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THE SEMIDYNAMICAL SYSTEM NEAR A CLOSED

NEGATIVELY STRONGLY INVARIANT SET

by Anna Bistroń

Abstract. In this paper we define some kinds of dissipativity of the semi-
dynamical systems. We describe the behaviour of such semidynamical sys-
tems in the vicinity of a closed, negatively strongly invariant set in a metric
space.

1. Introduction. In a dynamical system motion is defined for positive
and negative values of time. In a semidynamical system motion is defined only
for positive values of time. However, we can ask about “the past” of a given
point x. We may consider “the past” of a point x and investigate the behaviour
of the semidynamical system there, as well as negative limit sets L−σ (x). It is
possible that there exist more (even infinitely many) such sets; it depends on
a negative semisolutions through x.

In the first part of this paper we define some kinds of dissipativity and
investigate connections among them. The situation in semidynamical systems
is more complicated than that in dynamical systems, since we must consider
not only one trajectory through x, but all negative semitrajectries σ through
x. Dissipativity is useful to study persistence, which plays an important role
in mathematical ecology.

In the second part we describe the behaviour of a semidynamical system
near a closed, negatively strongly invariant set. H. I. Freedman, S. Ruan and
M. Tang ([8]) investigated the behaviour of a continuous flow in the vicinity of
a closed, positively invariant subset in a metric space. Their results generalize
the theorems obtained by Ura and Kimura (1960) and Bhatia (1969). In this
paper we obtain a similar theorem for the semidynamical system.

Although the problem becomes more complicated because there may be
many semisolutions σ through x, our results are similar to those for a dynamical
system.
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We prove that in each sphere of radius ε and with a centre belonging to a
closed, negatively strongly invariant set E we can find such point y, for which
there exists a limit set contained in the closed ball B[E, ε]. We only have to
assume that there exists a point x /∈ E such that the first negative prolongation
of x has a non-empty intersection with set E and the semidynamical system
is locally negatively strongly dissipative at x. It means that there exist a
compact neighbourhood U of x and a compact set V such that all negative
semitrajectories through points from U will be eventually contained in V .

A similar theorem, where the set E is replaced by its boundary, is also
presented.

Subsequently, several conclusions drawn from the presented theorems are
discussed. In closing, two theorems and illustrating examples are given, which
give a classification of possible behaviour of the semidynamical system near a
closed, negatively strongly invariant set E, and the boundary of such set E,
under some assumptions defining the properties of semidynamical system.

2. Definitions and notations. In this section we give some basic no-
tations and definitions on semidynamical systems which we require for this
paper.

A semidynamical system on a metric space X with metric d is a triplet
(X,R+, π) where π : X ×R+ → X is a continuous mapping such that:
(i) π(x, 0) = x for all x ∈ X
(ii) π(π(x, t), s) = π(x, t + s) for all x ∈ X and all s, t ∈ R+.
The positive trajectory of x ∈ X is defined as {π(x, t) : t ∈ R+} and denoted
by π+(x).

Replacing R+ by R we get a definition of dynamical system. Obviously
every dynamical system is a semidynamical system.

A point x∈X is called a start point if x 6=π(y, t) for any y∈X and any t>0.
A function σ : I → X, where I is a non-empty interval in R, is called a

solution if π(σ(t), s) = σ(t + s) whenever t ∈ I, t + s ∈ I and s ∈ R+. If 0 ∈ I
and σ(0) = x then a solution is called a solution through x. The solution σ
through x is called a left solution through x if the maximum of the domain of σ
is equal to 0. A solution is called a left maximal solution if it is a left solution
and it is maximal (with respect to inclusion) relative to the property of being
a left solution. If a solution σ is maximal (relative to the property of being a
solution, with respect to inclusion), then its image is called a trajectory through
x. Note that in such case [0,∞) is contained in the domain of a solution.

When the semidynamical system has no start points, then we define a
negative escape time N(x) of x as

N(x) = inf{s ∈ (0,+∞] : (−s, 0] is the domain of

a left maximal solution through x}.
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Let X be locally compact and the semidynamical system (X,R+, π) has no
start points, then the semidynamical system is isomorphic to a semidynamical
system (X,R+, π′) which has infinite negative escape time for each x ∈ X (see
[6], compare also [5]).

In this paper by a solution (through x) we mean a solution with a do-
main equal to R. By a positive (negative) semisolution through x we mean a
suitable solution defined on [0,∞) ((−∞, 0]); their images are called positive
(negative) semitrajectories. Note that for any x there is precisely one posi-
tive semisolution through x, however there may exist even infinitively many
negative semisolutions through x.

Let M ⊂ X be a non-empty set, σ be a negative semitrajectory and there
exists t0 ≤ 0 such that σ(t0) ∈ M . Then we say that the negative semitra-
jectory σ exits the set M if there exists T ≤ 0 such that σ(t) /∈ M for any
t < T .

Let A ⊂ R+ and M ⊂ X. Let us put F (M,A) = {y ∈ X : π(y, t) ∈
M for some t ∈ A}. If M = {x} and A = {t}, we write F (x, t) instead of
F ({x}, {t}). If the semidynamical system (X,R+, π) is defined on a locally
compact metric space without start points and have infinite negative escape
time for each x ∈ X then the function F : X × R+ → P(X) is upper semi-
continuous [4], i.e., for every x ∈ X and for any sequences {xn} in X with
xn → x and {tn} in R+ with tn → t, sup{d(y, F (x, t)) : y ∈ F (xn, tn)} → 0
as n → +∞.

A set M ⊂ X is called:
– positively invariant if π(x, t) ∈ M for any x ∈ M and any t ∈ R+;
– negatively strongly invariant if σ((−∞, 0]) ⊂ M for any x ∈ M and any

negative semisolution σ through x;
– negatively weakly invariant if for every x ∈ M there exists a negative

semisolution σ through x such that σ((−∞, 0]) ⊂ M .
A set M ⊂ X is called strongly (weakly) invariant if it is positively invariant

and negatively strongly (weakly) invariant.
It is easy to see that for any x the positive trajectory π+(x) is positively

invariant and the set σ((−∞, 0]) is negatively weakly invariant for any solution
σ through x.

For any ε > 0 and M ⊂ X, we define:

B(M, ε) = {x : x ∈ X and d(x,M) < ε},
B[M, ε] = {x : x ∈ X and d(x,M) ≤ ε},
S(M, ε) = {x : x ∈ X and d(x,M) = ε}.

The boundary, closure and interior of a set M ⊂ X are denoted ∂M , M
and int M , respectively.
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The limit sets, prolongations and prolongational limit sets of a point x ∈ X
are defined as follows.

Definition 2.1. By a positive limit set of x ∈ X we mean

L+(x) = {y ∈ X : there exists a sequence {tn} in R

with tn → +∞ and π(x, tn) → y}.

By a negative limit set of x ∈ X with respect to a solution σ we define

L−σ (x) = {y ∈ X : there exists a sequence {tn} in R

with tn → −∞ and σ(tn) → y},

where σ is a negative semisolution through x.
For each x ∈ X, the set

D+(x) = {y ∈ X : there are a sequence {xn} in X and a sequence

{tn} in R+ such that xn → x and π(xn, tn) → y}

is called the first positive prolongation of x.
The first negative prolongation of x we can defined in two ways.

d−(x) = {y ∈ X : there are a sequence {xn} in X and a sequence {tn}
in R−such that xn → x and for each xnthere exists

a semisolution σn through xn such that σn(tn) → y},

D−(x) = {y ∈ X : there are a sequence {xn} in X and a sequence {tn}
in R− and there exists a semisolution σx through x

and t ≤ 0 such that xn → σx(t) and for each xn there

exists a semisolution σn through xn such that σn(tn) → y}.

The positive prolongational limit set of x ∈ X is defined as

J+(x) = {y ∈ X : there are a sequence{xn} inX and a sequence {tn}
in R+ such that xn → x, tn → +∞ and π(xn, tn) → y}.

We define the negative prolongational limit set of x ∈ X as

j−(x) = {y ∈ X : there are a sequence {xn} in X and a sequence {tn} in R−

such that xn → x, tn → −∞ and for each xn there

exists a semisolution σn through xn such that σn(tn) → y},
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J−(x) = {y ∈ X : there are a sequence {xn} in X and a sequence {tn} in R−

and there exists a semisolution σx through x and t ≤ 0

such that xn → σx(t), tn → −∞ and for each xn there

exists a semisolution σn through xn such that σn(tn) → y}.

We know that j−(x) and J−(x) are equal (see [3]). We will prove that
d−(x) = D−(x). Obviously, for any x ∈ X, we have L−σ (x) ⊂ j−(x) ⊂ d−(x)
for any semisolution σ through x. This is an immediate consequence of the
definitions.

Theorem 2.2. Let x ∈ X. Then D−(x) = d−(x).

Proof. The property d−(x) ⊂ D−(x) is obvious.
Let y ∈ D−(x). It means that there are a sequence {xn} in X and a

sequence {tn} in R−, a solution σx through x and t ≤ 0 such that xn → σx(t)
and for each xn there exists a semisolution σn through xn such that σn(tn) → y.
We may assume that either tn → −∞ or tn → τ ∈ R−, taking subsequences
if necessary. In the first case y ∈ J−(x) and so y ∈ j−(x) ⊂ d−(x). In the
second case π(xn,−t) → π(σx(t),−t) = σx(0) = x. Set x̃n = π(xn,−t), then
there exists a solution through x̃n which contains x̃n and xn in its image. We
denote this solution by σ̃n. Hence x̃n → x and σ̃n(t + tn) = σn(tn) → y. The
sequence {t + tn} ∈ R− and t + tn → t + τ . Consequently, y ∈ d−(x).

Lemma 2.3. ([1], 5.15.) A negative limit set L−σ (x) is closed, positively
invariant and if X is locally compact, then it is weakly invariant and contains
no start points.

Lemma 2.4. A negative prolongational limit set of x and first negative
prolongation of x are closed, positively invariant and if X is locally compact,
then they are weakly invariant.

For the above results we refer to [3] and to S. Elaydi and S. K. Kaul [7].
Although they stated another definitions of J−(x) and D−(x), after easy ver-
ification we see that those definitions are equivalent to the presented here.

3. Dissipativity. In this section, we give some basic definitions of some
types of negative dissipativity and their mutual relations. We assume that the
semidynamical system π on a locally compact metric space X without start
points has an infinite negative escape time N(x) = +∞ for each point x ∈ X.

Definition 3.1. If for any negative semisolution σx through x the set σx

is compact, then the semidynamical system π is said to be negatively quasi-
dissipative at x.
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Definition 3.2. If there exists a negative semisolution σx through x such
that the set σx is compact, then the semidynamical system π is said to be
negatively σx quasi-dissipative at x.

Note that if π is negatively σx quasi-dissipative at x then there may exist
other negative semisolution σ′x through x for which σ′x is not compact.

It is easy to see that if π is negatively quasi-dissipative at x then it is
negatively σx quasi-dissipative at x for any semisolution σx through x.

If the semidynamical system π is negatively σ quasi-dissipative at x, then
the negative limit set L−σ (x) is nonempty, compact, connected and weakly
invariant ([1], 5.5, 5.15).

Definition 3.3. Let x be given point in X. If there exist a compact
neighbourhood U of x and a compact set V such that there exists t(U) > 0
with F (U, [t(U),+∞)) ⊂ intV , then the semidynamical system π is said to
be locally negatively strongly dissipative at x.

As an obvious consequence of this definition we get

Proposition 3.4. If the semidynamical system π is locally negatively stron-
gly dissipative at x with corresponding sets U and V , then for any y ∈ U there
exists t(y) > 0 such that F (y, [t(y),+∞)) ⊂ intV .

Proposition 3.5. If the semidynamical system π is locally negatively stron-
gly dissipative at x then it is negatively quasi-dissipative at x.

Proof. The semidynamical system π is locally negatively strongly dissi-
pative at x so there exist a compact neighbourhood U of x and a compact set V
such that for any y ∈ U , there is a t(y) > 0 such that F (y, [t(y),+∞)) ⊂ intV .
Since x ∈ U there is a t(x) > 0 such that F (x, [t(x),+∞)) ⊂ intV . Thus for
any semisolution σx through x we have

σx((−∞, t(x)]) ⊂ intV ⊂ V.

Hence σx((−∞, t(x)]) is compact, as it is a closed subset of compact set, and
so σx is compact.

Definition 3.6. The semidynamical system π is pointwise negatively stron-
gly dissipative over a nonempty set M ⊂ X if there exists a compact set N ⊂ X
such that for any y ∈ M there exists t(y) > 0 such that F (y, [t(y),+∞)) ⊂
intN .

If the semidynamical system π is pointwise negatively strongly dissipative
over M then π may not be locally negatively strongly dissipative at x for any
x ∈ M . For example, consider the planar differential system

x′1(t) = −x1 and x′2(t) = x2
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If M = {(0, 1)} then the semidynamical system is pointwise negatively strongly
dissipative over M , but it is not locally negatively strongly dissipative at x =
(0, 1). If the semidynamical system π is locally negatively strongly dissipative
at x then it is pointwise negatively strongly dissipative over M for M = {x}
or M = Ux.

Proposition 3.7. If the semidynamical system π is pointwise negatively
strongly dissipative over M then for any x ∈ M it is negatively quasi-dissipative
at x.

The proof will be omitted because it is simple and similar to the proof of
Proposition 3.5.

Definition 3.8. A nonempty subset M ⊂ X is called an isolated set with
ε > 0 if for any weakly invariant set N contained in B[M, ε] we have N ⊂ M .

We say that M is an isolated if it is isolated with ε for some ε > 0.

Note that in Definition 3.8 it is not required that there exists a weakly
invariant set contained in M .

4. Semidynamical systems near a closed negatively strongly in-
variant set. In the following we consider a semidynamical system (X,R+, π)
on a locally compact metric space X and we assume that π has no start points
and the infinite negative escape time N(x) = +∞ for each point x ∈ X.

We discuss the behaviour of this semidynamical system near a closed, neg-
atively strongly invariant set E ⊂ X.

Theorem 4.1. Let E be a closed, negatively strongly invariant subset of
X and x be a point in X with d(x,E) > 0. Suppose that the semidynamical
system π is locally negatively strongly dissipative at x and D−(x)∩E 6= ∅. Then
for any 0 < ε < d(x,E) there exist y ∈ S(E, ε) and a negative semisolution σ
through y such that L−σ (y) ⊂ B[E, ε].

Proof. Take z ∈ D−(x) ∩ E. Then there exist sequences {xn} ⊂ X and
{tn} ⊂ R− such that xn → x and for each xn there exists a semisolution σn

through xn such that σn(tn) → z as n → +∞. Since π is locally negatively
strongly dissipative at x, we can choose a closed neighbourhood Ux of x and
a compact set V such that Ux ∩ B[E, ε] = ∅ and F (Ux, [t(Ux),+∞)) ⊂ intV ,
where 0 < ε < d(x, E). Then we can enlarge the set V to the set Vx so that
F (Ux,R+) ⊂ intVx, where Vx is also a compact set. Also, we can choose
a compact neighborhood Uz of z such that Uz ⊂ B[E, ε

2 ]. Without loss of
generality, we may assume that {xn} ⊂ Ux and {σn(tn)} ⊂ Uz. Let zn =
σn(tn). Then {zn} ⊂ Uz and zn → z. The negative semisolution σn through
xn must “meet” the set S(E, ε) between t = 0 and t = tn. Define τn as t which
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fulfils following properties:

tn < t < 0, σn(t) ∈ S(E, ε), σn((tn, t)) ∈ B(E, ε).

Note that for any n there exists exactly one t with this property. Clearly
tn < τn < 0. Let yn = σn(τn), then π(zn, τn − tn) = yn and yn ∈ S(E, ε).

S(E, )ε Ux

z
zn

x

xnE
yn

Figure 1.

If there exist a yn ∈ S(E, ε) and a negative semitrajectory σ through yn

such that σ(t) ∈ B[E, ε] for all t ∈ R−, then let y = yn and L−σ (y) ⊂ B[E, ε].
Assume that for every yn all negative semitrajectories through yn exit the

set B[E, ε]. If there exist an xn and a negative semisolution σ̃ through xn

and t̃ < 0 such that σ̃(t̃) ∈ S(E, ε), σ̃(tn) 6= zn and for all t < t̃ we have
σ̃(t) ∈ B[E, ε], let y = σ̃(t̃). Then L−σ̃ (y) ⊂ B[E, ε].

For the cases above the theorem is proved.
Therefore we suppose that for any xn every negative semitrajectory through

xn exits the set B[E, ε]. For any n we consider this negative semitrajectory
which contains xn, yn and zn in its image. Obviously, this negative semi-
trajectory also exits the set B[E, ε]. From the point xn to the point zn this
trajectory is unequivocally determined. Then there exists precisely one such
semitrajectory, however there may exist even infinitively many such negative
semitrajectories. For every xn we denote these semitrajectories as σnk

.
We know that for every point xn, there is an sn < tn satisfying

sn = max{t : −∞ < t < tn, σnk
(t) ∈ S(E, ε), σnk

((t, tn)) ∈ B(E, ε)},
where σnk

are negative semisolutions through xn for which σnk
(tn) = zn.

For any xn there exists a semitrajectory σnk̃
such that σnk̃

(sn) ∈ S(E, ε).
Denote this semitrajectory as σn. Notice that it is unequivocally determined
from the point xn to the point σn(sn).
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We denote pn = σn(sn). Then pn ∈ S(E, ε) and −∞ < sn < tn < τn < 0.
Note that {yn} ⊂ Vx ∩ S(E, ε) and {pn} ⊂ Vx ∩ S(E, ε) and since Vx ∩ S(E, ε)
is compact, we can choose a convergent subsequence of {yn} and a convergent
subsequence of {pn} which we also rewrite as {yn} and {pn}. Then there exist
y ∈ S(E, ε) and p ∈ S(E, ε) such that

lim
n→+∞

yn = y , lim
n→+∞

pn = p .

We know that sn − τn < sn − tn. Now we prove that sn − tn → −∞ as
n → +∞, hence sn − τn → −∞. If this is not true, we could find a sequence
of the form {sn − tn} and a T < 0; without loss of generality we may assume
that sn − tn → T as n → +∞. Then tn − sn → −T > 0 as n → +∞ and z =
limn→+∞ zn = limn→+∞ π(pn, tn − sn) = π(p,−T ). Therefore p ∈ F (z,−T ).
This is impossible since z ∈ E, p /∈ E and E is negatively strongly invariant.
So sn − τn → −∞.

Denote now as σyn a semisolution through yn for which σyn(0) = yn =
σn(τn) and σyn(t) = σn(τn + t) for any t < 0. Following, we notice that

pn = σyn(sn − τn) and (sn − τn) → −∞ .

Hence for any t < 0 there exists an Nt > 0 such that for any n > Nt we have
σyn(t) ∈ B[E, ε]. On the other hand, the function F (·, ·) is upper semicontin-
uous, yn → y and if we define t̃n as a constant sequence we have t̃n = m → m
for some m > 0. Then

sup{d(χ, F (y, m)) : χ ∈ F (yn,m)} → 0 as n → +∞ .

Since σyn(−m) ∈ F (yn,m), we obtain d(σyn(−m), F (y, m)) → 0 as n → +∞.
Take m = 1. We have d(σyn(−1), F (y, 1)) → 0 as n → +∞. Since σyn(−1) ∈
intVx for any n ∈ N we can choose a convergent subsequence of {σyn(−1)}
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which we rewrite as {σy1
n
(−1)}. So there exists ỹ1 such that σy1

n
(−1) → ỹ1.

We know that ỹ1 ∈ Vx ∩ F (y, 1), so there exists a negative semisolution σ̃y

through y such that ỹ1 = σ̃y(−1) ∈ B[E, ε], since σy1
n
(−1) ∈ B[E, ε] for any

n > N1. When this reasoning is repeated once more we obtain

sup{d(χ, F (ỹ1,m)) : χ ∈ F (σy1
n
(−1),m)} → 0 as n → +∞ ,

and then d(σy1
n
(−1 − m), F (ỹ1,m)) → 0 as n → +∞, since σy1

n
(−1 − m) ∈

F (σy1
n
(−1),m). For m = 1 we have d(σy1

n
(−2), F (ỹ1, 1)) → 0 as n → +∞.

As previously σy1
n
(−2) ∈ intVx and we can choose a convergent subsequence

of {σy1
n
(−2)} which we rewrite as {σy2

n
(−2)}. So there exists ỹ2 such that

σy2
n
(−2) → ỹ2. We know that ỹ2 ∈ Vx ∩ F (ỹ1, 1), so ỹ2 = σ̃y(−2) ∈ B[E, ε],

since σy2
n
(−2) ∈ B[E, ε] for any n > N2. Repeating this reasoning again we

obtain points ỹk = σ̃y(−k) ∈ B[E, ε] for any k ∈ N, where σ̃y is a negative
semisolution through y. From the continuity of the function π we get π(ỹk, t) =
limn→+∞ π(σyk

n
(−k), t) for any t ∈ [0, 1), and π(σyk

n
(−k), t) ∈ B[E, ε]. Hence

π(ỹk, t) ∈ B[E, ε] for any k ∈ N and t ∈ [0, 1). Therefore σ̃y(−u) ∈ B[E, ε] for
any u > 0 and then L−σ̃y

(y) ⊂ B[E, ε]. This completes the proof.

Corollary 4.2. Adopt the assumptions of Theorem 4.1 and designations
of xn, yn, zn and τn, tn, sn as defined in the proof of Theorem 4.1. Addition-
ally, we assume that for every yn all negative semitrajectories through yn exit
the set B[E, ε]. Then for the limit point p of {pn} we have L+(p) ⊂ B[E, ε]
and p ∈ J−(x). For the limit point y of {yn} we have y ∈ D−(x).

Proof. We adopt the designations defined in the proof of Theorem 4.1.
We know that sn − τn → −∞ as n → +∞, hence τn − sn → +∞. We have
also π(pn, τn − sn) = yn. Hence for any t > 0 there exists an Nt > 0 such that
for any n > Nt, we have π(pn, t) ∈ B[E, ε]. Since limn→+∞ π(pn, t) = π(p, t),
then π(p, t) ∈ B[E, ε] for any t > 0. Therefore π+(p) ∈ B[E, ε] and then
L+(p) ⊂ B[E, ε].

If xn → x then for any xn there is a semisolution σn through xn such
that σn(sn) = pn and pn → p. It is clear that sn → −∞ since sn < sn − τn.
Therefore p ∈ J−(x).

If xn → x then for any xn there is a semisolution σn through xn such that
σn(τn) = yn and yn → y. It is clear that {τn} ⊂ R−. Therefore y ∈ D−(x).

Remark 1. If the set E is isolated with α > 0 in addition to the assumption
of Theorem 4.1, then for any 0 < ε < min{α, d(x,E)} there are a y ∈ S(E, ε)
and a negative semisolution σ through y such that L−σ (y) ⊂ E.

Proof. It is true since for any y ∈ S(E, ε) and for any negative semisolu-
tion σ through y the set L−σ (y) is negatively weakly invariant.
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Theorem 4.3. Let E be a nonempty closed subset of X and x be a point
in X with d(x,E) > 0. Suppose that the semidynamical system π is locally
negatively strongly dissipative at x and D−(x)∩E 6= ∅. Let X \E be negatively
strongly invariant. Then for any 0 < ε < d(x,E), there exist y ∈ S(E, ε) and
a negative semisolution σ through y such that L−σ (y) ⊂ B[E, ε].

Proof. The proof is similar to that of Theorem 4.1. In this case, after
constructing sequences {τn}, {tn} and {sn} similar to those constructed in
the proof of Theorem 4.1, we can show that sn − τn → −∞. We know that
sn − τn < tn − τn. Now we prove that tn − τn → −∞ as n → +∞, hence
sn−τn → −∞. If this is not true, we could find a sequence of the form {tn−τn}
and a T < 0; without loss of generality we may assume that tn − τn → T as
n → +∞. Then we have that τn − tn → −T > 0 as n → +∞ and y =
limn→+∞ yn = limn→+∞ π(zn, τn − tn) = π(z,−T ). Therefore z ∈ F (y,−T ).
This is impossible since z ∈ E, y ∈ X \ E and X \ E is negatively strongly
invariant. So sn − τn → −∞. The further part of the proof is similar to that
of Theorem 4.1.

If M is a closed, negatively strongly invariant subset of X with nonempty
boundary ∂M and nonempty interior intM , then intM is also negatively
strongly invariant, but ∂M is in general not negatively strongly invariant.
To prove this we need

Lemma 4.4. Let M be a subset of X. Then the following conditions are
equivalent

(i) M is negatively strongly invariant;
(ii) X \M is positively invariant.

Proof. Assume (i). Let x ∈ X \ M . Suppose that there exists t ∈ R+

such that π(x, t) ∈ M . Then there exists a semisolution σπ(x,t) through π(x, t)
such that σπ(x,t)(−t) = x ∈ X \M . According to (i) this is impossible.
Now assume (ii). Let x ∈ M and t ∈ R−. Suppose that there exists a
semisolution σx through x such that σx(t) /∈ M . Hence σx(t) ∈ X \ M and
π(σx(t),−t) = σx(t − t) = x ∈ M . This contradicts the positively invariance
of X \M . This completes the proof.

Lemma 4.5. ([1]; 3.4.1) If M is positively invariant then M is also posi-
tively invariant.

Lemma 4.6. If M is negatively strongly invariant then intM is also nega-
tively strongly invariant.

Proof. Since M is negatively strongly invariant then X \M is positively
invariant, so X \M is positively invariant and finally intM = X \ (X \M) is
negatively strongly invariant.
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We have also

Theorem 4.7. Let E be a closed, negatively strongly invariant subset of
X with ∂E 6= ∅ and intE 6= ∅. Let x ∈ intE and the semidynamical system
π be locally negatively strongly dissipative at x. If D−(x) ∩ ∂E 6= ∅, then for
any 0 < ε < d(x, ∂E), there exists y ∈ S(∂E, ε) and a semisolution σ through
y such that L−σ (y) ⊂ B[∂E, ε].

Proof. The proof is similar to that of Theorem 4.1. Since x ∈ intE we
choose a neighborhood Ux of x such that Ux ∩ B[∂E, ε] = ∅, where 0 < ε <
d(x, ∂E), Ux ⊂ intE and F (Ux,R+) ⊂ intVx, where Vx is compact set. Also,
we can choose a closed neighborhood Uz of z such that Uz ⊂ B[∂E, ε

2 ]. In
this case we construct sequences {τn}, {tn}, {sn}, {yn} and {pn} similar to
those constructed in the proof of Theorem 4.1. We consider the set ∂E instead
of E. Note that {yn} ⊂ Vx ∩ S(∂E, ε) and {pn} ⊂ Vx ∩ S(∂E, ε) and since
Vx ∩ S(∂E, ε) is compact, we can choose a convergent subsequence of {yn}
and a convergent subsequence of {pn} which we also rewrite as {yn} and {pn}.
Then there exist y ∈ S(∂E, ε) and p ∈ S(∂E, ε) such that

lim
n→+∞

yn = y , lim
n→+∞

pn = p .

Observe that for any n we have yn ∈ intE and y ∈ intE. So as in the proof of
Theorem 4.3 we show that sn−τn → −∞. We obtain that z ∈ F (y,−T ). This
is impossible since z ∈ ∂E, y ∈ intE and the set intE is negatively strongly
invariant. The further part of the proof is similar to that of Theorem 4.1.

Note that for any x ∈ X we have L−σ (x) ⊂ J−(x) ⊂ D−(x), where σ is a
semisolution through x. Hence the following corollaries hold.

Corollary 4.8. The conclusions of Theorems 4.1, 4.3, 4.7 hold if the set
D−(x) is replaced by J−(x).

Corollary 4.9. The conclusions of Theorems 4.1, 4.3, 4.7 hold if the set
D−(x) is replaced by L−σx

(x), where σx is a semisolution through x.

Proof. The proof is similar to that of Theorem 4.1 (respectively 4.3, 4.7).
The difference is that z ∈ L−σx

(x) ∩ E (we consider the set ∂E instead of E
when we prove the conclusion of Theorem 4.7), every point in {xn} is x and
zn = σx(tn) → z, where σx is a semisolution through x for which σx((−∞, 0])
is compact and tn → −∞. In this case a semisolution σn from the proof of
Theorem 4.1 is a semisolution σx. So yn = σx(τn), where τn is defined as
previously. We change also the definition of sn. We define sn as t which fulfills
the following properties:

−∞ < t < tn, σx(t) ∈ S(E, ε), σx((t, tn)) ∈ B[E, ε] .
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We denote pn = σx(sn). In this case the points yn and pn belong to the
semitrajectory σx. Hence we know that there exist y ∈ S(E, ε) and p ∈ S(E, ε)
such that

lim
n→+∞

yn = y , lim
n→+∞

pn = p .

The further part of the proof is such as this of Theorem 4.1 (respectively 4.3,
4.7).

By Theorem 4.1, Remark 1, Corollary 4.2 and 4.9, we also have the follow-
ing.

Corollary 4.10. Suppose E is a closed, negatively strongly invariant sub-
set of X isolated with α > 0. Let x be a point in X such that: x /∈ E, there
exists a solution σx through x such that L−σx

(x) ∩ E 6= ∅ and the semidy-
namical system is locally negatively strongly dissipative at x. If there exists
x0 ∈ L−σx

(x) \ E then for any 0 < ε < min{α, d(x0, E)}, there exist points
p ∈ S(E, ε) ∩ L−σx

(x), y ∈ S(E, ε) ∩ L−σx
(x) and the solution σy through y such

that L+(p) ⊂ E and L−σy
(y) ⊂ E.

Proof. From Theorem 4.1 we know that for any 0 < ε1 < d(x,E), there
exist y ∈ S(E, ε1) and a negative semisolution σ through y such that L−σ (y) ⊂
B[E, ε1]. From the proof of Corollary 4.9 we know also that y = limn→+∞ yn =
limn→+∞ σx(τn) and since τn → −∞ we have y ∈ L−σx

(x). The existence
of the point x0 ∈ L−σx

(x) \ E ensure that the semitrajectory σx 6⊂ B[E, ε2],
where ε2 < d(x0, E). We define the points pn as in the proof of Collorary 4.9.
Hence there exists p ∈ S(E, ε2) such that p = limn→+∞ pn = limn→+∞ σx(sn)
and since sn → −∞ we have p ∈ L−σx

(x). From Corollary 4.2 we know that
L+(p) ⊂ B[E, ε2]. From Remark 1 we know that L−σ (y) ⊂ E and L+(p) ⊂ E
if L−σ (y) ⊂ B[E,α] and L+(p) ⊂ B[E,α], since L−σ (y) and L+(p) are weakly
invariant and the set E is isolated with α > 0. So the Collorary is true
with ε < min{α, d(x0, E)} if d(x0, E) < d(x,E). If d(x0, E) > d(x,E) then
the Collorary is also true with ε < min{α, d(x0, E)}. This holds since x0 ∈
L−σx

(x)\E and L−σx
(x)∩E 6= ∅ so the semitrajectory σx leaves the set B[E, ε] at

the points pn and enters at the points yn infinitely often (where the points pn

and yn are defined so as in Collorary 4.9). In this case we can find the points
y and p in the same way as in Theorem 4.1 which completes the proof.

Theorem 4.11. Let E be a closed, negatively strongly invariant set. Sup-
pose that there exists α > 0 such that semidynamical system π is locally nega-
tively strongly dissipative at each point of B[E,α]\E. Then one of the following
statements holds

(i) The set E is not isolated, that is, for any ε > 0, there exists a weakly
invariant set K ⊂ B[E, ε] and K 6⊂ E.
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(ii) There exists y ∈ B[E,α] \E and there exists a semisolution σy through
y such that L−σy

(y) ⊂ E.
(iii) There is an ε > 0 such that for any x ∈ B[E,α] \ E and for any

semisolution σx through x, limt→−∞ d(σx(t), E) ≥ ε.

Proof. Assume that (i) and (ii) do not hold. We show that in such case
(iii) holds.

We can choose 0 < δ < α such that for any weakly invariant set K, if
K ⊂ B[E, δ] then K ⊂ E.

If there exist x ∈ B[E,α] \ E and a semisolution σx through x such that
L−σx

(x) ∩ E 6= ∅, then take 0 < ε0 < min{d(x,E), δ}. From Corollary 4.9 and
Remark 1, there exist y ∈ S(E, ε0) and a semisolution σy through y, such that
L−σy

(y) ⊂ E, which is impossible since y ∈ B[E,α] \ E and (ii) is not true.
Hence for any x ∈ B[E,α] \E and for any semisolution σx through x we have
L−σx

(x)∩E = ∅. Moreover, for any x /∈ E and for any semisolution σx through
x we have L−σx

(x) ∩ E = ∅.
Since the semidynamical system π is locally negatively strongly dissipative

at each point of B[E,α] \ E, we can find a compact set N such that for any
y ∈ B[E,α] \ E, there exist Ty > 0 and a neighbourhood Uy of y such that
F (Uy, [Ty,+∞)) ⊂ intN . We may choose Uy such that Uy ⊂ B[E,α] \ E.

Choose a sequence {εn}, 0 < εn < δ such that limn→+∞ εn = 0. If (iii)
is not true, then for any εn we can find xn ∈ B[E,α] \ E and we can find a
semisolution σxn through xn, such that L−σxn

(xn) ∩ S(E, εn) 6= ∅. In this case,
we must have L−σxn

(xn)∩S(E, δ) 6= ∅. Otherwise L−σxn
(xn) ⊂ B[E, δ] and then

L−σxn
(xn) ⊂ E, which is impossible. So we have

inf{d(y, E), y ∈ L−σxn
(xn)} < εn,

sup{d(y, E), y ∈ L−σxn
(xn)} > δ.

Choose sufficiently small τn < 0, tn < 0 with tn − τn < 0, such that

yn = σxn(τn) ∈ S(E, δ),

zn = σxn(tn) = σyn(tn − τn) ∈ S(E, εn),

and yn ∈ N , zn ∈ N , where σyn is a semisolution through yn and σxn(τn + t) =
σyn(t) for any t < 0. Since N is compact, we can choose two convergent
subsequences {ynk

} and {znk
}. Then there exist y ∈ S(E, δ) and z ∈ E such

that
lim

k→+∞
ynk

= y , lim
k→+∞

znk
= z .

Since zn = σyn(tn − τn) and {tn − τn} ⊂ R− we know that z ∈ D−(y). So
D−(y) ∩ E 6= ∅.
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By Theorem 4.1, for any 0 < δ0 < δ, there exist y0 ∈ S(E, δ0) and a
negative semisolution σy0 through y0 such that L−σy0

(y0) ⊂ E. This is a con-
tradiction to our assumption, and then the proof is completed.

In order to illustrate the above theorem we shall consider two dynamical
systems (every dynamical system is obviously also a semidynamical system).

First consider the differential system defined in R2 by the differential equa-
tions (in polar coordinates)

dr

dt
= −r(1− r) ,

dθ

dt
= 1.

The trajectories of the system are: a stationary point (0, 0), a periodic trajec-
tory coinciding with the unit circle, spiralling trajectories through each point
P = (r, θ) with r 6= 0, r 6= 1. Take as a set E a stationary point or a ball
centred at (0, 0) of radius 1 containing a periodic trajectory, respectively. By
properly choosing point x one can easily create examples which illustrate (ii)
and (iii) of the above theorem.

On the other hand, we can build an example illustrating point (i) of the
theorem by considering a semidynamical system defined on R2, given by the
formula π(z, t) = |z|ei(t+α), where z ∈ C, α ∈ argz and t ∈ R+. The trajec-
tories of the system are concentric circles. We take as E the ball centred at
(0, 0) of radius 1.

After an easy verification one can find that (ii) and (iii) exclude each other.
If there exists y ∈ B[E,α] \ E and there exists a semisolution σy through y
such that L−σy

(y) ⊂ E then there does not exist an ε > 0 such that for any x ∈
B[E,α]\E and for any semisolution σx through x limt→−∞ d(σx(t), E) ≥ ε, and
conversly. It can be easily demonstrated that (i) and (iii) exclude each other as
well. If the set E is not isolated then there does not exist ε > 0 such that for any
x ∈ B[E,α] \E and for any semisolution σx through x, limt→−∞ d(σx(t), E) ≥
ε. However, one can build an example of a semidynamical system, which fulfills
the requirements (i) and (ii) simultaneously.

Corollary 4.12. The conclusions of Theorem 4.11 hold if we assume that
X \E is negatively strongly invariant instead of assuming that E is negatively
strongly invariant.

The proof of Corollary 4.12 is similar to that of Theorem 4.11. The only
difference is that we must use Theorem 4.3 instead of Theorem 4.1.

Theorem 4.13. Let E be a closed, negatively strongly invariant set with
intE 6= ∅ and ∂E 6= ∅. Suppose there exists α > 0 such that semidynamical
system π is locally negatively strongly dissipative at each point of B[∂E, α] ∩
intE. Then one of the following statements holds
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(i) The boundary ∂E is not isolated, that is, for any ε > 0, there exists a
weakly invariant set K ⊂ B[∂E, ε] and K 6⊂ ∂E.

(ii) There exists y ∈ intE and there exists a semisolution σy through y, such
that L−σy

(y) ⊂ ∂E.
(iii) There is an ε > 0 such that for any x ∈ intE and for any semisolution

σx through x, limt→−∞ d(σx(t), ∂E) ≥ ε.

The proof of this Theorem is analogous to the proof of Theorem 4.11. We
must only use the results of Theorem 4.7 instead of those of Theorem 4.1 and
make the same discussion using Remark 1 and Corollary 4.9. The difference is
that we consider the set B[∂E, α] ∩ intE instead of the set B[E,α] \ E.

Examples illustrating the conditions of the above Theorem can be con-
structed in a similar way as those referring to Theorem 4.11. Set E is to be
defined as a ball centered at (0, 0) of radius 1. The boundary of E will be the
unit circle. One can notice that (ii) and (iii) of Theorem 4.13 exclude each
other. Conditions defined in (i) and (ii) as well as (i) and (iii) can be fulfilled
simultaneously.
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