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HOLONOMY THEORY AND 4-DIMENSIONAL LORENTZ

MANIFOLDS

by G.S. Hall

Abstract. This lecture describes the holonomy group for a 4-dimensional
Hausdorff, connected and simply connected manifold admitting a Lorentz
metric and shows, briefly, some applications to Einstein’s space-time of
general relativity.

1. Holonomy Theory on 4-Dimensional Lorentz Manifolds. Let
M be a 4-dimensional, smooth, Hausdorff, connected, and simply connected
manifold admitting a smooth Lorentz metric g (and thus is paracompact) and
associated smooth Levi-Civita connection Γ and covariant derivative ∇ with
curvature R. The curvature components are denoted by Ra

bcd and the cor-
responding Ricci tensor components by Rab ≡ Rc

acb. Let Φ be the holonomy
group of M derived in the usual way by parallel transport of the members of
the tangent space TmM to M at m around smooth closed curves at m. (In
fact Φ is independent of the differentiability class Ck (k ≥ 1) of these curves
– for this and more details about holonomy theory see [6]). It follows that Φ
is a connected Lie group and hence a connected Lie subgroup of the identity
component L0 of the Lorentz group L. Thus Φ is determined by its Lie algebra
φ which is then a subalgebra of the Lie algebra A of L0. The problem with the
study of Φ arises from the Lorentz signature of g and from the resulting more
diverse nature of the subgroup structure of L0.

The Lorentz group and its Lie algebra can be represented by

L = {B ∈ GL(4, R) : BηBT = η}, A = {C ∈ MnR : ηC + (ηC)T = 0}
where η = diag(−1, 1, 1, 1). The members of A are skew self-adjoint with
respect to η and can be represented in Minkowski space (i.e. the manifold
R4 with metric η) by skew symmetric matrices Fab = ηacC

c
b for C ∈ A. If

C 6= 0, F has (matrix) rank two or four and in the former case it can be
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written as Fab = paqb − qapb for p, q ∈ R4 and is then denoted by p ∧ q.
Now let {`, n, x, y} be a null tetrad in Minkowski space so that the only non-
vanishing inner products between them are η(`, n) = η(x, x) = η(y, y) = 1 and
let {u, x, y, z} be a pseudo-orthonormal tetrad where the only non-vanishing
inner products are −η(u, u) = η(x, x) = η(y, y) = η(z, z) = 1. Then the
possible subalgebras of A can be collected together using this notation (and
with 0 6= ρ ∈ R) in Table 1 (see e.g. [8] from which the notational labeling is
taken).

Label Basis Dim Label Basis Dim
R1 0 0 R8 l ∧ x, l ∧ y 2
R2 l ∧ n 1 R9 l ∧ x, l ∧ y, l ∧ n 3
R3 l ∧ x 1 R10 l ∧ x, n ∧ x, l ∧ n 3
R4 x ∧ y 1 R11 l ∧ x, l ∧ y, x ∧ y 3
R5 l ∧ n + ρx ∧ y 1 R12 l ∧ x, l ∧ y, l ∧ n + ρx ∧ y 3
R6 l ∧ n, l ∧ x 2 R13 x ∧ y, x ∧ z, y ∧ z 3
R7 l ∧ n, x ∧ y 2 R14 l ∧ x, l ∧ y, l ∧ n, x ∧ y 4

R15 (= A) 6

Table 1.

The Lie group L0 is exponential, cfg. [9], (i.e. given h ∈ L0, ∃C ∈ A such
that h = expC) but its connected subgroups are not necessarily exponential.
However, if H is a connected Lie subgroup of L0 (whose Lie algebra A′ is
therefore one of those in Table 1), then given h ∈ H, ∃C1, . . . , Cn ∈ A′ such
that h = expC1 ◦ · · · ◦ expCn.

Now let m ∈ M and let V be a non-trivial proper subspace of TmM . Then
V is called holonomy invariant if it is carried into itself upon parallel transport
along any closed curve at m and, if so, its parallel transport to any other point
m′ of M along a curve c is independent of c and is also holonomy invariant.
Each such V gives rise to a smooth m-dimensional Frobenius-type distribution
on M (where m = dim V ) which is then in an obvious sense holonomy invariant.
If such a V exists, the holonomy group is called reducible (and otherwise
irreducible). Again, for such a V , if it contains no non-trivial proper holonomy
invariant subspace it is called irreducible (and otherwise reducible).

2. Decomposition Theorems. For a Hausdorff, connected, simply con-
nected manifold with a positive definite metric, the existence of irreducible
holonomy invariant subspaces of TmM leads to a natural decomposition of
TmM and to an associated metric product neighbourhood of each point of M
(and also to M being a global metric product if M is geodesically complete).
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This is the well-known theorem of de Rham (see e.g. [6]). For Lorentz met-
rics the situation is a little more complicated. So with M as in Section 1 let
V be a non-trivial proper subspace of TmM . If the metric g(m) induces a
(non-degenerate) metric on V , then V is called non-null (and, in particular,
spacelike if this induced metric is positive definite and timelike if it is Lorentz).
Otherwise V is called null. (For more details see [2].) Now a subspace of
TmM is called weakly irreducible if it is either {0} or TmM or non-null and
if, in addition, it contains no non-trivial, proper, non-null holonomy invariant
subspaces. Thus a weakly irreducible subspace may not be irreducible. For
Lorentz metrics weak irreducibility plays the role that irreducibility plays for
positive definite metrics. The holonomy group is now called non-degenerately
reducible if for some m ∈ M , TmM contains a (non-trivial, proper) non-null
holonomy invariant subspace. The following theorem due to Wu [11] is the
analogue of de Rham’s theorem in the Lorentz case.

Theorem 2.1. Let M be a simply connected space-time with metric g and
let m ∈ M . Suppose the subspace V0 of TmM on which the holonomy group
Φ of M acts trivially is either {0} or proper and non-null (the trivial case
V0 = TmM is excluded since M is then flat. Then the orthogonal complement
of V0 is holonomy invariant (and either equals TmM or else is non-null) and
may be written as a direct sum V1 ⊕ · · · ⊕ Vk of subspaces of TmM which are
weakly irreducible, mutually orthogonal and holonomy invariant. Further, if
Mi are the maximal integral manifolds through m of the holonomy invariant
distributions on M corresponding to the subspaces Vi (0 ≤ i ≤ k) each with
their metric gi induced from g, there exists an open neighbourhood U of m
which, as an open submanifold of M with metric induced from g, is isometric
to U0×U1× · · · ×Uk where each Ui is an open submanifold of Mi with metric
induced from gi. If V0 is not trivial, M0 is locally Euclidean.

If, in addition, M is geodesically complete, then each Mi (0 ≤ i ≤ k) is
connected, simply connected, totally geodesic and geodesically complete and M
is isometric to the metric product M0×M1× · · · ×Mk. Also M0 is Euclidean.

The local metric decomposability in the non-degenerately reducible cases
guaranteed by Wu’s theorem is rather useful in performing local calculations.
In constructing the holonomy group the well-known theorem of Ambrose and
Singer (see e.g. [6]) is useful. This theorem can be stated in the following
very simple form; a representation of the holonomy algebra φ can be obtained
by first fixing a point m ∈ M and then for any other point m′ ∈ M choosing
a smooth curve c from m to m′. Then construct at m′ the set of all skew-
symmetric tensors in the “range” of the curvature tensor at m′ i.e. all such
tensors of the form Rabcde

cfd for e, f ∈ Tm′M . Then parallel transport this
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latter set along c to m. If this is repeated for all points m′ and all curves c
from m to m′ the collection obtained at m is then a representation of φ.

As an example, from Table 1, if the holonomy type of M is R13, TmM splits
irreducibly into the product of holonomy invariant subspaces of dimension
one (u) and three (x, y, z), the former leading to a global smooth covariantly
constant vector field on M satisfying ∇u = 0 and g(u, u) = −1 on M . The
holonomy group is then SO(3). The holonomy types R2, R3, R4, R6, R7, R10

and R13 are non-degenerately reducible whilst the types R8, R9, R11, R12 and
R14 are reducible but not non-degenerately reducible. The type R5 cannot
exist as a space-time holonomy group (see, e.g. [4]). Of these latter types R8

and R11 admit a non-trivial global covariantly constant null vector field ` (so
that ∇` = 0 and g(`, `) = 0). However, the types R9, R12 and R14 admit at
each m ∈ M a 1-dimensional null holonomy invariant subspace which gives rise
to a smooth global (non-trivial) null vector field ` on M which is recurrent,
(∇` = ` ⊗ r, for some smooth global 1-form r) but which cannot be globally
scaled to be (non-trivially) covariantly constant. It should be noted here that
any global nowhere-zero recurrent vector field X is such that the sign (+,−, 0)
of g(X, X) is constant on M and if this sign is not 0, i.e. if X is not null on
M then X may always be globally scaled so that it is non-trivially covariantly
constant. The holonomy type R15 is irreducible. For details of all this see [4].

3. A Partial Holonomy Classification. General Relativity is the most
successful theory of the gravitational field to date and describes space-time as
a 4-dimensional Lorentz manifold of the type given in Section 1 (not neces-
sarily with the simply connected condition, but this will be retained here for
convenience). The distribution of the gravitational sources is described by a
tensor called the energy-momentum tensor and the prescription of this tensor
on M is equivalent to prescribing the Ricci tensor on M . It is perhaps more
appropriate for these lectures to work with the Ricci tensor rather than to get
involved with the physics of the energy-momentum tensor. Full details of this
latter tensor can be found in [10].

In the problem of classifying gravitational fields, the Petrov classification
of the Weyl tensor of M [7] has proved most useful. But this classification
is a pointwise algebraic classification and the “type” of the Weyl tensor may
vary from point to point. A holonomy classification has the advantage that
it deals with the whole space-time and is not pointwise. However, there is
a sense in which it is too “fine” in some categories and too coarse in others.
(The Petrov classification also suffers to some extent from this.) To proceed
with this partial holonomy classification the method employed is to consider
first the more commonly studied energy-momentum tensors (which here means
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Ricci tensors) and to see which holonomy groups are possible for such space-
times. The choice of Ricci tensor is made on physical grounds and is described
using an algebraic classification of symmetric second order tensors according
to their Segre type (Jordan canonical form). It is assumed here (just as it is
in the physical approaches to these space-times) that the algebraic type of the
Ricci tensor (which may also vary from point to point) is the same everywhere
on M .

At m ∈ M the Ricci tensor can be regarded as a linear map TmM → TmM
according to ka → Ra

bk
b and as such can be classified according to its Segre

(Jordan) type. Because of the Lorentz signature of g(m) the possible Segre
types are restricted to {1, 111}, {211}, {31} and {zz11} together with their
degeneracies (which are denoted by including the appropriate digits in the
Segre type symbol inside round brackets). In the first type the Ricci tensor is
diagonalisable over R and this is the only type to admit timelike eigenvectors,
the “timelike eigenvalue” being separated from the others by a comma. In
the last type the Ricci tensor is diagonalisable over C admitting two real and
two non-real (conjugate) eigenvalues and is the only type to admit non-real
eigenvalues. The third and fourth types are less interesting physically since
they fail the so-called “energy conditions”. Full details of this classification
can be found in [7, 3, 5].

The following types of space-times can now be described in terms of the
algebraic nature of the Ricci tensor. The proof is omitted, full details being
available in [4]. In some cases a brief physical description of the gravitational
field described will be given.

Theorem 3.1. Let M be a (simply connected) space-time as described in
Section 1.

(i) If M represents a non-flat vacuum space-time (i.e. the Ricci tensor is
the zero tensor on M), then its holonomy type is either R8, R14 or R15.

(ii) If M represents an Einstein space (i.e.the Ricci tensor is everywhere a
multiple of the metric tensor) but not a vacuum space-time, then the
holonomy type of M is R7, R14 or R15.

(iii) If M is conformally flat, but not flat, then the holonomy type of M is
R7, R8, R10, R13, R14 or R15 and the possibilities for the algebraic type
of the Ricci tensor are easily calculated.

(iv) If the Ricci tensor for M is everywhere of Segre type {(211)} with eigen-
value zero (this represents a null Einstein–Maxwell field, i.e. the grav-
itational field arising from an idealised form of a pure electromagnetic
radiation field), then the holonomy type of M is R3, R8, R10, R14 or R15.

(v) If the Ricci tensor is everywhere of Segre type {(1, 1)(11)} with equal and
opposite eigenvalues (this represents a non-null Einstein-Maxwell field,



272

i.e. the gravitational field arising from a general pure electromagnetic
field), then the holonomy type of M is R7, R14 or R15.

(vi) If the Ricci tensor of M is everywhere of Segre type {1, (111)} (this
represents the gravitational field of a perfect fluid whose density and
isotropic pressure are certain combinations of these two Ricci eigenval-
ues and which do not simultaneous vanish over any non-empty open
subset of M), then the holonomy type of M is R10, R13 or R15.

It is remarked that each holonomy type (except R5) can occur as the holo-
nomy type of a space-time [1, 4]. Further details can be found in the author’s
forthcoming book “Curvature Structure and Symmetries in General Relativ-
ity” (World Scientific, Singapore).
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