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THE NATURAL OPERATORS LIFTING k–PROJECTABLE

VECTOR FIELDS TO PRODUCT-PRESERVING BUNDLE

FUNCTORS ON k–FIBERED MANIFOLDS

by W lodzimierz M. Mikulski and Jiři M. Tomáš

Abstract. For any product-preserving bundle functor F defined on the ca-
tegory k−FM of k–fibered manifolds, we determine all natural operators
transforming k–projectable vector fields on Y ∈ Ob(k − FM) to vector
fields on FY . We also determine all natural affinors on FY . We prove a
composition property analogous to that concerning Weil bundles.

0. Preliminaries. The classical results by Kainz and Michor [6], Luciano
[11] and Eck [3] read that the product-preserving bundle functors on the cat-
egory Mf of manifolds are just Weil bundles, [17]. Let us remind Kolář’s
result [7].

For a bundle functor F on Mf , denote by F the flow operator lifting
vector fields to F . Further, consider an element c of a Weil algebra A and
let L(c)M : TTAM → TTAM denote the natural affinor by Koszul ([7], [8]).
Then we have a natural operator L(c)M ◦ T A : TM  TTAM lifting vector
fields on a manifold M to a Weil bundle TAM .

The Lie algebra associated to the Lie group Aut(A) of all algebra auto-
morphisms of A is identified with the algebra of derivations Der(A) of A. For
any D ∈ Der(A) consider its one-parameter subgroup δ(t) ∈ Aut(A). It deter-
mines the vector field DM = d

dt0
δ(t)M on TAM , where we identify Weil algebra

homomorphisms with the corresponding natural transformations. Finally, we

2000 Mathematics Subject Classification. 58A20.
Key words and phrases. (product-preserving) bundle functors, natural transformations,

natural operators.
This paper is the final form, which will not be published elsewhere.



274

obtain a natural operator ΛD,M : TM  TTAM defined by ΛD,M (X) = DM

for any vector field X on M . Then Kolář’s result reads as follows.

All natural operators TM  TTAM are of the form L(c)M ◦ T A + ΛD,M

for some c ∈ A and D ∈ Der(A).

Let us remind some results concerning product-preserving bundle functors
on the category FM of fibered manifolds, [12], [2], [16]. They are just of the
form Tµ for a homomorphism µ : A → B of Weil algebras. Bundle functors Tµ

are defined as follows. Let i, j : Mf → FM be functors defined by i(M) =
idM : M → M and j(M) = (M → pt) for a manifold M and the single-point
manifold pt. If F : FM→ FM preserves the product then so do GF = F ◦ i
and HF = F ◦ j and so there are Weil algebras A and B such that GF = TA

and HF = TB. Further, there is an obvious natural identity transformation
τM : i(M) → j(M) and thus we have a natural transformation µM = FτM :
TAM → TBM corresponding to a Weil algebra homomorphism µ : A → B.
Then the functor Tµ can be defined as the pull-back TAM ×T BM TBY with
respect to µ and TBp for a fibered manifold p : Y → M . Then F = Tµ modulo
a natural equivalence.

Let F be another product-preserving bundle functor on FM. Then the
result of [12] also yields natural transformations η : F → F in the form of
couples of (µ, µ)–related natural transformations ν = η ◦ i : TA → TA and
ρ : η ◦ j : TB → TB for a Weil algebra homomorphisms ν : A → A and
σ : B → B.

For a bundle functor F on FM, denote by F the flow operator lifting
projectable vector fields to F . Further, consider an element c of A and let
L(c)Y : TTµY → TTµY , L(c)Y (y1, y2) = (L(c)M (y1), L(µ(c))Y (y2)), (y1, y2) ∈
TTµY = TTAM×TT BM TTBY be the modification of the Koszul affinor. Then
we have a natural operator L(c)Y ◦ T µ : TprojY  TTµY lifting projectable
vector fields on a fibered manifold Y to TµY for a Weil algebra homomorphism
µ : A → B.

The Lie algebra associated to the Lie group Aut(µ) = {(ν, ρ) ∈ Aut(A) ×
Aut(B) | ρ ◦ µ = µ ◦ ν} of all automorphisms of µ is identified with the
algebra of derivations Der(µ) = {D = (D1, D2) ∈ Der(A) × Der(B) | D2 ◦
µ = µ ◦D1} of µ. For any D ∈ Der(µ) consider its one-parameter subgroup
δ(t) ∈ Aut(µ). It determines the vector field DY = d

dt0
δ(t)Y on TµY , where we

identify homomorphisms of µ with the corresponding natural transformations.
Finally, we obtain a natural operator ΛD,Y : TprojY  TTµY defined by
ΛD,Y (X) = DY for any projectable vector field X on Y . Then a result of
Tomáš [16] reads
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All natural operators TprojY  TTµY are of the form L(c)Y ◦ T µ + ΛD,Y

for some c ∈ A and D ∈ Der(µ).

Let us recall the concept of k–fibered manifolds. It is a sequence of surjec-
tive submersions

(1) Y = Yk
pk−→ Yk−1

pk−1

−−→ . . .
p1−→ Y0

between manifolds. Given another k–fibered manifold Y = Y k
pk−→ Y k−1

pk−1

−−→
. . .

p1−→ Y 0, a map f : Y → Y is called a morphism of k–fibered manifolds if
there are the so-called underline maps fj : Xj → Xj for j = 0, . . . , k − 1 such
that fj−1 ◦ pj = pj ◦ fj for j = 1, . . . , k, where fk = f . Thus we have the
category k − FM of k–fibered manifolds which is local and admissible in the
sense of [8]. Clearly, the category 1 − FM of 1–fibered manifolds coincides
with the category FM of fibered manifolds.

Let us remind some results concerning product-preserving bundle functors
on the category k − FM of k–fibered manifolds, [13]. They are just of the
form Tµ for a sequence

(2) µ = (Ak
µk

−→ Ak−1

µk−1

−−→ . . .
µ1

−→ A0)

of k Weil algebra homomorphisms. Bundle functors Tµ are defined as follows.
Let i[l] : Mf → k − FM for l = 0, . . . , k be a sequence of functors defined
by i[l](M) = pt

[l+1]
M = (M idM−→ M

idM−→ . . .
idM−→ M → pt → · · · → pt), k − l

times of the single-point manifold pt, and i[l](f) = f . If F : k − FM →
FM preserves the product then so do Gl,F = F ◦ i[l] and so there are Weil
algebras Al such that Gl,F = TAl for l = 0, . . . , k. Further, there are obvious
identity natural transformations τ l

M : i[l](M) → i[l−1](M) and thus we have a
sequence of natural transformations µl

M = Fτ l
M corresponding to a sequence

µ = (Ak
µk

−→ Ak−1

µk−1

−−→ . . .
µ1

−→ A0) of Weil algebra homomorphisms. For any
k–fibered manifold Y of the form (1) we have

TµY ={y = (yk, yk−1, . . . , y0) ∈ TAkY0 × TAk−1Y1 × . . . .× TA0Yk |

µk−l
Yl

(yk−l) = TAk−l−1pl+1(yk−l−1), l = 0, . . . , k − 1}.
(3)

For a k − FM–map f : Y → Y , Tµf : TµY → TµY is the restriction and
correstriction of TAkf0 × TAk−1f1 × · · · × TA0fk. Then F = Tµ modulo a
natural equivalence.

Let F be another product-preserving bundle functor on k − FM. Then
the results of [13] also yield natural transformations η : F → F in the form



276

of sequences ν = (νk, . . . , ν0) of (µ, µ)–related natural transformations νl =
η ◦ i[l] : TAl → TAl for Weil algebra homomorphisms νl : Al → Al.

We shall investigate k–projectable vector fields. A vector field X on a k–
fibered manifold Y of the form (1) is called k–projectable if there are vector
fields Xl on Yl for l = 0, . . . , k − 1 which are related to X by the respective
compositions of projections of Y . The flow of X is formed by local k − FM–
isomorphisms. The space of all k–projectable vector fields on Y will be denoted
by Xk−proj(Y ).

Natural operators lifting vector fields are used in practically each paper
in which the problem of prolongations of geometric structures was studied.
For example A. Morimoto [15] used liftings of functions and vector fields has
been to define the complete lifting of connections. That is why such natural
operators are classified in [4], [7], [16] and other papers (over 100 references).
For example, in the case of the tangent bundle TM of a manifold M (in our
notation, k = 0), any natural operator lifting vector fields from M to TM is a
linear combination of the complete lifting, the vertical lifting and the Liouville
(dilatation) vector field.

A torsion of a connection Γ on TM is the Nijenhuis bracket [Γ, J ] of Γ with
the almost tangent structure J on TM . This fact has been generalized in [9]
in such a way that a torsion of a connection Γ with respect to a natural affinor
A is [Γ, A]. Thus natural affinors can be used to study torsions of connections.
That is why they have been classified in [1], [5], [10] and other papers (over 20
references). For example, any natural affinor on TM is a linear combination
of the identity affinor and the almost tangent structure on TM .

1. Some properties of product preserving bundle functors on k−
FM. According to the Weil theory [6], for Weil algebras A and B there is
the canonical identification TA ◦ TBM = TB⊗AM . We generalize this fact on
k −FM. This extends the respective result of Tomáš’s [16].

Consider TµY in the form (3), where µ is of the form (2) and Y is of the
form (1). It is easy to see that TµY is a k–fibered manifold if we consider it
in the form

(4) TµY = Tµ[k]
Y[k] → Tµ[k−1]

Y[k−1] → · · · → Tµ[0]
Y[0] ,

where µ[l] = (Ak
µk

−→ Ak−1

µk−1

−−→ . . .
µk−l+1

−−−−→ Ak−l) is the truncation of µ (it

is a sequence of l Weil algebra homomorphisms) and Y[l] = Yl
pl−→ Yl−1

pl−1

−−→
. . .

p1−→ Y0 is the truncation of Y (it is an l − FM–object) and where Tµ[l]
Y[l]

is defined as in (3) (in particular, Tµ[0]
Y[0] = TA0Y0). Here the arrows in (4)

are the restrictions and correstrictions of the obvious projections TAkY0×· · ·×
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TAk−lYl → TAkY0×· · ·×TAk−l+1Yl−1. Then Tµ : k−FM→ FM is a functor
k−FM→ k−FM. Thus we can compose product-preserving bundle functors
on k −FM.

Proposition 1. Let Tµ, Tµ : k−FM→ FM be product-preserving bundle
functors corresponding to sequences µ and µ of the form (2). Then Tµ ◦ Tµ =

Tµ⊗µ, where (of course) µ ⊗ µ = (Ak ⊗ Ak

µk⊗µk

−−−−→ Ak−1 ⊗ Ak−1

µk−1⊗µk−1

−−−−−−−→

. . .
µ1⊗µ1

−−−−→ A0 ⊗A0).

Proof. Let µ̃ = (Ãk
µ̃k

−→ Ãk−1

µ̃k−1

−−→ . . .
µ̃1

−→ Ã0) be the sequence of
the form (2) corresponding to the composition Tµ ◦ Tµ. It can be computed
as described in Section 0. Thus by the mentioned Weil theory [6], there is
Ãl = Al ⊗Al (as there is the identification Ãl = TAl ◦ TAl(R) = TAl⊗Al(R) =
Al ⊗Al). This identification is (µ̃, µ⊗ µ)–related.

We describe some special case of Tµ. Let µ be of the form (2), where
Ak = Ak−1 = . . . . = A0 = A and µl = idA for l = 1, . . . , k. We will write idA

for such µ. Then T idA
Y = TAY . In particular, T idY = TY , where id = idD

and D is the Weil algebra of dual numbers.

2. Natural vector fields on bundle functors Tµ. Consider a sequence
µ of the form (2). The group

Aut(µ) ={ν = (νk, νk−1, . . . , ν0) ∈ Aut(Ak)×Aut(Ak−1)× · · · ×Aut(A0) |

νl−1 ◦ µl = µl ◦ νl , l = 1, . . . , k}
of all automorphisms of µ is a closed subgroup in Aut(Ak)×Aut(Ak−1)×· · ·×
Aut(A0). Thus Aut(µ) is a Lie group. Let

Der(µ) ={D = (Dk, Dk−1, . . . , D0) ∈ Der(Ak)×Der(Ak−1)×. . .×Der(A0) |

Dl−1 ◦ µl = µl ◦Dl , l = 1, . . . , k}
be the Lie algebra of all derivations of µ.

Proposition 2. Let Lie(Aut(µ)) be the Lie algebra of the Lie group Aut(µ)
of all automorphisms of µ of the form (2). Then Lie(Aut(µ)) = Der(µ).

Proof. We know that Lie(Aut(A)) = Der(A) for any Weil algebra A
([7]). Consequently, the proposition follows dirrectly from the application of
exponential mapping concept.

Let us recall that a natural operator ΛY : Tk−projY  TTµY is a system
of regular k −FM–invariant operators

ΛY : Xk−proj(Y ) → X (TµY )
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for any k − FM–object Y . The k − FM–invariance means that for any k −
FM–objects Y, Y , any k–projectable vector fields X ∈ Xk−proj(Y ) and X ∈
Xk−proj(Y ) and any k − FM–map f : Y → Y , if X and X are f–related (i.e.
Tf ◦ X = X ◦ f) then ΛY (X) and ΛY (X) are Tµf–related. The regularity
means that ΛY transforms smoothly parametrized families of k–projectable
vector fields into smoothly parametrized families of vector fields.

A natural operator ΛY : Tk−projY  TTµY is called absolute (or a natural
vector field on Tµ) if ΛY is a constant function for any Y ∈ Obj(k −FM).

Proposition 2 enables us to modify the definition of an absolute operator
ΛY : Tk−projY  TTµY as follows. Let D ∈ Der(µ) = Lie(Aut(µ)) and let
δ(t) ∈ Aut(µ) be a one-parameter subgroup corresponding to D. It determines
the vector field DY = d

dt0
δ(t)Y on TµY , where we identify homomorphisms

of µ with the corresponding natural transformations. Finally, we obtain a
natural operator ΛD,Y : Tk−projY  TTµY defined by ΛD,Y (X) = DY for any
k–projectable vector field X on Y ∈ Ob(k −FM).

Proposition 3. Let F be a product-preserving bundle functor on k−FM.
Then every absolute operator ΛY : Tk−projY  TFY is of the form ΛD,Y for
some D ∈ Der(µ), where µ is the sequence of the form (2) corresponding to
F .

Proof. The flow FlΛY
t of ΛY ∈ X (FY ) is k − FM–invariant and (thus)

global, because FY is a k − FM–orbit of any open neighbourhood of 0 ∈
Amk

k ×· · ·×Am0
0 = F ((i[k](R)mk×· · ·×(i[0](R))m0) for some mk, . . . ,m0. Thus

FlΛY
t : FY → FY is a natural transformation. Let ηt ∈ Aut(µ) correspond to

FlΛY
t . Then D = d

dt0
ηt ∈ Der(µ) and ΛD,Y = ΛY .

3. Natural affinors on Tµ and natural operators Tk−projY  TTµ.
Let µ be a sequence of the form (2) and let Y be a k–fibered manifold of the
form (1).

Let us recall that a natural affinor on TµY is a system of k−FM–invariant
affinors (i.e., tensor fields of type (1,1))

LY : TTµY → TTµY

on TµY for any k − FM–object Y . The k − FM–invariance means that for
any k −FM–map f : Y → Y , there is LY ◦ TTµf = TTµf ◦ LY .

For (yk, yk−1, . . . , y0) ∈ T (TAkY0 × TAk−1Y1 × · · · × TA0Yk)
⋂

TTµY and
c ∈ Ak we put

L(c)Y (yk, yk−1, . . . , y0) =

(L(c)Yk
(yk), L(µk(c))Yk−1

(yk−1), . . . , L(µ1◦. . .◦µk−1◦µk(c))Y0(y0)),
(5)
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where L(a)M : TTAM → TTAM is the Koszul affinor, [7]. We call L(c)Y the
modified Koszul affinor on TµY .

The following theorem characterizes all natural affinors on TµY .

Theorem 1. Let µ be a sequence of the form (2) and Y ∈ Ob(k − FM)
be of the form (1). Then every natural affinor on TµY is of the form L(c)Y

for some c ∈ Ak.

Theorem 1 generalizes the result of [1] for Weil functors on Mf and the
result of Tomáš’s [16] for product-preserving bundle functors on FM to all
product-preserving bundle functors on k − FM. A proof of Theorem 1 will
follow a proof of Theorem 2.

For a k–projectable vector field X ∈ Xk−proj(Y ), one can define its flow pro-
longation FX = d

dt0
F (FlXt ) ∈ X (FY ) to a product-preserving bundle functor

F = Tµ on k−FM. (We know that the flow of X is formed by local k−FM–
isomorphisms, and then we can apply F = Tµ and obtain a flow on FY .) One
can verify the Kolář formula

(6) FX = ηY ◦ FX ,

where ηY : FTY = T id⊗µY =̃Tµ⊗idY = TFY is the exchange isomorphism and
X is considered as k − FM–map X : Y → TY = T idY . We will not use this
formula.

The following theorem modifies Kolář’s result [7] for Weil functors on Mf
and Tomáš’s result [16] for product-preserving bundle functors on FM to all
product-preserving bundle functors on k −FM.

Theorem 2. Let F be a product-preserving bundle functor on k − FM.
Further, let X be a k–projectable vector field on a k–fibered manifold Y of the
form (1). Then any natural operator ΛY : Tk−projY  TFY is of the form

L(c)Y ◦ FX + ΛD,Y

for some c ∈ Ak and D ∈ Der(µ), where µ is the sequence of the form (2)
associated to F .

Proof of Theorem 2. ΛY (0) is an absolute operator. Thus replacing
ΛY by ΛY − ΛY (0) and appling Proposition 3 we can assume that ΛY (0) = 0.

Since any k–projectable vector field X on Y ∈ Ob(k − FM) covering
non-vanishing vector field on Y0 is ∂

∂x on i[k](R) ⊂ i[k](R) × . . . in some
k − FM–cordinates (where the dots denote the respective multiproduct of
i[l](R)’s), ΛY is uniquely determined by Λi[k](R)×...(ρ

∂
∂x) : Ak×· · · → Ak× . . . ,

ρ ∈ R. Using the invariance with respect to the homotheties being k − FM–
morphisms i[k](R) × · · · → i[k](R) × . . . and the homogeneous function theo-
rem and Λi[k](R)×...(0) = 0 we deduce that for any ρ the map Λi[k](R)×...(ρ

∂
∂x) :
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Ak × . . . . → Ak × . . . is constant and linearly dependent on ρ. Then us-
ing the invariance with respect to tidi[k](R) × id we deduce that the map
Λi[k](R)×...(ρ

∂
∂x) : Ak × · · · → Ak × {0} is constant and linearly dependent on

ρ. Then the vector space of all natural operators ΛY as above with ΛY (0) = 0
is at most dimRAk–dimensional. But all natural operators L(c)Y ◦ F form a
dimRAk–dimensional vector space. Thus the proof is complete.

Proof of Theorem 1. The vectors T µXv for X ∈ Xk−proj(Y ) and
v ∈ TµY form a dense subset in TTµY for sufficiently high fiber-dimensional
Yk, . . . , Y0. (It is a simple consequence the rank theorem imlying that for
any Weil algebra A with width(A) = k the vector T A ∂

∂x1 jA(t1,...,tk,0,...,0)
=

jA⊗D(t1, . . . , tk, 0, . . . , 0, t) has dense Mfm–orbit in TTARm = TA⊗DRm if
m ≥ k +1.) Thus a natural affinor LY on TµY is determined by LY ◦T µX for
X as above. But ΛY : X → LY ◦ T µX is a natural operator with ΛY (0) = 0.
Thus by the proof of Theorem 2 there is ΛY (X) = L(c)Y ◦ T µX for some
c ∈ Ak. Then LY = L(c)Y . For arbitrary Y , we locally decompose idY by p◦ j
for k − FM–maps, where j : Y → Y with sufficiently high fiber-dimensional
Y . Next, we use the equality LY = L(c)Y and the invariance of natural affinors
with respect to j.

According to formula (6), it is sufficient to verify it for X = ∂
∂x ; see proof

of Theorem 2. But then this is simple to verify.

4. Final remarks. Let m = (mk,mk−1, . . . ,m0) ∈ (N ∪ {0})k+1. A
k–fibered manifold Y of the form (1) is m–dimensional if dim(Y0) = m0,
dim(Y1) = m0 + m1, . . . , dim(Yk) = m0 + m1 + · · ·+ mk. All k–fibered man-
ifolds of dimension m = (mk, . . . ,m0) and their local k − FM–isomorphisms
form a category which we will denote by k−FMm. It is local and admissible
in the sense of [8].

Let F = Tµ : k−FM→ FM be a product preserving bundle functor and
let η : F|k−FMm

→ F|k−FMm
be a k−FMm–natural transformation. Assume

that mk,mk−1, . . . ,m0 are positive integers. Then by a similar method as for
Weil bundles on Mf one can show that there exists one and only one natural
transformation η̃ : F → F extending η. Thus by Theorem 1, one can obtain
the k −FMm–version of Theorem 1.

Theorem 1’. Let µ be a sequence of the form (2) and Y ∈ Ob(k−FMm)
be of the form (1), m = (mk, . . . ,m0), mk, . . . ,m0 positive integers. Then
every k−FMm–natural affinor on TµY is of the form L(c)Y for some c ∈ Ak.
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By a simple modification of the proof of Theorem 2 one can obtain the
k −FMm–version of Theorem 2.

Theorem 2’. Let µ, Y, m be as in Theorem 1’. Further, let X be a k–
projectable vector field on a k–fibered manifold Y of the form (1) and dimension
m. Then any k − FMm–natural operator ΛY : Tk−projY  TTµY is of the
form L(c)Y ◦ T µX + ΛD,Y for some c ∈ Ak and D ∈ Der(µ).

The authors would now like to announce that in [14] they describe all
product preserving bundle functors on the category F2M of fibered-fibered
manifolds (i.e. fibered surjective submersions between fibered manifolds) and
in a paper being in preparation they extend Kolář’s result [7] to product-
preserving bundle functors on F2M.
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