiently large x the following relation Γ(x) ≈ xx− 1
2 e−x is true. Let us take

x = ℵk; we obtain Γ(ℵk) ≈ (ℵk)ℵk− 1
2 e−ℵk. Now, we should only prove that

(
√
ℵk)−1ℵℵke−ℵkkℵ is bounded for each k ∈ Z+. Since ℵ is a fixed real number

and ℵ < e, then

(2.12)
kℵℵℵk

√
kℵekℵ

=
kℵekℵ(lnℵ−1)

√
kℵ

and lnℵ − 1 < 0, hence
kℵekℵ(lnℵ−1)

√
kℵ

tends to zero when k → +∞. Thus we

obtain Γ(ℵk) ≈ k(k−1)ℵ and relation (2.9) is proved.

Corollary 1. The image of G(Rn) under mapping F is equal to E(Cn).

Proof. This corollary is a straightforward consequence of Lemma 1 and
the properties of inductive limit (cf. [1]).

Now we come back to Theorem 1.

Proof. From inequality (2.1) there follows that

‖Φ(ζ)‖ ≤ ‖φ‖Gν,[a,b]

n∏
j=1

(bj − aj)

for all φ ∈ Gν,[a,b] and ν ∈ int Rn
+. Hence, the mapping G[a,b] 3 φ 7−→ Φ ∈ E[a,b]

is continuous. By Lemma 1 this mapping is surjective. Therefore we can apply
the Banach theorem about open map in the Grothendieck version [1, Theo-
rem 6.7.2], according to which the topological isomorphism F

(
G[a,b]

)
' E[a,b] is
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fair. Because of the arbitrary nature of cubes [a, b] and by standard properties
of the inductive limits, further topological isomorphisms follow F

(
G(Rn)

)
'

E(Cn) and F ′(E′(Cn)
)
' G′(Rn).

As proved by Lions and Magenes [3, Chap.7, Proposition 1.1], for more
general spaces all inclusions

Gν,[a,b] ↪→ Gµ,[a,b], where µ � ν,

Gν,[a,b] ↪→ Gν,[c,d], where [a, b] ⊂ [c, d]

are compact. Hence, the inductive limit G(Rn) = lim ind
ν,[a,b]

Gν,[a,b] belongs to

the class of LN∗–spaces in the sense of Silva [4]. In view of the topological
isomorphism established above, the space E(Cn) also belongs to the class of
LN∗–spaces. Therefore the strong dual space E′(Cn) belongs to the class of
M∗–spaces in the sense of Silva [4].

Now we consider E′[a, b], the topological dual space of the space E[a, b].
Using analogy to the theory of analytical functionals, we shall call the n–
dimensional cube [a, b] the determining set for E′[a, b]. From Theorem 1 the
following important property of determining sets follows directly.

Corollary 2. Let [a, b] and [c, d] be determining sets for E′[a, b] and
E′[c, d] respectively, and [a, b] ∩ [c, d] 6= ∅. Let T ∈ E′[a, b] ∩ E′[c, d]. Then
T ∈ E′

(
[a, b] ∩ [c, d]

)
.

Proof. Actually, according to Theorem 1 it is sufficient to prove the fol-
lowing property:

T ∈ G′[a, b] ∩G′[c, d] =⇒ T ∈ G′
(
[a, b] ∩ [c, d]

)
,

where G′[a, b] is the topological dual space of linear continuous functionals on
the space G[a, b]. It is easy to observe that supp T ⊂ [a, b] ∩ [c, d]. Therefore
T ∈ G′([a, b] ∩ [c, d]).

3. An application. We would also like to present the following theorem.

Theorem 2. E(Cn) is a convolution algebra.

Proof. First we will prove that G(Rn) is an algebra with respect to mul-
tiplication. For fixed ν and [a, b], [a′, b′] such that [a, b] ⊂ [a′, b′] there is

‖φ‖Gν,[a,b]
= ‖φ‖Gν,[a′,b′]

, φ ∈ Gν,[a,b].

Further for any vectors ν � µ � 0 and fixed [a, b], there is

‖φ‖Gµ,[a,b]
≤ ‖φ‖Gν,[a,b]

, φ ∈ Gµ,[a,b].
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Let us take φ ∈ Gν,[a,b], ψ ∈ Gµ,[a′,b′], where [a, b] ⊂ [a′, b′], ν � µ � 0, we
observe that for all t ∈ supp (φψ) ⊂ [a, b] the following inequalities hold:∣∣Dk[φ(t)ψ(t)]

∣∣ ≤ ‖φ‖Gν,[a,b]
‖ψ‖Gµ,[a′,b′]

×

×
k∑

|m|=0

νmµ(k−m)mmℵ((k −m))(k−m)ℵk!
m!(k −m)!

≤ ‖φ‖Gν,[a,b]
‖ψ‖Gµ,[a′,b′]

k∑
|m|=0

νmµ(k−m)k!
m!(k −m)!

kmℵk(k−m)ℵ

≤ ‖φ‖Gν,[a,b]
‖ψ‖Gµ,[a′,b′]

(ν + µ)kkkℵ.

(Note: k! = k1! . . . kn!.)
Hence there is

‖φψ‖Gν+µ,[a,b]
≤ ‖φ‖Gν,[a,b]

‖ψ‖Gµ,[a′,b′]
.

Therefore, we in particular conclude that G[a, b] =
⋃

ν�0
Gν,[a,b] is a locally con-

vex algebra with respect to multiplication. Hence G(Rn) as an inductive limit
is also an algebra with respect to multiplication (cf. [1]).

If we now use the known fact that φ̂ · ψ = φ̂∗ψ̂ and Theorem 1, we conclude
that E(Cn) is a convolution algebra.
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