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ON TORSION POINTS ON AN ELLIPTIC CURVES VIA

DIVISION POLYNOMIALS

by Maciej Ulas

Abstract. In this note we propose a new way to prove Nagel’s classical
theorem [3] about torsion points on an elliptic curve over Q . In order to
prove it, we use basic properties of division polynomials only

1. Introduction. Let a, b ∈ Z and let us consider the plane curve E
given by

(1) E : y2 = x3 + ax+ b.

Such a curve is called elliptic if 4a3 + 27b2 6= 0. This condition states that the
polynomial x3 + ax+ b has simple roots only, or equivalently, that curve (1) is
non-singular.

A point (x, y) on E is called a rational (integral ) point if its coordinates
x and y are in Q (in Z).

As we know, the set E(Q) of all rational points on E plus the so-called point
at infinity {O} may be considered as an abelian group with neutral element
O. Points of finite order in this group form the subgroup TorsE(Q) called the
torsion part of the curve E.

The famous Mordell Theorem states that the group E(Q) is finitely gen-
erated. Therefore, there exists an r ∈ N such that

(2) E(Q) ∼= Zr × TorsE(Q).

Nagell in 1935 and Lutz two years later proved that torsion points on curve
(1) have integer coordinates. Nagell’s argument is based on the observation
that if the denominator p of the x-coordinate of an elliptic curve’s point P is
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greater then 1, then the denominator q of the x-coordinate of 2P is greater
then p. Our proof is based on a different idea.

Now let us inductively define the so-called division polynomials ψm ∈
Z[x, y], which are used to express coordinates of the point mP in terms of
coordinates of a point P :

ψ1 = 1, ψ2 = 2y,

ψ3 = 3x4 + 6ax2 + 12bx− a2,

ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3),

ψ2m+1 = ψm+2ψm − ψm−1ψ
3
m+1, m ≥ 2,

2yψ2m = ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1), m ≥ 3.

It is easy to observe that ψ2m are polynomials indeed. Now we define polyno-
mials φm and ωm in the following way

φm = xψ2
m − ψm−1ψm+1,

4yωm = ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1.

Most useful properties of division polynomials are summarized in the fol-
lowing theorem.

Theorem 1.1. Let m ∈ N+. Then

1. ψm, φm, y
−1ωm for m odd and (2y)−1ψm, φm, ωm for m even are

polynomials in Z[x, y2]. Substituting y2 = x3 + ax+ b, we may consider
them as polynomials in Z[x].

2. Considering ψm and φm as polynomials in x there is

φm(x) = xm2
+ lower degree terms,

ψ2
m(x) = m2xm2−1 + lower degree terms.

3. If P ∈ E(Q), then

mP =
(φm(P )
ψ2

m(P )
,
ωm(P )
ψ3

m(P )

)
.

We here omit a proof of this theorem. Assertions 1 and 2 are easy to
prove by induction, but involve rather long calculations. It is possible to prove
assertion 3 in an elementary way; however, it involves extensive computer
calculations. Other proofs, using more advanced methods, can be found in [1]
and [2].
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2. Points of finite order are integral. Before proving that points of
finite and positive orders on an elliptic curve are integral, we will prove two
useful lemmas. If p is a prime, we write pa‖s if pa|s and pa+1 - s.

Lemma 2.1. If (x0, y0) is a rational point on an elliptic curve E : y2 =
x3 + ax + b, then x0 = u/t2 i y0 = v/t3 for some integers u, v, t with
GCD(uv, t) = 1.

Proof. We write x0 = u/s and y0 = v/r with GCD(u, s) = 1 and
GCD(v, r) = 1. Inserting this into y2 = x3 + ax+ b we get

s3v2 = r2(u3 + aus2 + bs3).

If pe ‖ s then p3e | s3v2. Since p - u and p | aus2 + bs3, it follows that p3e | r2.
No higher power of p can divide r2; otherwise p | v, contrary to the assumption
that GCD(v, r) = 1. Hence, p3e ‖ r2. If pf ‖ r, then it follows that 3e = 2f ,
so f = 3g and e = 2g for some integer g. Thus, p3g ‖ r and p2g ‖ s. Since
this holds for each prime p, we conclude that s = t2 and r = t3 for some
integer t.

Lemma 2.2. Let E be an elliptic curve. If P = (x, y) ∈ E(Q) and mP is
an integral point for some m ∈ Z then the point P is integral.

Proof. By Theorem 1.1 there is

mP = (X, Y ) =
( φm(P )
ψm(P )2

,
ωm(P )
ψm(P )3

)
.

Hence,

(3) Xψm(x)2 = φm(x).

Now let x = u/t2, where GCD(u, t) = 1, and define

Φm(u, t) := um2
+ t2m2−2(φm(x)− xm2

),

(4) Ψm(u, t) := t2m2−2ψm(x)2.

Since

φm(z) = zm2
+ lower order terms,

ψ2
m(z) = m2zm2−1 + lower order terms,

the functions Φm(u, t), Ψm(u, t) are polynomials in Z[u, t].
Combining (3) and (4), we obtain

(5) t2(XΨm(u, t)− Φm(u, t) + um2
) = um2
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and therefore, t2 | um2
. But GCD(u, t) = 1, hence t = ±1, so the point P is

integral.

Let us remind the formula for doubling a point P = (x, y) on the curve
(1) which says that

(6) 2P =
((3x2 + a

2y

)2
− 2x, −y +

(3x2 + a

2y

)(
3x−

(3x2 + a

2y

)2))
.

Our aim is to give a proof of the following theorem.

Theorem 2.3. Let a, b ∈ Z and E : y2 = x3 + ax+ b be an elliptic curve.
If P = (x, y) ∈ E(Q) is a non-zero torsion point, then P is integral.

Proof. Note that we may restrict ourselves to torsion points of prime
order.

Indeed, let us assume that the theorem is true for such points. Now if Q is
a point of a finite order n where n is not prime, then n = qr where q is prime
and r is an integer > 1. Therefore, q(rQ) = nQ = O. From the assumption
we conclude that the point rQ is integral. Thus the point Q is integral due to
Lemma 2.2.

Let us suppose that the point P is of prime order q.

(i) If q = 2, then 2P = O, i.e., P = −P . Hence x3 + ax+ b = 0. We know
from Lemma 2.1 that x = u/t2 for some u, t ∈ Z and GCD(u, t) = 1, so we
obtain

u3 = −t4(au+ bt2).

Therefore, t4 | u3 and GCD(u, t) = 1, hence t = ±1 and P is integral.

(ii) Now let q > 2. Again, from Lemma 2.1 follows that x = u/t2 for some
u, t ∈ Z and GCD(u, t) = 1. Since qP = O, then (q − 1)P = −P . Therefore,

(7) t2φq−1(x) = uψq−1(x)2,

where polynomials φq−1, ψ
2
q−1 are as in Theorem 1.1. For a prime q > 2 let us

define polynomials

Ψq−1(u, t) := t2(q−1)2−4(ψq−1(x)2 − (q − 1)2x(q−1)2−1),

(8) Φq−1(u, t) := t2(q−1)2−2(φq−1(x)− x(q−1)2).

Note that, due to Theorem 1.1, polynomials (8) have integer coefficients and
thus are in Z[u, t].
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Inserting t2x = u into (8), we obtain:

t2(q−1)2−2ψ2
q−1(x) = t2Ψq−1(u, t) + (q − 1)2u(q−1)2−1,

(9) t2(q−1)2φq−1(x) = t2Φq−1(u, t) + u(q−1)2 .

Now combining (7) and (9) we get

(10) u(q−1)2 + t2Φq−1(u, t) = ((q − 1)2u(q−1)2−1 + t2Ψq−1(u, t))u,

or

(11) t2(Φq−1(u, t)− uΨq−1(u, t)) = ((q − 1)2 − 1)u(q−1)2 .

Since GCD(u, t) = 1, we conclude that

(∗) t2 | q(q − 2).

Note that for q = 3 there is t2 | 3, which implies that t = ±1 and the point P
is integral. Therefore, we may assume that q > 3.

Since qP = O, so (q − 2)P = −2P . From (6) and Theorem 1.1:

φq−2(x)
ψq−2(x)2

=
(3x2 + a)2

4(x3 + ax+ b)
− 2x,

or, equivalently,

(12) 4φq−2(x)(x3 + ax+ b) = (x4 − 2ax2 − 8bx+ a2)ψq−2(x)2.

Inserting x = u/t2 and using (8) we get

4(u(q−2)2 + t2Φq−2(u, t))(u3 + aut4 + bt6) =

(u4 − 2au2t4 − 8but6 + at8)((q − 2)2u(q−2)2−1 + t2Ψq−2(u, t)),

or

(13) t2H(u, t) = ((q − 2)2 − 4)u(q−2)2+3,

where H(u, t) ∈ Z[u, t]. Since GCD(u, t) = 1, it means that

(∗∗) t2 | q(q − 4).

We have shown that t2 | q(q−2) and t2 | q(q−4), where t is an integer and
q is a prime > 3. Hence, t2 | 2, so t = ±1. Therefore, the point P is integral
as we claimed.
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