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CONDITIONALLY MINIMAL PROJECTIONS

by Joanna Kowynia

Abstract. Sets of projections which do not contain the orthogonal projec-
tion are considered. In such sets, projections of minimal norm are found.
The research presented in this paper has been motivated by earlier results
concerning oblique projections (see [14]).

1. Introduction. Let (X, ‖ · ‖) denote a normed space and let S be a
linear subspace of X. A linear bounded operator P : X −→ S is called a
projection if P (s) = s for any s ∈ S. Projections play an important role in
approximation, optimization, spectral theory and orthogonal decomposition.

Recently, applications of projections to signal processing [4], [7], [18], sam-
pling [5], [30], information theory [30], wavelets [1] and least square approxi-
mation [16], [17], [31] have been found.

Results connected with projections can be found in papers [8], [9], [28],
[29], [33].

Survey of some results concerning so called oblique projections can be found
in [14].

Among all projections P : X −→ S, we will distinguish a minimal projec-
tion. A projection P0 : X −→ S is called minimal if

‖P0‖ = inf{‖P‖ : P ∈ L(X, S) : P |S = idS}.
Numerous papers have been devoted to minimal projections. Let us men-

tion the following [2], [3], [6], [10], [11], [12], [13], [15], [19], [20], [21], [22],
[23], [24], [25], [26], [32].

If X is a Hilbert space, then the orthogonal projection is minimal. So
seeking minimal projection, we will focus our attention on sets of projections
which do not contain the orthogonal projection.

In this paper we will assume that X = Rn.
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Let us consider the space Rn with the standard inner product given by the
following formula

〈x, y〉 = x1y1 + x2y2 + . . . + xnyn,

where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn.
By L(Rn) we will denote a set of all bounded linear operators from Rn to Rn.
Let S ⊂ Rn be a closed linear subspace of Rn. By P (S) we will denote the set
of all projections on Rn with the range S:

P (S) = {Q ∈ L(Rn) : Q2 = Q, Q(Rn) = S}.

Let PS denote the orthogonal projection on Rn. Of course PS ∈ P (S).
For a given operator A ∈ L(Rn) and a subspace S ⊂ Rn, set

P (A,S) = {Q ∈ P (S) : AQ = Q∗A}.

If we take under consideration non-emptiness of the set P (A,S) only, we
find that the operator A need not be symmetric. In this paper we will assume
that in the bases of subspaces S, S⊥ the operator A has such matrix represen-
tation that:
A = [aij ]ni,j=1, where aij = aji, i = 1, 2, . . . , k, j = 1, 2, . . . , n, and k = dimS.
This is a much more general situation when compared with that considered
in [14].

2. Preliminary results. In this paper we present three types of results:

− for a fixed S ⊂ Rn, establish the set of bounded operators on Rn such
that, for any operator A from this set, P (A,S) 6= ∅ holds;

− describe nonempty sets P (A,S) for which PS /∈ P (A,S);
− for some special P (A,S) such that PS /∈ P (A,S) and for some norms

on Rn, we will find Q0 ∈ P (A,S) such that

‖Q0‖ = inf
Q∈P (A,S)

‖Q‖.

These results have their origin in earlier research concerning oblique projections
(see [14]).
For a closed k-dimensional subspace S ⊂ Rn we consider

S⊥ = {y ∈ Rn : 〈x, y〉 = 0, x ∈ S}.

Let v1, v2, . . . , vk be a basis of the subspace S and vk+1, vk+2, . . . , vn a basis of
S⊥. For any Q ∈ P (S), we obtain the following matrix representation in these
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bases:

(1) Q =



1 0 . . . 0 r1k+1 r1k+2 . . . r1n

0 1 . . . 0 r2k+1 r2k+2 . . . r2n
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 rkk+1 rkk+2 . . . rkn

0 0 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0


,

where r1j , r2j , . . . , rkj ∈ R, j = k+1, k+2, . . . , n. Let us consider a sequence of
variables r = (r1k+1, . . . , rkk+1, r1k+2, . . . , rkk+2, . . . , r1n, . . . , rkn) and let A =
[aij ]ni,j=1. The equation AQ = Q∗A leads to a system of linear equations which
can be written as follows:

(2) Cr = b,

where

b = (a1k+1, . . . , a1n, a2k+1, . . . , a2n, . . . , akk+1, . . . , akn, 0, . . . , 0)T

∈ R
n(n−1)−k(k−1)

2
×1

and

(3) CT =
[
CT

1 CT
2 . . . CT

k CT
k+1 CT

k+2 . . . CT
n−1

]
,

where

C1 =



a11 0 . . 0
a12 0 . . 0
. . . . .

a1k 0 . . 0
0 a11 0 . 0
0 a12 0 . 0
. . . . .
0 a1k 0 . 0
0 0 . . 0
. . . . 0
0 0 . . 0
0 0 . . a11

0 0 . . a12

0 0 . . .
0 0 . . a1k



, C2 =



a12 0 . . 0
a22 0 . . 0
. . . . .

a2k 0 . . 0
0 a12 0 . 0
0 a22 0 . 0
. . . . .
0 a2k 0 . 0
0 0 . . 0
. . . . 0
0 0 . . 0
0 0 . . a12

0 0 . . a22

0 0 . . .
0 0 . . a2k



, . . . ,
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Ck =



a1k 0 . . 0
a2k 0 . . 0
. . . . .

akk 0 . . 0
0 a1k 0 . 0
0 a2k 0 . 0
. . . . .
0 akk 0 . 0
0 0 . . 0
. . . . 0
0 0 . . 0
0 0 . . a1k

0 0 . . a2k

0 0 . . .
0 0 . . akk



,

Ck+1 =



−a1k+2 −a1k+3 . . −a1n

. . . . .
−akk+2 −akk+3 . . −akn

a1k+1 0 . . 0
. . . . .

akk+1 0 . . 0
0 a1k+1 0 . 0
. . . . .
0 akk+1 0 . 0
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
0 . . 0 a1k+1

. . . . .
0 . . 0 akk+1



, Ck+2 =



0 . . . 0
0 . . . 0
0 . . . 0

−a1k+3 −a1k+4 . . −a1n

. . . . .
−akk+3 −akk+4 . . −akn

a1k+2 0 . . 0
. . . . .

akk+2 0 . . 0
0 a1k+2 0 . 0
. . . . .
0 akk+2 0 . 0
. . . . .
. . . . .
0 . . . a1k+2

. . . . .
0 . . . akk+2



,
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. . . , Cn−1 =



0
.
.
.
.
.
.
0

−a1n

.
−akn

a1n−1

.
akn−1



.

There is C1, C2, . . . , Ck ∈ Rk(n−k)×(n−k), Cm ∈ Rk(n−k)×(n−m), m ∈ {k+1,

k + 2, . . . , n− 1}. C ∈ R
n(n−1)−k(k−1)

2
×k(n−k), where k = dimS and k(n− k) is

the number of variables.

Example 1. Let n = 3, k = dimS = 1. Let v1 and v2, v3 be base of the
subspaces S and S⊥, respectively. Suppose that the matrix representations of
the projection Q and an operator A are as follows:

Q =

1 r12 r13

0 0 0
0 0 0

 , A =

a11 a12 a13

a12 a22 a23

a13 a32 a33

 .

Then in the equation (2) there is

C =

 a11 0
0 a11

−a13 a12

 and r = (r12, r13)T , b = (a12, a13, 0)T .

3. Non-emptiness of the set P (A,S).

Theorem 1. Let A = [aij ]ni,i=1, aij = aji, i = 1, 2, . . . , k, j = 1, 2, . . . , n,
and let S ⊂ Rn be a subspace of dimension k. Then

P (A,S) 6= ∅ if and only if r(C) = r(Cd),
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where

Cd =



CT
1 A1

CT
2 A2
...

...
CT

k Ak

CT
k+1 Ok+1

CT
k+2 Ok+2
...

...
CT

n−1 On−1


,

and

A1 =

a1k+1
...

a1n

 , A2 =

a2k+1
...

a2n

 , . . . , Ak =

akk+1
...

akn

 ,

Om =

0
...
0

 ∈ R(n−m)×1, m ∈ {k + 1, . . . , n− 1}.

Proof. It is an obvious consequence of the theory of linear equations.

Corollary. Let the matrix representation of an operator A be such that
aij = 0, i = 1, 2, . . . , k, j = k + 1, k + 2, . . . , n and let dimS = k.
Then P (A,S) 6= ∅.

Note that each operator A considered in this paper has a representation

(4) A =
[

a b
b∗ c

]
,

where a ∈ L(S), a = a∗, b ∈ L(S⊥, S), c ∈ L(S⊥), S ⊂ Rn, dimS = k.
Then, for A ∈ L(Rn) with a matrix representation A = [aij ]ni,j=1, there is

a =

a11 . . . a1k
...

. . .
...

a1k . . . akk

 , b =

a1k+1 . . . a1n
...

. . .
...

akk+1 . . . akn

 ,

c =

ak+1k+1 . . . ak+1n
...

. . .
...

ank+1 . . . ann

 .

(5)

Theorem 2. Let an operator A has the matrix representation given by
formula (4), where operators a, b, c are given by (5). Let S ⊂ Rn be a k-
dimensional subspace.
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Then
P (A,S) 6= ∅ if and only if R(b) ⊂ R(a).

Proof. Let v1, v2, . . . , vk be a basis of the subspace S and let vk+1, vk+2,
. . ., vn be a basis of the subspace S⊥.

Let us assume that R(b) ⊂ R(a). Hence,

bvk+1, bvk+2, . . . , bvn ∈ R(a),

which means that there exist xk+1, xk+2, . . . , xn ∈ S such that

bvk+1 = axk+1, bvk+2 = axk+2, . . . , bvn = axn.

From the matrix representation of the operator b, (see (5)) we conclude

bvk+1 =


a1k+1

a2k+1
...

akk+1

 , bvk+2 =


a1k+2

a2k+2
...

akk+2

 , . . . , bvn =


a1n

a2n
...

akn

 .

Let xk+1, xk+2, . . . , xn have the following representations in the given basis of S

xk+1 = (x1k+1, . . . , xkk+1), . . . , xn = (x1n, . . . , xkn).

Then

axk+1 =

a11x1k+1 + . . . + a1kxkk+1
...

a1kx1k+1 + . . . + akkxkk+1

 , . . . , axn =

a11x1n + . . . + a1kxkn
...

a1kx1n + . . . + akkxkn

 .

Hence, we obtain

a11x1k+1 + . . . + a1kxkk+1 = a1k+1,

...
a1kx1k+1 + . . . + akkxkk+1 = akk+1,

...
a11x1n + . . . + a1kxkn = a1n,

...
a1kx1n + . . . + akkxkn = akn.

Consequently, the system of linear equations given by the matrix C (see formula
(3)) has a solution. This means that P (A,S) 6= ∅.

Now, let us assume that P (A,S) 6= ∅.
Hence, there exist xk+1, xk+2, . . . , xn ∈ S such that

bvk+1 = axk+1, bvk+2 = axk+2, . . . , bvn = axn.
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This means that bvk+1, . . . , bvn ∈ R(a). Since R(a) is a linear space,

γk+1bvk+1 + . . . + γnbvn = b(γk+1vk+1 + . . . + γnvn) ∈ R(a)

for any γk+1, . . . , γn ∈ R.
From this we conclude that b(S⊥) = R(b) ⊂ R(a). The proof is complete.

Remark. Note that, for the space Rn, Theorem 2 is a generalization of
the result obtained in [14].
In [14], a positive operator A has been considered, whereas an operator A
considered in Theorem 2 need not even be symmetric.

Corollary. Let the assumptions of Theorem 2 hold.
If b ≡ 0 then P (A,S) 6= ∅.

4. The orthogonal projection. In what follows, we will assume that
P (A,S) 6= ∅. If the orthogonal projection PS belongs to P (A,S), then PS is
an element of the minimum norm.
The theorem below characterizes operators A ∈ L(Rn) such that PS ∈ P (A,S).

Theorem 3. Let an operator A have the matrix representation A=[aij ]ni,j=1,
aij = aji, i = 1, 2, . . . , k, j = 1, 2, . . . , n and let dimS = k. Then

PS ∈ P (A,S) if and only if
aij = aji = 0, i = 1, 2, . . . , k, j = k + 1, k + 2, . . . , n.

Proof. It suffices to use the results of the theory of linear homogenous
equations.

Theorem 4. Let the assumptions of Theorem 3 hold. Let P (A,S) 6= ∅.
Then PS /∈ P (A,S) if and only if there exist l ∈ {1, 2, . . . , k} and m ∈ {k + 1,
k + 2, . . . , n} such that alm 6= 0.
Additionally:
if r(C) = k(n− k) then #P (A,S) = 1;
if r(C) < k(n− k) then P (A,S) is a non-trivial affine subspace of L(Rn),
where the matrix C is given by (2) and r(C) denotes the range of C.

Proof. It suffices to use the results of the theory of linear equations.

Example 2. Let us consider the situation in Example 1. This situation
leads to the following system of linear equations

a11r12 = a12,

a11r13 = a13,

−a13r12 + a12r13 = 0.
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If we assume that the solution of such linear system exists, we conclude that
there is only one solution if and only if a11 6= 0 and then P (A,S) has one
element only. The set P (A,S) is infinite if and only if a11 = a12 = a13 = 0. In
the second situation, r12, r13 may be chosen arbitrarily, so PS ∈ P (A,S).

Example 3. Let us consider the following situation: n = 3, dimS = 2,
and

A =

4 2 2
2 1 1
2 1 5

 , Q =

1 0 r13

0 1 r23

0 0 0

 .

By (3) there is {
4r13 + 2r23 = 2,

2r13 + r23 = 1.

Hence, r23 = 1− 2r13, r13 ∈ R and thus

P (A,S) = {Q =

1 0 r13

0 1 1− 2r13

0 0 0

 , r13 ∈ R}.

So P (A,S) is not finite and PS /∈ P (A,S).

5. Projections of minimum norms. Now we focus our attention on
the case where P (A,S) has more than one element and PS /∈ P (A,S). In such
a case, for the special class of operator A, we will find an element Q ∈ P (A,S)
of minimum norm. We will consider different norms in Rn.

Let S ⊂ Rn be a k-dimensional subspace and let the operator A have the
following matrix representation

A =



a11 0 . . a1k 0 . . a1n

0 a22 0 . 0 0 . . 0
. . . . . . . . .
. . . . . . . . .

a1k 0 . 0 akk 0 . . 0
0 0 . . 0 ak+1k+1 . . ak+1n

. . . . . . . . .
a1n 0 . . 0 ank+1 . . ann


,

where a1k, a1n 6= 0.
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Any projection Q admits a representation of form (1).
From the equation AQ = Q∗A we obtain

a11r1n + a1krkn = a1n,

a1kr1n + akkrkn = 0,

a22r2k+1 = . . . = a22r2n = 0,

. . .

ak−1k−1rk−1k+1 = . . . = ak−1k−1rk−1n = 0,

rkk+1 = . . . = rkn−1 = 0.

Hence

− if there exists l ∈ {2, 3, . . . , k − 1} such that all = 0, then
rlk+1, . . . , rln ∈ R;

− if a22, . . . , ak−1k−1 6= 0, then r2k+1 = . . . = rk−1n = 0.
Additionally, from the equations{

a11r1n + a1krkn = a1n,

a1kr1n + akkrkn = 0,

we obtain:

rkn =
a1na1k

a2
1k − a11akk

, r1n =
−akka1n

a2
1k − a11akk

.

So rkn 6= 0 and r1n = 0 if and only if akk = 0.
Summarizing the above, we obtain the following description of P (A,S) :

− if there exists l ∈ {2, 3, . . . , k − 1} such that all = 0 then

P (A,S) =
{

Q =



1 0 . 0 0 . . 0 −akka1n

a2
1k−a11akk

0 1 . . . . . . .
. . . . rlk+1 . . . rln

. . . 0 . . . . .
0 . . 1 0 . . 0 a1na1k

a2
1k−a11akk

0 . . . . . . . 0
. . . . . . . . .
0 . . . . . . . 0


,

rlk+1, . . . , rln ∈ R
}

,

(6)



175

− if a22, . . . , akk 6= 0 then

(7) P (A,S) =
{

Q =



1 0 . 0 0 . . 0 −akka1n

a2
1k−a11akk

0 1 . . . . . . 0
0 . . . . . . . .
. . . . . . . . 0
0 . . 1 0 . . 0 a1na1k

a2
1k−a11akk

0 . . . . . . . 0
. . . . . . . . .
0 . . . . . . . 0


}

.

In (7), P (A,S) has one element only, which is not interesting while
looking for an element of minimum norm.

From now on, we focus our attention on the case given by (6). In such a
case, the set P (A,S) is not finite.

Example 4. Let us assume that an operator Q has the matrix represen-
tation Q = [qij ]ni,j=1 and let us consider the following norm

‖Q‖ =

√√√√ n∑
i,j=1

| qij |2.

For any Q ∈ P (A,S), where P (A,S) is given by (6), there is

‖Q‖2 = k + r2
lk+1 + . . . + r2

ln + (
−akka1n

a2
1k − a11akk

)2 + (
a1na1k

a2
1k − a11akk

)2.

The above expression attains its minimum if rlk+1 = . . . = rln = 0.

Now, for a projection Q ∈ P (A,S), we will consider different types of
operator norms. These norms will be given by different norms in the space Rn.
For an operator Q : Rn −→ Rn, the operator norm is defined by the formula

(8) ‖Q‖op = sup
‖x‖=1

‖Qx‖.

Let D be a set in Rn. An element d ∈ D will be called an extreme point of
D if for any d1, d2 ∈ D, if there exists α ∈ (0, 1) such that d = αd1 + (1−α)d2

then d = d1 = d2.
Let us denote by E ⊂ Rn the set of extreme points of the unit sphere. It

is well-known (see, e.g., [27]) that

‖Q‖op = sup
y∈E

‖Qy‖.
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Example 5. Consider Rn with the l1-norm, that is

(9) ‖x‖1 =
n∑

i=1

| xi |, x = (x1, x2, . . . , xn) ∈ Rn.

Then
E = {(±1, 0, . . . , 0), . . . , (0, . . . , 0,±1)}, #E = 2n.

Because of the definition of ‖ · ‖1, it is enough to consider norms ‖Qei‖1,
i = 1, 2, . . . , n, ei = (0, 0, . . . , 1, . . . , 0) (a 1 on i-th position).

Because of the matrix representation of any Q ∈ P (A,S), where P (A,S)
is given by (6), we have

Qe1 = (1, 0, . . . , 0), . . . , Qek = (0, . . . , 0, 1, 0 . . . 0), (a 1 on k-th position),

Qek+1 = (r1k+1, . . . , rkk+1, 0, . . . , 0), . . . , Qen = (r1n, . . . , rkn, 0, . . . , 0),

where
r1n =

−akka1n

a2
1k − a11akk

, rkn =
a1na1k

a2
1k − a11akk

.

From the above, for any Q ∈ P (A,S), we obtain

‖Q‖op = max{1,
k∑

i=1

| rik+1 |, . . . ,
k∑

i=1

| rin−1 |,

| −akka1n

a2
1k − a11akk

| + | r2n | + . . .+ | rk−1n | + | a1na1k

a2
1k − a11akk

|}.

So, for any Q ∈ P (A,S), there is ‖Q‖op ≥ 1 and ‖Q‖op = 1 if, in its matrix
representation, Q has elements such that

k∑
i=1

| rik+1 |≤ 1, . . . ,

k∑
i=1

| rin−1 |≤ 1,

| −akka1n

a2
1k − a11akk

| + | r2n | + . . .+ | rk−1n | + | a1na1k

a2
1k − a11akk

|≤ 1.

Example 6. Consider Rn with the norm ‖ · ‖max, where

(10) ‖x‖max = max{| x1 |, | x2 |, . . . , | xn |}, x = (x1, x2, . . . , xn) ∈ Rn.

Then

E = {ei = (ei1, . . . , ein), eil ∈ {1,−1}, l = 1, 2, . . . , n, i = 1, 2, .., 2n}.

So there is

‖Q‖op = max{| 1 +
n∑

i=k+1

r1i |, | 1 +
n∑

i=k+1

r2i |, . . . , | 1 +
n∑

i=k+1

rki |},



177

where
rml ≥ 0, m = 1, 2, . . . , k, l = k + 1, . . . , n.

Thus the minimum norm is attained for such an operator Q whose matrix
representation fulfils the following

r1k+1 = . . . = r1n−1 = r2k+1 = . . . = r2n = . . . = rkk+1 = . . . = rkn−1 = 0.

Example 7. Consider

Q : (Rn, ‖ · ‖1) −→ (Rn, ‖ · ‖max),

where ‖ · ‖1, ‖ · ‖max are given by (9) and (10), respectively.
Then

E = {(±1, 0, . . . , 0), . . . , (0, . . . , 0,±1)}, #E = 2n,

and
‖Q‖op = max{1, | r1k+1 |, . . . , | rkk+1 |, . . . , | r1n |, . . . , | rkn |}.

So ‖Q‖ ≥ 1 and ‖Q‖ = 1 if | rlm |≤ 1, l = 1, 2, . . . , k, m = k + 1, k + 2, . . . , n.

Example 8. We consider

Q : (Rn, ‖ · ‖max) −→ (Rn, ‖ · ‖1),

where ‖ · ‖1, ‖ · ‖max are given by (9) and (10), respectively.
Then

E = {ei = (ei1, . . . , ein), eil ∈ {1,−1}, l = 1, 2, . . . , n, i = 1, 2, .., 2n},
and

‖Q‖op =| 1 + r1k+1 + . . . + r1n | + . . .+ | 1 + rkk+1 + . . . + rkn |,
where

rlm ≥ 0, l = 1, 2, . . . , k, m = k + 1, k + 2, . . . , n.

So Q ∈ P (A,S) is of minimum norm if its matrix representation satisfies

r1k+1 = . . . = r1n−1 = . . . = rkk+1 = . . . = rkn−1 = 0.
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