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SECOND ORDER CAUCHY PROBLEM WITH A DAMPING
OPERATOR

BY TERESA WINIARSKA

Abstract. The purpose of this paper is to present some theorems on exis-
tence and uniqueness of solutions for autonomous (with not densely defined
operators) and nonatonomous second order Cauchy problem with a damp-
ing operator.

1. Introduction. Let (X, |-||) be a Banach space and let A : X — X
be a linear operator. By D(A), o(A), R(\, A) we will denote the domain, the
resolvent set and the resolvent of A, respectively. The graph of A is isomorphic
to the space

X{' = (D(A), || xp) , where ||zl xp = | Az] + ||

which is called the interpolation space for A.
For A\ € o(A) the space

X4, := the completion of the space (X, H'Hxél) , where
[zl xa, = RO A)z|
is called the extrapolation space for A.

Let us recall that

(a) A is closed if and only if X{' is a Banach space.

(b) If 0 belongs to the resolvent set o(A) of A then the norms : ||| xa and
D(A) > x +— ||Az|| are equivalent.

(c) Since the norms X > z +— ||R(\, A)z| corresponding to A € p(A) are
equivalent, the space X ‘_41 is independent of .
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Let (A(t)):ejo,1)» (B(t))ic(o,r] be two families of linear closed operators from
X — X. We consider the following abstract semilinear Cauchy problem

d*u du du
— =B(t)— + A(t t,u, — te|0,T
0 s = B0+ A £ (). e
d
w0) =, L) =w, X,

where f :[0,7] x X x X — X is a given function.

Problems of form appear, for example, in studying problems concerning
a rod compressed by a time-dependent follower force and made of a Kelvin—
Voigt viscoelastic material.

The paper consists of two independent parts. In first part we consider the
case of not densely defined operators A(t) = A, B(t) = B independent of ¢. In
the second part, the general case is considered.

2. Autonomous Cauchy problem. In this part we consider an au-
tonomous Cauchy problem corresponding to , i.e. the following problem

d?u du du

— =B—+A t,u, — telo,T
) 7 pri u+f< u, dt>, € (0,71,

u(0) = up, d—?(O) = uy, ug,up € X .

For a given two linear operators A, B : X — X, we will use the following
four assumptions:
(Z1) B: X 2 D(B) — X is a closed linear operator.
(Z2) D(B) is contained in the domain D(A) of the operator A : X — X and
A'is B bounded, i.e. there exist two non negative constants a, b such that

|Az|| < a||Bz| + b||z|| for x € D(B).

(Z3) 0 € o(A) N e(B).
(Z4) B is a Hille-Yoshida operator of type (M,w), i.e. there exist M > 0 and
w € R such that (w,+00) C o(B) and

|RA\, B)"| < for A\ >w, n=1,2,...

M
(A —w)’
DEFINITION 1 ([3], Def. 3.1, p. 368). A function u : [0,7] — X is said to
be a classical solution of problem if
(i) u e C*([0, 7], X),
(ii) u(t) € D(A) for t € [0,7] and the mapping [0,T] 3 ¢t — Au(t) € X is
continuous,
(iii) ¥/(t) € D(B) for t € [0,T] and the mapping [0,7] > ¢t — Bu/(t) € X is
continuous,

(iv) u satisfies (2.
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The second-order problem can in a standard way be reduced to the
first-order problem (cf. [3], p. 368)

Y Aus FU), e [0, 77,
5 dt v
Z/{(O):Z/{0:|:ul:|7

where 4 : X — X, X 1= XP x X,

uw =[] o =vo. a=§ gl Few={ 0 )

D(A) = D(B) x D(B) with D(A) = Xo # X.

LEMMA 1. If assumptions|(Z1)—(Z4)| are satisfied, then A is a Hille-Yoshida
operator.

PROOF. As in ([3], p. 370), we present the operator A in the form
A=Ay + B1+ B,

0 0 0 I 0 0
AO_[O B}’ Bl_[o 0] BQ‘{A 0]
We first prove that A is a Hille-Yoshida operator. In fact, there is

o] |6 22 [

“|Gremm 95

where

X

S0 o)

x
“[lo 25| = w5 |
A=B) "y~ A—w) || W]l
Hence,
M
RO Aol < 5=
which means that A is a Hille—Yoshida operator on X.
Since

= lzlxp +llyllxp

.

there is .’{“140 =X 1B x X 1B. Since Ay is a Hille-Yoshida operator on X and By
is bounded on %“140, the operator Ay + By is (by virtue of (3], Corollary 1.4,
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p. 160) a Hille-Yoshida operator on %“140 and so (by [3], Corollary 1.4, p. 160)
Ap + Bj is a Hille-Yoshida operator on

(%140“!‘81 )«:\(1)—&-81 —X.
Since
= | Az|ly < a|Bz| + bll2l| < allz||xp +blIB~ [zl xp + [yl

5[]
H

the operator Bs is bounded on X and so (A = Ay + B;) + B2 is a Hille-Yoshida
operator on X. 0

< K(lalp + o) = K|

)

x

Let us denote by A; the part of A in ¥y := D(A). It follows from Lemma [l
that Ap is a generator of a Cy semigroup 71(t) on the space Xy. Then, due to
([6], Theorems 3.1.10 and 3.1.11), the operator .4; can be extended to a closed
densely defined operator A_; : X4, — XA, with the domain D(A_;) = Xo.
It is also known that .4_; generates the Cy semigroup 7_1(t) = (71(t))—1.

Now, the problem can be replaced by the following first order problem
in the space X4,

(4) % =AU+ F(t,U), te]0,T],
U0) =U

for which the following theorem holds

THEOREM 1 ([6], Theorem 4.3.13, p. 82). If F' : [0,T] x X9 — X is of
class C* and there exists L > 0 such that

(5) [1E'(t,U1) — F(t,Us|x < Ll — Us|[x
then problem has exactly one classical solution if and only if
(6) Uy € D(A) and AUy + F(0,Uo) € %o,

and it is the unique solution of the following integral equation
t

(7) U(t) =T (t)Uy + / T_1(t —s)F(s,U(s))ds.
0

The following theorem on existence and uniqueness of the classical solution
of problem is an immediate consequence of Theorem
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THEOREM 2. If assumptions|(Z1)—(Z4)| are satisfied and
(i) up,u1 € D(B) and Aug + Buy + f(0,up,u1) € Xo := D(B),
(i) f : [0,T] x Xo x Xo — X is of class C*,
(iii) there exists L > 0 such that

(8) £t z1,91) — [t 22, y2)|| < L(llz1 — 22l + [lyr — v2l)
fort €[0,T] and x1, 22,91, y2 € Xo,

then problem has exactly one classical solution.

3. Nonautonomous Cauchy problem. In this part we will study prob-
lem with operators A(t), B(t) dependent on t. We will assume that the
operators A(t), B(t) satisfy the following assumptions
(Z'1) The domain D(B(t)) = Dp is independent of t € [0,T], Dp is dense in

X and Dp C D(A(t)) for t € [0,T].
(Z'3) The operators A(t) are uniformly B(t) bounded, i.e. there exist non
negative constants a,b such that

|A(t)z| < a||B(t)x| + b||z| forte[0,T], z € Dp.

(Z'3) 0 € o(A(t)) No(B(t)) for t € [0,T].
(Z'4) The family (B(t)):c[o,r) is a stable family of generators of Cy semigroups,
i.e. there exist M > 0 and w € R such that

(i) (w,400) C o(B(t)) fortel0,T],
i M
(ii) jl;[lR(/\,B(tj)) < GooF for0<t; <...<tp=T,

k=1,2,..., A>w.

Problem can in the standard way be reduced to the following first-order
problem

M _ Ao + Fuw), te o),
o) dt .
U0) = Uy = [ u(l’ } ,

where A(t) : X — X, X := XP x X with B = B(0),
uey=[ ) | Aa0=] 40 s | PA®) =DsxDsc

0

FOUD = g o |+ 1O =0
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Similarly to the case of t-independent operators there is
(10) A(t) = Ao(t) + Bi(t) + Ba(t)

where

(11) Ao(t)z[g B(()t)}, Bl(t):[g ﬂ Bg(t):[A(()t) 8]

LEMMA 2. If, for any x € Dp, the mapping
(12) 0,T]>t+— B(t)r e X

is of class C* and assumptions|(Z' ), (Z',)), [(Z',)| are satisfied, then

(i) Ao(t) is a generator of a Cy semigroup on X, for each t € [0,T],
(ii) the family (Ao(t))iepo,) is stable in X,
(iii) the mapping

[0,7] 3 t — Ay(t) m €x

is of class C' for z,y € Dp.

ProOF. (i) For (z,y) € X and A\ € o(B(t)) there is

b s ) M .

[ -ser -5,
g + 10 B0 = A~ B0l + B

H()\I — Ao(t) 7! m

x_‘
AB}

It follows from m that

M
| =BE) "yl < = lIvll-

Thus,
o= o= (] < e (g 2) |3 = w2 I
Hence,

IR™ (A, Ao (£))] < fort €0,T), n=1,2,...,

M
(A—w)n
the operator Ay () is a generator of a Cy semigroup in X, which ends the proof

of (i).
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(ii) Now it can be immediately verified that

:

x

‘ x

k
[TRO Aoty)|| = '

v o0
1l o mrose)
< 1 M < 1 M

4
Y
This completes the proof of (ii).
(iii) is an immediate consequence of the definition of A, and the assumed
class of the mapping . O

LEMMA 3. Under assumptions of Lemma|3, there is

(i) Ao(t) + Bi(t) is a generator of Cy semigroup on X, for each t € [0,T],
(ii) the family (Ao(t) + Bi(t))icpo,1] is stable in xfo,

PROOF. (i) is an immediate consequence of ([3], Corollary 1.4, p. 160).
(ii) The operator Bi(t) (defined by (11])) is not bounded in X. To have it
bounded we will consider it as an operator defined on

xfo = x00 = xPB x XB.
By Lemmaand ([7], Theorem 4.8, p. 145) the family (Ao(t))se[o,7] is stable in
%140. Hence and by ([7], Theorem 2.3, p. 132), the family (Ao(t) +B1(t))ejo,r)
is stable in %’140. O
LEMMA 4. If the assumptions of Lemmal[g are satisfied and for any x € Dp
the mapping [0,T] > t — A(t)x € X is of class C!, then

(i) A(t) is a generator of a Cy semigroup on X, for each t € [0,T].

(ii) The family (A(t)):cjo,r) (defined by (10)) is stable in X.
(iii) For any (z,y) € D(A) the mapping

0,7] >t — A(t) m €x

is of class C' .

PROOF. (i) By Lemmal3] for any fixed ¢t € [0, T, the operator Ag(t)+B1(t)
is a generator of a (j semigroup in %“140. Thus, by ([3], Corollary 1.4, p. 160),
Ao(t) 4+ Bi(t) is a generator of a Cy semigroup in %7751 for each ¢ € [0, 7],
and in the extrapolation space

Ag+-By ) Aot+B1
(X3 ot 1))71 =X
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By assumption (Z}) there is

I [2)| =Lty o] [5][|. =1a®e1 <anmrel + ool

<a||B@®)BHO)||IBO)x| + bl < Mo |lllxp + ]| B~ O)]| |l xp + |yl
)
Y
Hence, the operators By(t) are uniformly bounded on X. Therefore, for any
fixed t € [0,T], A(t) is a generator of a Cj semigroup in X.

(ii) By virtue of Lemma the family Ag(t) + Bi(t) is stable in .’{140. Since
the norms ||| .4, and ||-[| ja0+5, are equivalent (cf. [3], p. 160), the spaces %140
1 1

and %14”3 ! can be identified. Hence, the family Ag(¢) + B1(¢) is stable in the
space %“14°+B '. By (8], Theorem 5), the family is stable in X. It follows from
(Z'9) that the family Ba(t) is uniformly bounded in X. Thus, by ([7], Theorem
2.3, p. 132), the family A(¢) is stable in X.

(iii) follows immediately from the assumptions. O

< M(|lallxp +llyll) = M

x

Since, by Lemma {4} all the assumptions of ([7], Theorem 4.8, p. 145) are
satisfied, there exists a fundamental solution

(13) Vit,s) = [vﬂt s) wat, ﬂ

v3(ts) wa(t,s

to problem (9). Thus, U(t) = V(¢,0)Up is a solution of the homogeneous
problem corresponding to the problem @

To study semilinear problem @ we will restrict ourselves to a smaller class
of the spaces X, because we shall use the following version of ([2], Theorem 4,
p. 20).

THEOREM 3 ([2], Theorem 4). Let X be a reflexive space. If

(i) for any t € [0,T] the operator A(t) is a generator of a Cy semigroup in
X,
(ii) the domain D(A(t)) is independent of t and dense in X,
(iii) the family (A(t))icpo,r] is stable,

(iv) for any z,y € D(A(t)) the mapping [0,T] > t — A(t) [;C] € X is of class

ct,
(v) 0 € o(A(t)) fort € [0,T],
(vi) the mapping F satisfies the Lipschitz condition with a constant L > 0,
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then problem @D has exactly one classical solution which is also a solution of
the integral equation

U) =V(t,0)U + /Ot V(t,s)F(s,U(s))ds,

where V(t,s) is a fundamental solution to problem (9.

Now we will pass to the semilinear problem

au

— =AU+ F(t, U

(14) i AU + F(t,U),
U0) = Up.

Since now, we shall be assuming that X is a reflexive Banach space. Then X 1B
is also a reflexive space (cf. [1], Theorem 1.4.9, p. 272). Thus X = X x X is
reflexive too (cf. [4], p. 164).

THEOREM 4. If

(a) assumptions are satisfied,

(b) for any fixred x € Dp, the mappings [0,T] >t — A(t)r € X, [0,T] >t —
B(t)xr € X are of class C*,

(C) ug, Vg € Dp,

(d) the mapping F' : [0,T] x X x X — X satisfies the Lipschitz condition with
a constant L > 0,

then problem has exactly one classical solution.

Proor. We will show that the theorem results from Theorem [3| Indeed,
because of Lemma [4] we must only prove that 0 € o(.A(t)) for every t € [0, T].
We easily see that (A(t))ic[o,7) is invertible but with not necessarily bounded
inverse operator. Since the family A(¢) is stable, there exists A > 0 such that
new operators A(t) = A(t)—\Z form a family of closed operators with bounded
inverses, where 7 is the identity map on X. Let us set F(t,U) = F(t,U) + NA.
Then problem is equivalent to the problem

(15) { % = AU + F(t,U),
UW0) =Uy

and to use Theorem |3 we must only verify that F satisfies the Lipschitz con-
dition with a constant L. To do it let us observe that for

I i)
t1,ta €10, T, Uy = €X, Uy = €x
vk €l ), th [3/1] ? [3/2}
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there is

HF(tlaz/ﬁ) - F(tz’UQ)Hx < ’

)\xl . /\1’2
f(t, z, 1) + Ay f(t2, 22, 92) + Ay2
< AMler — @ollys + L(|tr — tof + 21 — 22l x +[ly1 — v2ll) + Ay — w2l
< L(|t1 — to| + Uy — Usl||y) with L=TL+X.

By Theorem |3| there exists exactly one classical solution of problem and
it is the only solution of the integral equation

U(t) =V(t)Uy + /Ot V(t,s)F(s,U(s))ds.

Since the fundamental solution V(¢, s) is of form (13), it follows from Theorem
that the equation

u(t) = v1(t,0)ug + va2(t, 0)uy +/ va(t, s) f(s,u(s),u'(s))ds

has exactly one solution which is also the unique classical solution of prob-

lem . O
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