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CONTINUOUS AND INVERSE SHADOWING FOR FLOWS

by Piotr Kościelniak

Abstract. We define continuous and inverse shadowing for flows and prove
some properties. In particular, we will prove that an expansive flow with-
out fixed points on a compact metric space which is a shadowing is also
a continuous shadowing and hence an inverse shadowing (on a compact
manifold without boundary).

1. Introduction. In the early 1990s it was realized that computer-simu-
lated dynamical systems should have a property which would guarantee that
resulting dynamics corresponds to the true one. Such a property was estab-
lished and studied for discrete dynamical systems in a series of papers by Di-
amond and al. [3, 4] and it combined the classical shadowing with a property
which was single out later in [5] and [6] and called inverse shadowing.

Generally speaking, inverse shadowing means that given a class of approx-
imating methods, one can trace any (true) orbit with an arbitrary accuracy by
an orbit generated with a precise enough method.

It has turned out that the inverse shadowing is a consequence of the shad-
owing if we assume some continuity condition which is satisfied under the
assumption of hyperbolicity.

The aim of this paper is to introduce the concept of inverse shadowing for
flows. As for some other notions, there are not straightforward relationships
here between the discrete and continuous cases. Still, there are some similari-
ties. In particular, we will prove that an expansive flow without fixed points on
a compact metric space which is a shadowing is also a continuous shadowing,
Theorem 3.6, and hence an inverse shadowing (on a compact manifold without
boundary), Corollary 3.11.

2. Definitions and basic properties. We will denote by X a compact
metric space with a distance d and by ϕ a flow on X (i.e ϕ : X × R →
X is continuous and for all x ∈ X and s, t ∈ R ϕ(ϕ(x, s), t) = ϕ(x, s + t),
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ϕ(x, 0) = x). We shall write ϕtx instead of ϕ(x, t). The pair of sequences
x̄ = ({xi}∞i=−∞, {ti}∞i=−∞) is said to be a (δ, a)–pseudo orbit ((δ, a, b)–pseudo
orbit) of ϕ if d(ϕtixi, xi+1) < δ and ti ≥ a > 0 (b ≥ ti ≥ a > 0) for all i.

For a given pseudo orbit we shall denote by x̄ ? t the point

x̄ ? t =

{
ϕ(t−

∑i=n−1
i=0 ti)

xn when
∑i=n−1

i=0 ti ≤ t <
∑i=n

i=0 ti for t ≥ 0

ϕ(t+
∑i=−1

i=n ti)
xn when −

∑i=−1
i=n ti ≤ t < −

∑i=−1
i=n+1 ti for t < 0

Here
∑n

m() = 0 if n < m. It is easy to see that the function R 3 t → x̄ ? t ∈ X
is right continuous.

Two (δ, a) pseudo orbits x̄ and ȳ are equivalent (x̄ ∼ ȳ) if x̄ ? t = ȳ ? t for
all t ∈ R. Define

[x̄] = {ȳ : x̄ ∼ ȳ},
and then define [x̄] ? t = x̄ ? t. We will also consider

Rep(R) = {α : R → R : α is an increasing homeomorphism, α(0) = 0 }
and

POa(δ) = {[x̄] : x̄ is a (δ, a) pseudo orbit},
POb

a(δ) = {[x̄] : x̄ is a (δ, a, b) pseudo orbit}.
We will often refer to an equivalence class as a pseudo orbit.

A pseudo orbit [x̄] ∈ POa(δ) is ε–traced by a point x ∈ X (or orbit of
x ∈ X is ε–traced by [x̄] ∈ POa(δ) ) if there exists α ∈ Rep(R) such that we
have d(ϕα(t)x, x̄ ? t) < ε for all t ∈ R.

The flow has the pseudo orbit tracing property (POTP) if for any ε > 0
there exists δ > 0 such that any [x̄] ∈ POa(δ) is ε–traced by some x ∈ X.
Thomas proved ([8]) that this definition does not depend on a > 0.

For [x̄], [ȳ] ∈ POa(δ) we define the function

ρ([x̄], [ȳ]) =
∫
R

e−t2d(x̄ ? t, ȳ ? t)dt.

Proposition 2.1. For all a, δ > 0 (POa(δ), ρ) is a metric space. Moreover,
ρ([x̄n], [ȳ]) → 0 (n →∞) iff x̄n ? t → ȳ ? t (n →∞) for all t ∈ R.

Proof. Fix a, δ > 0.
It’s obvious that ρ([x̄], [ȳ]) = ρ([ȳ], [x̄]), ρ([x̄], [ȳ]) ≤ ρ([x̄], [z̄]) + ρ([z̄], [ȳ])

and ρ([x̄], [x̄]) = 0 for all [x̄], [ȳ], [z̄] ∈ POa(δ).
If ρ([x̄], [ȳ]) = 0 then d(x̄?t, ȳ?t) = 0 almost everywhere. The function R 3

t → d(x̄ ? t, ȳ ? t) is piecewise continuous and right continuous, so x̄ ? t = ȳ ? t
for all t ∈ R.

Now, let us assume that x̄n ? t → ȳ ? t (n → ∞) for all t ∈ R. Then
d(x̄ ? t, ȳ ? t) → 0 for all t ∈ R. The Lebesgue Dominated Convergence
Theorem implies that ρ([x̄n], [ȳ]) → 0.
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To prove the other implication assume that ρ([x̄n], [ȳ]) → 0 (n → ∞).
Now to show that x̄n ? t → ȳ ? t (n → ∞) for all t ∈ R assume this is not so.
Then there exist t0 ∈ R, ε0 > 0 and subsequence k(n) → ∞ as n → ∞ such
that d(x̄k(n) ? t0, ȳ ? t0) > ε0. Because of the compactness of X there exists
a > β > 0 such that for all x, y ∈ X if d(x, y) > ε0, then d(ϕtx, ϕty) > ε0/2
for all t ∈ [−β, β]. There exist subsequence k(s(n)) and 0 < λ < β such that
the functions x̄k(s(n)) ? t are continuous in [t0, t0 + λ] or in [t0 − λ, t0]. Hence

ρ([x̄k(s(n))], [ȳ]) ≥
∫

[t0,t0+λ]
e−t2d(x̄k(s(n)) ? t, ȳ ? t)dt

>

∫
[t0,t0+λ]

e−t2ε0/2dt > M > 0

or

ρ([x̄k(s(n))], [ȳ]) ≥
∫

[t0−λ,t0]
e−t2d(x̄k(s(n)) ? t, ȳ ? t)dt

>

∫
[t0−λ,t0]

e−t2ε0/2dt > N > 0,

which is a contradiction completing the proof.

Definition 2.2. A continuous map Φ : X → POa(δ) is a (δ, a)–method of
ϕ if Φ(x) ? 0 = x for all x ∈ X.

Definition 2.3. The flow ϕ has the continuous shadowing property if for
all a > 0 and ε > 0 there exist δ > 0 and continuous map W : POa(δ) → X
such that every [x̄] ∈ POa(δ) is ε–traced by W ([x̄]).

Definition 2.4. The flow ϕ has the inverse shadowing property (ISP) if
for any ε > 0 there exists δ > 0 such that for any Φ being a (δ, 1)–method of
ϕ and any y ∈ X there exists x ∈ X such that Φ(x) is ε–traced by the orbit of
y.

Now we prove that definition of the ISP does not depend on a > 0.

Proposition 2.5.
a) The flow ϕ has the ISP iff for all ε > 0 there exists δ > 0 such that for

every Φ being a (δ, 1, 2)–method of ϕ and every y ∈ X there exists x ∈ X
such that Φ(x) is ε–traced by the orbit of y.

b) For all a > 0, the flow ϕ has the ISP iff for every ε > 0 there exists δ > 0
such that for any Φ being a (δ, a)–method of ϕ and every y ∈ X there
exists x ∈ X such that Φ(x) is ε–traced by the orbit of y.

c) For all a > 0, the flow ϕ has the ISP iff for every ε > 0 there exists δ > 0
such that for any Φ being a (δ, a, a)–method of ϕ and every y ∈ X there
exists x ∈ X such that Φ(x) is ε–traced by the orbit of y.
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Proof. a) It is sufficient to prove that POa(δ) = PO2a
a (δ), for all a >

0. It is obvious that PO2a
a (δ) ⊂ POa(δ). Now take [x̄] ∈ POa(δ). Then

x̄ = ({xi}∞i=−∞, {ti}∞i=−∞), where ti ≥ a for all i ∈ Z. For each i there exist
mi ∈ N and 2a ≥ ri ≥ a such that ti = mia + ri. Define

ȳ = ({. . . , ϕm−1ax−1, x0, ϕax0, . . . , ϕm0ax0, x1, . . .},
{. . . , a, r−1, a, . . . , a, r0, a, . . .})

We see that [ȳ] ∈ PO2a
a (δ) and x̄ ? t = ȳ ? t for all t ∈ R. Hence ȳ ∈ [x̄].

b) Let assume that ϕ has the ISP and fix a > 0. There are two cases:
a ≥ 1 or a < 1. The first one is obvious, because POa(δ) ⊂ PO1(δ). So let’s
consider a < 1 and the smallest number m ∈ N such that am > 1.

For a given ε > 0 there exist δ0, δ1, . . . , δm > 0 satisfying the following
conditions:

i) for any Ψ being a (δ0, 1)–method of ϕ and y ∈ X there exists x ∈ X
such that Ψ(x) ε/2–traces the orbit of y;

ii) δ0 < ε/2 and d(x, y) < δ0 implies d(ϕtx, ϕty) < ε/2 for all t ∈ [0, 1];
iii) δi < δi−1/2 and d(x, y) < δi implies d(ϕtx, ϕty) < δi−1/2 for t ∈ [0, 1]

for i = 1, . . . ,m− 1.
Fix Φ : X → POa(δm−1) method of ϕ and y ∈ X and define

Ψ(x) = ({. . . , Φ(x) ? (−1), x,Φ(x) ? 1,Φ(x) ? 2, . . .}, {ti = 1}).

We prove that Ψ is a (δ0, 1)-method of ϕ and d(Φ(x) ? t,Ψ(x) ? t) < ε/2
for all x ∈ X and t ∈ R. This will finish the proof, because by (i) there exists
x ∈ X and α ∈ Rep(R) such that d(ϕα(t)y, Ψ(x) ? t) < ε/2. Then we will have

d(ϕα(t)y, Φ(x) ? t) ≤ d(ϕα(t)y, Ψ(x) ? t) + d(Φ(x) ? t, Ψ(x) ? t) < ε.

Fix k ∈ Z. There are at most m numbers λ1, . . . , λm ∈ [0, 1] such that the
function [k, k + 1] 3 t → Φ(x) ? t ∈ X is not continuous at the points k + λi

for i = 1, . . . ,m. By (iii) we have

d(ϕλ1(Φ(x) ? k),Φ(x) ? (k + λ1) < δm−1

and
d(ϕλ2(Φ(x) ? k),Φ(x) ? (k + λ2)

< d(ϕλ2−λ1ϕλ1(Φ(x) ? k),Φ(x) ? (k + λ1 + (λ2 − λ1)))

< δm−2/2 + δm−1 < δm−2.

After repeating this procedure m− 2 times we obtain

d(ϕ1(Φ(x) ? k),Φ(x) ? (k + 1)) < δ0.

Hence Ψ(x) ∈ PO1(δ0) for all x ∈ X. By using this procedure and (ii) we have
d(Φ(x) ? t, Ψ(x) ? t) < ε/2 for all x ∈ X and t ∈ R.
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Now we show that Ψ is continuous. Choose a sequence xn → x, as n →∞,
and t ∈ R. There exists k ∈ Z such that t ∈ [k, k + 1]. Then

Ψ(xn) ? t = Ψ(xn ? (k + t− k) = ϕt−k(Ψ(xn ? k)) = ϕt−k(Φ(xn ? k)).

By the continuoity of Φ , ϕt−k(Φ(xn ? k)) → ϕt−k(Φ(x ? k)) = Ψ(x) ? t.
This completes the proof of (b).

c)

Lemma 2.6. For all ε, δ > 0 there exist δ′ > 0 and a continuous map
P : PO2a

a (δ′) → PO2a
2a(δ), such that d(x̄?t, P ([x̄])?t) < ε and P ([x̄])?0 = [x̄]?0,

for all t ∈ R and [x̄] ∈ PO2a
a (δ′).

Proof. The idea of this proof is the same as before. There exists δ′ > 0
such that d(x, y) < δ′ implies d(ϕtx, ϕty) < min(ε, δ) for t ∈ [0, 2a]. Now we
define

P ([x̄]) = ({. . . , [x̄] ? (−2a), [x̄] ? 0, [x̄] ? 2a, [x̄] ? 4a, . . .}, {ti = 2a}).

Proof of the continuity of P follows as in (b).

Now let us assume that for every ε > 0 there exists δ > 0 such that for any
Φ being a (δ, a, a)–method of ϕ and every y ∈ X there exists x ∈ X such that
Φ(x) is ε–traced by the orbit of y. We want to prove that then ϕ has the ISP
with respect to (δ, a, 2a)–methods. So fix ε > 0 and take δ > 0 such that for
any Φ being a (δ, a, a)–method of ϕ and every y ∈ X there exists x ∈ X such
that Φ(x) is ε/2–traced by the orbit of y. Fix Φ, a (δ, a, 2a)–method of ϕ, and
take δ′ > 0 from Lemma 2.6 for ε/2. Let us consider P ◦Φ, a (δ, a, a)–method
of ϕ. Fix y ∈ X. There exists x ∈ X such that Φ(x) ε/2–traces the orbit of x.
Therefore P (Φ(x)) ε–traces orbit of x.

This finishes the proof of Proposition 2.5.

Now we remind the definition of inverse shadowing property for homeo-
morphisms ([2]).

Let f : X → X be a homeomorphism. A sequence {xi}i∈Z is a δ–pseudo
orbit of f if d(fxi, xi+1) < δ. Let PO(δ) be a set of δ–pseudo orbits of f . A
map Ψ : X 3 x → {Ψ(x)i}i∈Z ∈ PO(δ) is continuous if xn → x (n → ∞)
implies that for every i ∈ Z Ψ(xn)i → Ψ(x)i (n → ∞). If Ψ(x)0 = x for any
x ∈ X then Ψ is called a (δ)–method of f . Finally we say that f has the
inverse shadowing property if for any ε > 0 there exists δ > 0 such that for
every δ–method Ψ and y ∈ X there exists x ∈ X such that Ψ(x) ε–traces the
orbit of y (i.e. d(Ψ(x)i, f

iy) < ε for all i ∈ Z).
For a given flow ϕ, we shall denote by ϕa a homeomorphism ϕa : X 3 x →

ϕax ∈ X. Now we will prove the following:
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Proposition 2.7. If there exists a > 0 such that ϕa has ISP then ϕ has
the ISP.

Proof. In view of Proposition 2.5 it is sufficient to prove that ϕ has the
ISP with respect to (a, a, δ)–methods.

Fix ε > 0. There is ε′ > 0 such that for all x, y ∈ X d(x, y) < ε′ implies
d(ϕtx, ϕty) < ε for t ∈ [0, a]. Now take δ > 0 from the definition of ISP for ϕa

with respect to ε′. Fix Φ : X → POa
a(δ) a δ–method of f, and y ∈ X. Then

Ψ(x) = {Φ(x)?(ia)}i∈Z is a δ–method of ϕa and, moreover, Φ(x)?(ia) = Ψ(x)i

for every x ∈ X and i ∈ Z. Since ϕa has the ISP, there exists x ∈ X such that
d(ϕi

ay, Ψ(x)i) < ε′ for all i ∈ Z. Hence

d(ϕiay, Φ(x) ? (ia)) < ε′

for i ∈ Z. Now from the choice of ε′ we have

d(ϕty, Φ(x) ? t) < ε

for t ∈ R. This finishes the proof of Proposition 2.7.

3. Continuous shadowing. In this section we prove that an expansive
flow without fixed points on a compact metric space , which has POTP has
the continuous shadowing property, and, as a corollary, that such flow on a
compact manifold without boundary has the ISP.

The flow ϕ is expansive if for all ε > 0 there exists δ > 0 such that if
d(ϕtx, ϕs(t)y) < δ for all t ∈ R for x, y ∈ X and a continuous map s : R → R
with s(0) = 0, then y = ϕtx, where |t| < ε.

Definition 3.1. The flow ϕ has pseudo orbit tracing property (POTP) if
for all ε > 0 there exists δ > 0 such that each [x̄] ∈ PO1(δ) is ε–traced by an
orbit of ϕ.

Thomas proved in [8] that ϕ has the POTP iff for all a > 0 and ε > 0
there exists δ > 0 such that each [x̄] ∈ POa(δ) is ε–traced by an orbit of ϕ.
We recall the following

Lemma 3.2. ([1]) Let ϕ be a continuous flow on X without fixed points.
Then ϕ is expansive if and only if for all ε > 0 there exsists r > 0 such that if
t = (ti)i∈Z and u = (ui)i∈Z are doubly infinite sequences of real numbers with
t0 = u0 = 0 , 0 < ti+1− ti ≤ r, |ui+1−ui| < r, ti →∞, t−i → −∞, as i →∞,
and if x, y ∈ X satisfy d(ϕtix, ϕuix) ≤ r for all i ∈ Z, then there exists t such
that |t| < ε and y = ϕtx.

Lemma 3.3. ([1]) If a flow ϕ has no fixed points, then there is T0 > 0 such
that for every T satisfying 0 < T < T0 there exists γ > 0 with d(ϕT x, x) ≥ γ
for all x ∈ X.
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Lemma 3.4. ([8]) Let (αi)i∈N be a family of continuous increasing functions
from [0, b] into R with αi(0) = 0 for all i, and assume αi(b) → ∞ as i → ∞.
Then for every λ, β > 0 there are j and t1, t2 ∈ [0, b] such that 0 < t2 − t1 < λ
and αj(t2)− αj(t1) = β, where [0, b] is a closed interval in R.

Lemma 3.5.
a) For all a, δ, ε > 0 there is λ > 0 such that for all [x̄] ∈ POa(δ) and

t1, t2 ∈ R, |t1 − t2| < λ implies d([x̄] ? t1, [x̄] ? t2) < δ + ε;
b) For all a, δ > 0 and ([ȳn])n∈N, a sequence in POa

a(δ), such that [ȳn] →
[ȳ] ∈ POa

a(δ) and for all η, T > 0, there exists a sequence (k(n))n∈N in
N such that d([ȳk(n)] ? t, [ȳ] ? t) < η for all t ∈ [−T, T ] and n ∈ N;

c) Let [x̄] ∈ POa
a(δ). Then for any η, T > 0 there exist U a neighborhood of

[x̄] such that for every [x̄]′ ∈ U and t ∈ [−T, T ] d([x̄] ? t, [x̄]′ ? t) < η.

Proof. a) For a given ε > 0 there is λ′ > 0 such that d(ϕtx, x) < ε/2 for
all x ∈ X and t ∈ [−λ′, λ′]. Now take λ = min{λ′, a} and fix t1, t2 ∈ R such
that |t1− t2| < λ. There is only one t0 ∈ [t1, t2] such that the function [x̄] ∗ t is
not continuous at t = t0. Hence d([x̄] ? t1, [x̄] ? t2) ≤ d([x̄] ? t1, [x̄] ? t0) + d([x̄] ?
t0, [x̄] ? t2) < ε + δ.

b) Let assume that it is not so. Then there exist a, δ, η, T > 0 and sequences
([ȳn])n∈N ⊂ POa

a(δ) , (tn)n∈N ⊂ [−T, T ] and (k(n))n∈N ⊂ N such that [ȳn] →
[ȳ] ∈ POa

a(δ),tn → t0 ∈ [−T, T ] and d([ȳk(n)] ? tn, [ȳ] ? tn) ≥ η.
We can assume that there exist k ∈ Z such that tn ∈ [ka, (k + 1)a] for all

n ∈ N. Then [ȳk(n)] ? tn = ϕtn−ka([ȳk(n)] ? (ka)) for all n ∈ N. Therefore

d(ϕt0−ka([ȳk(n)] ? (ka)), ϕt0−ka([ȳ] ? (ka))) ≥ η.

It is a contradiction, because [ȳk(n)] ? (ka) → [ȳ] ? (ka).
c) Proof is very similar to the above proof of (b).
This finishes the proof of Lemma 3.5.

The idea of the proof of Theorem 3.6 to some extent follows the proof of
Theorem 3 in [8], stating that the expansiveness and POTP imply topological
stability.

Theorem 3.6. For every expansive flow ϕ on X without fixed points, if it
has the POTP, then it has the continuous shadowing property.

Proof. Firstly we prove that for all a > 0 and ε > 0 there exist δ > 0
and continuous map W ′ : POa

a(δ) → X such that every [x̄] ∈ POδ is ε–traced
by W ′([x̄]). (Then we will use Lemma 2.6 ).

Let us fix a > 0. Suppose ε > 0 is given. We can assume that ε < T0/2
(with T0 as in Lemma 3.3). Using Lemma 3.2 take 0 < r < ε. By Lemma 3.4
there is γ > 0 such that d(ϕ(r/2)x, x) ≥ γ for all x ∈ X. In the definition of
expansiveness, take ε′ < γ, ε′ < r such that if d(ϕs(t)x, ϕty) ≤ ε′ for x, y ∈ X
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and a continuous map with s(0) = 0, then y = ϕtx, where |t| ≤ r. Also choose
ε′/24 > δ > 0 such that every [x̄] ∈ POa

a(δ) is ε′/6–traced by an orbit of ϕ.
For a given [x̄] ∈ POa

a(δ), there are z ∈ X and α ∈ Rep(R) such that
d([x̄] ∗ t, ϕα(t)z) < ε′/6. Assume that z′ ∈ X also ε′/6–traces [x̄]. Then
d(ϕα(t)z, ϕα′(t)z

′) < ε′/3 for all t ∈ R. By the expansiveness and our choice
of ε′ imply that z′ = ϕtz with |t| < ε. Hence every [x̄] ∈ POa

a(δ) is uniquely
traced by an orbit of ϕ, say (ϕtz)t∈R. Now for [x̄] define:

Ax̄ = {x ∈ X : ∀η,T>0 ∃α∈Rep(R) ∀t∈[−T,T ] d([x̄] ∗ t, ϕα(t)x) < ε′/6 + η}.
This set is not empty, because z ∈ Ax̄.

Lemma 3.7.
a) Ax̄ ⊂ (ϕtz)t∈R and the time diameter of A[x̄] is less than ε;
b) Ax̄ is closed in X.

Proof. a) Fix x ∈ Ax̄. We will show that x = ϕtz with some |t| < ε.
Let (ηi)i∈N and (Ti)i∈R be sequences of positive real numbers such that

ηi < ε′/6, ηi → 0 and Ti → ∞ as i → ∞. We know that x ∈ Ax̄, so there is
αi ∈ Rep(R) such that

d([x̄] ∗ t, ϕαi(t)x) < ε′/6 + ηi for all t ∈ [−Ti, Ti].

Using the fact that [x̄] is ε′/6–traced by z with α ∈ Rep(R), we get

d(ϕα(t)z, ϕαi(t)x) < ε′/3 + ηi for all t ∈ [−Ti, Ti].

Let T ′i = min{|α(Ti)|, |α(−Ti)|} and γi = αi ◦ α−1. It is clear that T ′i → ∞
and γi ∈ Rep(R). Now we have

d(ϕuz, ϕγi(u)x) < ε′/3 + ηi for all u ∈ [−T ′i , T
′
i ].

By the continuity of γi we choose 0 < si < r such that |u−u′| < si implies
|γi(u)− γi(u′)| < r/2. Now

d(ϕγi+1(u)−γi(u)ϕγi(u)x, ϕγi(u)x) = d(ϕγi+1(u)x, ϕγi(u)x)

≤ d(ϕγi+1(u)x, ϕuz) + d(ϕuz, ϕγi(u)x)

<
2
3
ε′ + 2ηi < ε′,

for all u ∈ [−T ′i , T
′
i ].

Since γi, γi+1 are continuous, γi(0) = γi+1(0) = 0 and ε′ < γ, it follows that
|γi+1(u)− γi(u)| < r/2. Hence |u− u′| < si+1 implies |γi+1(u′)− γi(u)| < r.

Fix i ∈ Z. We can choose a strictly increasing sequence of real numbers
(tj)j∈Z with t0 = 0 such that if uj ∈ [0, T ′i ], then tj+1 − tj < si+1 for j > 0. If
uj ∈ [−T ′i , 0], then tj+1− tj < si+1 for j < 0. For tj ∈ [−T ′i , T

′
i ], let uj = γi(tj)

and for tj ∈ [−T ′i+1,−T ′i ) ∪ (T ′i , T
′
i+1] let uj = γi+1(tj). So |uj+1 − uj | < r and
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d(ϕujx, ϕtjz) < ε′ < r. Using Lemma 3.2 we have x = ϕtz with |t| < ε, which
proves (a).

b) Because of (a) we only need to show that Ax̄ is closed in the orbit
(ϕtz)t∈R with respect to the relative topology. Let (zi)i∈N ⊂ Ax̄ be a sequence
such that zi → z′ ∈ (ϕtz)t∈R. We will show that z′ ∈ Ax̄. So fix η, T > 0.
There are αi ∈ Rep(R) such that for all i and t ∈ [−T, T ]

d([x̄] ∗ t, ϕαi(t)zi) < ε′/6 + η/2.

Since all zi and z′ are in the same orbit with time distance ε, there exists
(because of the expansiveness) an integer N large enough such that for i > N
and t ∈ R

d(ϕtzi, ϕtz
′) < η/2.

Hence for t ∈ [−T, T ]

d([x̄] ∗ t, ϕαi(t)z
′) < ε′/6 + η/2 + η/2 = ε′/6 + η.

It follows that z′ ∈ Ax̄, which finishes the proof of Lemma 3.7.

A point x ∈ Ax̄ is called the largest limit (L.Ax̄ ) of Ax̄ if x = ϕtx
′ with t ≥ 0

for all x′ ∈ Ax̄. Such point is unique. Now we define W ′ 3 [x̄] → L.Ax̄ ∈ X.
We will prove that for each compact K ⊂ POa

a(δ) a map W ′|K is continuous.
Fix such a K.

For η, T > 0, let us define the following set

Ax̄,η,T = {x ∈ X : ∃α∈Rep(R) ∀t∈[−T,T ] d([x̄] ∗ t, ϕα(t)x) < ε′/6 + η}.

Lemma 3.8. For all λ > 0 and [x̄] ∈ POa
a(δ) there exist η, T > 0 such that

d(x,Ax̄) < λ for all x ∈ Ax̄,η,T .

Proof. Let (ηi)i∈N and (Ti)i∈R be sequences of positive real numbers such
that ηi < ε′/6, ηi → 0 and Ti → ∞ as i → ∞. Also assume that zi ∈ Ax̄,ηi,Ti

and zi → z. We will show that then z ∈ Ax̄(i).
There are αi ∈ Rep(R) such that, for i ∈ N and t ∈ [−Ti, Ti],

(1) d(ϕαi(t)zi, [x̄] ∗ t) < ε′/6 + ηi.

Since zi → z, we can take (βi)i∈N and (wi)i∈R sequences of positive
real numbers with βi < ε′/6, βi → 0 and wi → ∞ as i → ∞, such that
d(ϕtzi, ϕtz) < βi for all t ∈ [−wi, wi]. Thus for all t ∈ [−α−1

i (wi), α−1
i (wi)] we

have

(2) d(ϕαi(t)zi, ϕαi(t)z) < βi.

Suppose that we have already known that

(∗) vi = min{|α−1
i (wi)|, |α−1

i (−wi)|} → ∞.
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Then, because of (1) and (2) we have

d(ϕαi(t)z, [x̄] ∗ t) ≤ d(ϕαi(t)z, ϕαi(t)zi) + d(ϕαi(t)zi, [x̄] ∗ t)
< βi + ε′/6 + ηi.

for t ∈ [−ki, ki], where ki = min{vi, Ti}. So z ∈ Ax̄,ηi+βi,ki
. Hence z ∈ Ax̄.

Now we prove (∗). Firstly we show that α−1
i (wi) → ∞. Assume this is

not so. There are b > 0 and N ∈ N such that α−1
i (wi) ≤ b for i > N . Then

wi ≤ αi(b), so αi(b) →∞ as i →∞.
Using Lemma 3.4 and Lemma 3.5(a), we may find j ∈ N and t1, t2 ∈ [0, b]

such that d([x̄] ? t1, [x̄] ? t2) < δ + δ < ε′/12 and αj(t2)− αj(t1) = r/2. Hence
d(ϕαj(t1)zj , ϕαj(t2)zj) ≥ γ > ε′.

But there is
d(ϕαj(t1)zj , ϕαj(t2)zj) ≤ d(ϕαj(t1)zj , [x̄] ? t1) + d([x̄] ? t1, [x̄] ? t2)

+ d([x̄] ? t2, ϕαj(t2)zj) < ε′.

This is a contradiction. We may similarly prove that α−1
i (wi) →∞.

Now if we assume that d(zi, Ax̄) ≥ λ for all i ∈ N, then d(z, Ax̄) ≥ λ. This
is a contradiction, which finishes the proof of Lemma 3.8.

Lemma 3.9. For all λ > 0 there exist η, T > 0 such that for all x ∈ Ax̄,η,T

and for all [x̄] ∈ K d(x,Ax̄) < λ .

Proof. This is a consequence of Lemma 3.8 and the compactness of K.
Indeed, take [x̄] ∈ K. By Lemma 3.8 there exist ηx̄, Tx̄ > 0 such that

d(x,Ax̄) < λ/2 for x ∈ Ax̄,ηx̄,Tx̄ . Now, by Lemma 3.5 (c) there exists Ux̄,
a neighborhood of [x̄], such that d([x̄] ∗ t, [x̄]′ ? t) < ηx̄/2 for [x̄]′ ∈ Ux̄ and
t ∈ [−Tx̄, Tx̄]. So Ax̄′,ηx̄/2,Tx̄

⊂ Ax̄,ηx̄,Tx̄ for all [x̄]′ ∈ Ux̄.
By the compactness of K there are [x̄]1, . . . , [x̄]k with an open cover

Ux̄1 , . . . , Ux̄k
. Let η = 1

2 min1≤i≤k{ηx̄k
} and T = max1≤i≤k{Tx̄k

}.
Now take x ∈ Ax̄,η,T . There exists 1 ≤ j ≤ k such that Ax̄,η,T ⊂ Ax̄j ,ηj ,Tj ,

thus d(Ax̄, Ax̄j ) < λ/2. Finally we have

d(x,Ax̄) ≤ d(x,Ax̄j ) + d(Ax̄j , Ax̄) < λ.

This finishes the proof of Lemma 3.9.

Lemma 3.10. Let ([x̄i])i∈N be a sequence in K such that [x̄i] → [x̄]. If
zi ∈ Ax̄i and zi → z, then z ∈ Ax̄.

Proof. Let {λi} be a sequence of positive real numbers such that λi → 0.
By Lemma 3.9 there are ηi, Ti > 0 such that d(x,Ax̄) < λi for x ∈ Ax̄,ηi,Ti .
Using Lemma 3.5 (b) we see that there is subsequence [x̄ji ] of [x̄i] which satisfies

d([x̄i] ? t, [x̄ji ] ? t) < ηi/2

for t ∈ [−Ti, Ti] and i ∈ N.
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But zji ∈ Ax̄ji
, so there are αi ∈ Rep(R) such that

d(ϕαi(t)zji , [x̄ji ] ? t) < ε′/6 + ηi/2

for t ∈ [−Ti, Ti]. Therefore

d(ϕαi(t)zi, [x̄ji ] ? t) ≤ d(ϕαi(t)zi, ϕαi(t)zji) + d(ϕαi(t)zji , [x̄ji ] ? t) < ε′/6 + ηi.

This means that zji ∈ Ax̄,ηi,Ti . We have d(zji , Ax̄) < λi, so d(z, Ax̄) = 0. Since
Ax̄ is closed, z ∈ Ax̄. This finishes the proof of Lemma 3.10.

Now we shall show that W ′ : K → X is continuous (where K is a compact
subset of POa

a(δ)).
Let assume that sequences {[x̄i]},{zi} are such that zi = L.Ax̄i and [x̄i] →

[x̄]. Let z = L.Ax̄. We want to show that zi → z. Owing to the compactness
of X and Lemma 3.10 we may assume that zi → z′ ∈ Ax̄. Let x be any point
in Ax̄ and let {λi} be a sequence of positive real numbers such that λi → 0.
Choose ηi, Ti > 0 as in Lemma 3.9. Now there exists a subsequence {[x̄ji ]}
such that

d([x̄i] ? t, [x̄ji ] ? t) < ηi/2

for t ∈ [−Ti, Ti] and i ∈ N. Since x ∈ Ax̄, there exists αi ∈ Rep(R) such that

d(ϕαi(t)x, [x̄] ∗ t) < ε′/6 + ηi/2

for t ∈ [−Ti, Ti]. So we have

d(ϕαi(t)x, [x̄ji ] ? t) < ε′/6 + ηi

for t ∈ [−Ti, Ti] and i ∈ N. Therefore, x ∈ Ax̄ji
,ηi,Ti . Lemma 3.9 implies

that d(x,Ax̄ji
) < λi. Since Ax̄ji

is closed, we can choose xji ∈ Ax̄ji
such that

d(x, xji) = d(x,Ax̄ji
) = λi. Then xji → x. Since zji = L.Ax̄ji

there are wji ≥ 0
such that zji = ϕwji

xji . Hence z′ = ϕwx with w ≥ 0 for every x ∈ Ax̄. So
z′ = L.Ax̄. By uniqueness of L.Ax̄, z = z′. This proves that every convergent
subsequence of zi has z as a limit. It means that zi → z.

We have proved that W ′|K is continuous for every compact K ⊂ POa
a(δ).

So W ′ : POa
a(δ) → X is continuous because POa

a(δ) is a metric space.
Now we will prove that ϕ has the continuous shadowing property. Fix

a, ε > 0. There exist δ > 0 and continuous map W ′ : PO2a
2a(δ) → X such

that every [x̄] ∈ PO2a
2a(δ) is ε/2–traced by W ′([x̄]). Using Lemma 2.6 we have

δ′ > 0 and a continuous map P : PO2a
a (δ′) → PO2a

2a(δ) such that d(P ([x̄]) ?
t, [x̄] ∗ t) < ε/2. Now take W = W ′ ◦ P . It finishes proof of Theorem 3.6,
because PO2a

a (δ′) = POa(δ′).
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Corollary 3.11. Every expansive flow ϕ on a compact manifold M with-
out boundary, without fixed points, and with the POTP, has the inverse shad-
owing property.

Proof. There exists ε′ > 0 such that a continuous map H : M → M with
d(H, id) < ε′ is suriective.

Fix 0 < ε < ε′ and δ > 0 such that we have a continuous map W :
PO1(δ) → M from Theorem 3.6. Now fix a method Φ : M → PO1(δ) and
y ∈ M . Let us define H = W ◦ Φ. For all x ∈ M , there is

d(H(x), x) = d(W (Φ(x)),Φ(x) ? 0) < ε,

because W (Φ(x)) ε–traces Φ(x). Hence H is suriective. So there is x ∈ M
such that H(x) = y. Now it is obvious that Φ(x) is ε–traced by the orbit of y.
This finishes the proof of Corollary 3.11.
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