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USEFUL PROPERTIES OF INDEX PAIRS FOR

UPPERSEMICONTINUOUS MULTIVALUED DYNAMICAL

SYSTEMS

by Kinga Stolot

Abstract. We extend some properties of index pairs proved by Mrozek
in a singlevalued setting in [3] to multivalued maps. These properties
are crucial in proving the corectness of the definition and the homotopy
property of Conley type index for multivalued maps, see [6], [5], [7].

1. Introduction. Any index of Conley type is a topological invariant de-
fined for isolated invariant sets with use of index pairs. In this paper we
consider pairs for isolated invariant sets of multivalued discrete dynamical sys-
tems. Here, an index is an equivalence class, in the sense of the Szymczak
relation, of a pair consisting of some space – built with use of an index pair,
and the homotopy class of the index map acting on this space. To prove that
the index depends only on the isolated invariant set, one needs to show that it
is independent of the choice of the specific index pair related to the invariant
set considered.

There are two main ways of proving this independence of the choice of
an index pair. Assume P and Q are two index pairs for the same isolated
invariant set. In the method developed by Szymczak, the actual isomorphism
between the equivalence classes of the Szymczak relation corresponding to P
and Q is given. In the approach introduced by Mrozek, a sequence of index
pairs between P and Q is built. The final isomorphism is a composition of the
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isomorphisms existing between the Szymczak equivalence classes corresponding
to the intermediate pairs between P and Q.

There are many variations of the definition of an index pair. Here we deal
with the slightly modified definition proposed by Mrozek and Kaczyński in [2].
Changes which we introduced in that definition are essential in defining the
Conley index for multivalued maps, following the ideas of Mrozek, Reineck and
Srzednicki [4] developed for single-valued flows (see [6] or [5] for details).

All properties stated here are used to prove that the definition of the index
given in [6] is well posed and that it possesses a homotopy property (see [7]
or [5]). The proof of the correctness of the definition of index defined in [6]
is conducted in a way similar to that introduced by Mrozek (using ‘midway
pairs’). All properties proven in this paper are extensively used in [5], [6]
and [7].

2. Multivalued Maps and Dynamical Systems. By Z, N, Z−, R, I
we denote integers, natural numbers (with zero), negative integers with zero,
real numbers and the interval [0, 1], respectively.

Let X be a topological space. For any set A ⊂ X by int A, bdA, cl A we
denote the interior, boundary and closure of A, respectively. If A ⊂ B ⊂ X
by int BA we understand a relative interior of A in B. By P = (P1, P2) we
denote a pair of subsets of X. Note that we do not require that P2 ⊂ P1. If
Q = (Q1, Q2) is another such a pair of subsets of X, then P ⊂ Q means that
P1 ⊂ Q1 and P2 ⊂ Q2. By int P we denote the pair (int P1, int P2). Similarly
we extend the notation of bdP and cl P . By an interval in Z we understand a
trace of a closed interval in R and denote it by [m,n], for m,n ∈ Z or m = −∞
or n = +∞.

Let X and Y be topological spaces. We denote by

(2.1) F : X ( Y

a multivalued map, that is a map defined on X with values being subsets of Y .
The set

(2.2) graph (F ) = {(x, y) ∈ X × Y : y ∈ F (x)}
is called the graph of the map F .

For P = (P1, P2), by F (P ) we mean a pair of sets (F (P1), F (P2)).
Let also Z be a topological space and G : Y ( Z a multivalued map. The

composition of the maps F and G is a multivalued map G◦F : X ( Z, defined
as

(2.3) G ◦ F (x) :=
⋃
{G(y) : y ∈ F (x)}, for x ∈ X.

If F : X ( X, for k ∈ N \ {0}, by F k we understand k-times composition
according to formula (2.3).
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We say that F : X ( Y is upper semicontinuous at the point x0 if the set

(2.4) F ∗−1(A) := {x ∈ X : F (x) ∩A 6= ∅},
called the large counter image of the set A is closed for any closed A ⊂ Y such
that F (x0)∩A 6= ∅. The above condition is equivalent to the fact that the set

(2.5) F−1(U) := {x ∈ X : F (x) ⊂ U},
called a small counter image of the set U is open for any open U ⊂ Y such
that F (x0) ⊂ U . If F : X ( Y is upper semicontinuous at each point x0 ∈ X
we say that it is an upper semicontinuous map.

Let us denote by USCc the category whose objects are Hausdorff spaces
and morphisms are upper semicontinuous maps with compact values. Compo-
sition of morphisms is defined by formula (2.3). More information on upper
semicontinuous maps can be found in [1].

Throughout this paper we assume that (X, dX) (or briefly X) is a locally
compact metric space and F ∈ USCc(X, X).

To simplify notation, we will write x instead of {x}.

Definition 2.1. ([2], Definition 2.1) Let Φ ∈ USCc(X × Z, X). We call Φ
a multivalued dynamical system if

(i) ∀x ∈ X : Φ(x, 0) = x;
(ii) ∀m,n ∈ Z, mn > 0 ∀x ∈ X : Φ(Φ(x, n),m) = Φ(x, n + m);
(iii) ∀x, y ∈ X : y ∈ Φ(x,−1) ⇔ x ∈ Φ(y, 1).

For a given F : X ( X, we can define ΦF : X × Z ( X as

(2.6) ΦF (x, n) :=


Fn(x), for x ∈ X and n > 0,

x, for x ∈ X and n = 0,

(F ∗−1)−n(x), for x ∈ X and n < 0.

Obviously, ΦF satisfies conditions of Definition 2.1. We say that F induces
a multivalued dynamical system (2.6), or briefly that F is a dynamical system.

A trajectory (solution) of a dynamical system F passing through x ∈ X is
a (singlevalued) map σ : J → X such that σ(n+1) ∈ F (σ(n)), for n, n+1 ∈ J ,
and σ(n0) = x, for some n0 ∈ J , where J is an interval in Z.

Assume N ⊂ X is a compact subset and F : X ( X is a dynamical
system. Let us introduce the following notation

Inv +
F N := {x ∈ N : there is a solution σ : N → N of F passing through x},

Inv −
F N := {x ∈ N : there is a solution σ : Z− → N of F passing through x},

Inv F N := {x ∈ N : there is a solution σ : Z → N of F passing through x}.
The sets Inv +

F N , Inv −
F N and Inv F N are called a positive invariant, a

negative invariant, and an invariant part of N , respectively. Whenever the
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underlying map is known from the context, we will omit the index F and write
Inv +N , Inv −N and Inv N , respectively.

A compact set N ⊂ X is called an isolating neighborhood for a dynamical
system F iff

(2.7) Inv N ∪ F (Inv N) ⊂ int N.

A compact set S ⊂ X is called an isolated invariant set for a dynamical system
F iff there exists an isolating neighborhood N such that S is its invariant
part. By virtue of definition (2.5) of a small counter image, condition (2.7) is
equivalent to

(2.8) Inv N ⊂ int N ∩ F−1(int N).

A diameter of a set A ⊂ X is defined as follows

diam A := sup{dX(y, y′) : y, y′ ∈ A};
let us put

diam NF := sup{diam F (x) : x ∈ N},
dist (A,B) := min{dX(x, y) : x ∈ A, y ∈ B}, for A,B ⊂ X.

Notice that if dist (Inv N,bd N) > diam NF, then condition (2.7) is satis-
fied.

For our purposes we need to slightly modify the definition of an index pair
introduced in the multivalued context by Mrozek and Kaczyński [2].

Definition 2.2. Let N be an isolating neighborhood for a multivalued
dynamical system F . Then the pair P = (P1, P2) of compact subsets of N
such that P1 \ P2 ⊂ int N is called an index pair in the neighborhood N for a
multivalued dynamical system F if

(a) F (Pi) ∩N ⊂ Pi, i = 1, 2;
(b) F (P1 \ P2) ⊂ int N ;
(c) Inv −N ⊂ int NP1 and Inv +N ⊂ N \ P2.

Not to mention other differences, notice that we here admit index pairs
that are not topological pairs, i.e., we omit the condition P2 ⊂ P1 required
in [2].

Only slightly modifying the proof of Theorem 2.6 ([2]) we obtain the exis-
tence of our index pairs. The detailed proof is given in [5].

Theorem 2.3. Assume N is an isolating neighborhood for F and W is
any neighborhood of Inv N . Then there exists an index pair P in the isolating
neighborhood N , such that P1 \ P2 ⊂ W.

The family of index pairs in the isolating neighborhood N for a dynamical
system F is denoted by IP (N,F ).
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We exploit the notation introduced in [2]. Let N be a compact subset of X,
x ∈ X and n ∈ Z+. Let us define the maps FN,n : N ( N , FN,−n : N ( N ,
F+

N : N ( N and F−
N : N ( N in the following way

FN,n(x) := {y ∈ N : there exists σ : [0, n] → N, a solution of F

such that σ(0) = x and σ(n) = y},
(2.9)

FN,−n(x) := {y ∈ N : there exists σ : [−n, 0] → N, a solution of F

such that σ(−n) = y and σ(0) = x},
(2.10)

(2.11) F+
N (x) :=

⋃
n∈Z+

FN,n(x),

(2.12) F−
N (x) :=

⋃
n∈Z+

FN,−n(x).

For the Reader’s convenience below we quote two lemmas from [2] which
are extensively used in the proofs of some facts in this paper.

Lemma 2.4. ([2], Lemma 2.9) Let N be compact. Then
(a) the sets Inv +

F N , Inv −
F N and Inv F N are compact;

(b) if A is compact with Inv −
F N ⊂ A ⊂ N , then F+

N (A) is compact.

Lemma 2.5. ([2], Lemma 2.10) Let K and N be compact subsets of X such
that K ⊂ N and K ∩ Inv +

F N = ∅ (K ∩ Inv −
F N = ∅, respectively). Then

(a) FN,n(K) = ∅ for all but finitely many n > 0 (n < 0, respectively);
(b) the mapping F+

N (F−
N , respectively) is upper semicontinuous on K;

(c) F+
N (K) ∩ Inv +

F N = ∅ (F−
N (K) ∩ Inv −

F N = ∅, respectively).

3. Properties of index pairs. Lemmas 3.1 and 3.2 are the multivalued
analogs of Lemma 5.8 and Lemma 5.13 in [3], respectively. They do not appear
in [2], where multivalued maps are considered.

Although Lemma 3.1 does not differ much from Lemma 2.11 in [2], it is
essential to prove the homotopy property of the index. Our lemma gives the
set Z which possesses some properties that turn out to be significant in the
proof of the homotopy property of the index. The analogous set in Lemma
2.11 in [2] does not need to have these properties.

More precisely, we apply Lemma 3.1 to prove Theorem 3.6, which is an
important step in proving the homotopy property. The already mentioned
Lemma 2.11 in [2] is not sufficient to prove this theorem. Moreover, Lemma
3.2 is used in the proof of Theorem 3.6.

Lemma 3.1. Let N and A be compact subsets of X, such that

(3.1) Inv −N ⊂ A ⊂ N and F (A) ∩N ⊂ A.
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Then for any open neighborhood V of A there exists a compact neighborhood
Z of A in N , such that

F+
N (Z) ⊂ V.

Proof. Assumption (3.1) implies that (N \ V ) ∩ Inv −N = ∅. Moreover,
the set N \ V is compact, because N is compact and V is open. Therefore,
N \ V satisfies assumptions of Lemma 2.5, which implies that

(3.2) ∃m ∈ Z+ ∀k > m : FN,−k(N \ V ) = ∅.
From (2.9), (2.10), (3.1) and the assumption A ⊂ N ∩V , we infer that, for

k ∈ Z,

(3.3) FN,k(A) ⊂ A ⊂ V.

Moreover, from Proposition 2.7 in [2], for any k ∈ Z, the map

(3.4) FN,k : N ( N is upper semicontinuous.

Therefore, from (3.3) and (3.4) there follows that for any k ∈ Z and x ∈ A
there exists a compact neighborhood V k

x of x in N such that

(3.5) FN,k(V k
x ) ⊂ V.

Let us fix any k ∈ Z; owing to (3.5) and the compactness of A, we can select
a finite subcover from {int NV k

x }x∈A, and therefore

A ⊂ V k := V k
xk
1
∪ V k

xk
2
∪ . . . ∪ V k

xk
sk

,

where {int NV k
xk
1
, int NV k

xk
2
, . . . , int NV k

xk
sk

} is a finite cover of A.

Let us put

(3.6) Z := V 0 ∩ V 1 ∩ · · · ∩ V m,

where m is chosen from condition (3.2). The set Z is obviously a compact
neighborhood of A in N . To complete the proof, it is enough to show that
F+

N (Z) ⊂ V. Let y ∈ F+
N (Z). Then

(3.7) y ∈ FN,n(x)

for some x ∈ Z and some n ∈ Z+.
Let us consider the following cases.
• If n > m, then from (3.2) it follows that

(3.8) FN,−n(N \ V ) = ∅.
Condition (3.7) implies that x ∈ FN,−n(y). Knowing (3.8) we receive y ∈ V .

• If 0 ≤ n ≤ m, then from definition (3.6) there follows that x ∈ V n.
Because V n = V n

xn
1
∪ V n

xn
2
∪ . . . ∪ V n

xn
sn

, there is

(3.9) x ∈ V n
xn

i
,
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for some i ∈ {1, 2, . . . , sn}. Condition (3.5) implies that FN,n(V n
xn

i
) ⊂ V, and

thus from (3.7) and (3.9) there follows that

y ∈ FN,n(x) ⊂ FN,n(V n
xn

i
) ⊂ V,

which completes the proof.

Lemma 3.2. Let N and K be compact subsets of X such that

(3.10) K ∩ Inv +N = ∅ and F (K) ∩N ⊂ K.

Then for any open neighborhood U of K there exists a compact neighborhood
Z of K such that F+

N (Z) ⊂ U.

Proof. Assumption (3.10) implies that F+
N (K) ⊂ K ⊂ U. Note that the

set K satisfies the assumptions of Lemma 2.5, from which we learn that the
map F+

N |K : K ( N is upper semicontinuous. Therefore, for any x ∈ K we
can find a compact neighborhood Vx of x in K such that

(3.11) F+
N (Vx) ⊂ U.

From the compactness of K we can select a finite subcover {Vx : x ∈ Ksk}
from {Vx : x ∈ K}. Let us put

Z :=
⋃
{Vx : x ∈ Ksk}.

The set Z is compact and condition (3.11) implies that F+
N (Z) ⊂ U.

Lemma 3.3, which is applied later to prove Theorem 3.5 is a multivalued
equivalent of Lemma 5.9 in [3].

Lemma 3.3. Let U and V be open neighborhoods of Inv +N and Inv −N ,
respectively. Then there exists P ∈ IP (N,F ) such that

(3.12) P1 ⊂ V and N \ P2 ⊂ U.

Proof. Note that Inv N = Inv +N ∩ Inv −N ⊂ U ∩ V , and by definition
(2.8) of the isolating neighborhood, Inv N ⊂ int N ∩ F−1(int N). Therefore,
without loss of generality we may assume that

(3.13) U ∩ V ⊂ int N ∩ F−1(int N).

Then by Lemma 3.1 there exists a compact neighborhood Z of Inv −N in N
such that

(3.14) F+
N (Z) ⊂ V.

We want to show that
P1 := F+

N (Z),
P2 := F+

N (N \ U)
satisfy the requirements of the lemma.
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First note that by Lemma 2.4 (b) the set P1 is compact and as a conclusion
from Lemma 2.5 also the set P2 is compact.

Straight from definition (2.11) we infer that both sets P1 and P2 are forward
invariant with respect to N , therefore condition (a) from the definition of the
index pair is satisfied.

From (2.11) we get N \ U ⊂ F+
N (N \ U) = P2, therefore

(3.15) N \ P2 ⊂ U.

Using additionally (3.14) and (3.13), we obtain

P1 \ P2 ⊂ U ∩ V ⊂ int N ∩ F−1(int N),

thus condition (b) from the definition of the index pair holds.
From (3.14) we know that

(3.16) Inv −N ⊂ int NZ ⊂ int NP1.

By the assumption, (N \U)∩ Inv +N = ∅, thus we can apply Lemma 2.5 and
obtain that

F+
N (N \ U) ∩ Inv +N = ∅,

which implies that

(3.17) Inv +N ⊂ N \ P2.

Formulas (3.16) and (3.17) give condition (c) from the definition of the index
pair.

Concluding, P = (P1, P2) is an index pair, which by (3.14) and (3.15)
satisfies (3.12).

Let us slightly modify the definition of the related index pairs, stated orig-
inally by Mrozek ([3], Definition 5.10) for single-valued dynamical systems. In
referred to Definition 5.10, in the condition analogous to (3.18), the closure
cl (Q1 \ P2) appears.

Definition 3.4. Let P,Q ∈ IP (N,F ) be such that P ⊂ Q. We say that
the pair P is related to a pair Q if

(3.18) Q1 \ P2 ⊂ int N ∩ F−1(int N),

where F−1 is a small counter image defined by (2.5).

Related index pairs play an important role in the proof of the homotopy
property of the Conley index. Consider a homotopic family of multivalued dy-
namical systems Fν for ν ∈ [0, 1]. Assume that N is an isolating neighborhood
for Fν , where ν is some parameter in [0, 1]. Homotopy property states that
for all λ sufficiently close to ν the set N is also an isolating neighborhood of
Inv Fλ

N (see [7], Theorem 3.1 (a) or [2], Theorem 4.1 (a)) and the indices of
Inv Fν N and Inv Fλ

N are equal (see [7], Theorem 3.1 (b) or [2], Theorem 4.1
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(b)). To prove that the indices are equal one needs to refer to appropriate
index pairs. Let us briefly describe the idea sacrificing some accuracy for sim-
plicity. First, Theorems 3.5 and 3.6 enable us to find related index pairs for the
dynamical system Fν (e.g. P ν related to Qν). Then, by Theorem 3.8, we can
construct an index pair P λ for Fλ such that P ν ⊂ P λ ⊂ Qν . These inclusions
induce isomorphisms either between the Leray reduction of the Alexander–
Spanier cohomologies in the case of the index defined in [2], or the Szymczak
equivalence classes in case of the homotopy index defined in [5].

Let us stress that the actual proof of the homotopy property requires a
much finer choice of appropriate index pairs than that outlined above. A de-
tailed proof can be found in [5] or [7].

Theorems 3.5 and 3.6 are extensions of Lemma 5.12 and Lemma 5.15 in
[3], respectively, to a multivalued setting. None of these theorems appears in
[2], however the authors write that the proof of the homotopy property of their
index goes along the same way as in the singlevalued case in [3].

Theorem 3.5. If N is an isolating neighborhood, then there exists index
pairs P,Q ∈ IP (N,F ) such that P ⊂ int NQ, and the pair P is related to Q.

Proof. By definition (2.8) of the isolating neighborhood, Inv N⊂ intN ∩
F−1(int N). Therefore, from Theorem 2.3 we infer that there exists (Q1, P2) ∈
IP (N,F ) such that

(3.19) Q1 \ P2 ⊂ int N ∩ F−1(int N).

From property (c) in the definition of the index pair, P2 ⊂ N\Inv +N, therefore
we can choose an open neighborhood U ′ of the compact set P2 such that

(3.20) cl U ′ ⊂ N \ Inv +N.

Due to (3.20), the set N \ cl U ′ is a neighborhood of Inv +N and by con-
dition (c) in the definition of the index pair, int NQ1 is a neighborhood of
Inv −N . By Lemma 3.3 applied to the sets N \ cl U ′ and int NQ1, there exists
(P1, Q2) ∈ IP (N,F ) such that

(3.21) P1 ⊂ int NQ1 and N \Q2 ⊂ N \ cl U ′.

From the definition of U ′ and from the second inclusion in (3.21) we obtain
that

P2 ⊂ U ′ ⊂ cl U ′ ⊂ Q2,

therefore,

(3.22) P2 ⊂ int NQ2.

Let us put
P := (P1, P2),
Q := (Q1, Q2).
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We have shown that
P ⊂ int NQ.

Because P ⊂ Q and (Q1, P2), (P1, Q2) ∈ IP (N,F ), then by Proposition 2.12
in [2], also the intersection is an index pair:

(Q1 ∩ P1, P2 ∩Q2) = (P1, P2) ∈ IP (N,F ).

It remains to show that (Q1, Q2) ∈ IP (N,F ), as it is straightforward that the
pair P is related to Q by (3.19).

Condition (a) in the definition of an index pair is obvious, because (Q1, P2)
and (P1, Q2) are index pairs in the isolating neighborhood N . Condition (c)
in the definition of an index pair for (Q1, Q2) is satisfied, because

Inv −N ⊂ int NQ1 and Inv +N ⊂ N \Q2,

as a consequence of the fact that (Q1, P2) is an index pair in the isolating
neighborhood N and the second is true because (P1, Q2) is an index pair in N .

Note that from (3.22) and (3.19) we obtain

(3.23) Q1 \Q2 ⊂ Q1 \ P2 ⊂ int N ∩ F−1(int N),

therefore, Q1 \Q2 ⊂ int N and also condition (b) in the definition of an index
pair holds for (Q1, Q2).

Theorem 3.6. Assume that P,R ∈ IP (N,F ), P is related to R and

(3.24) P ⊂ int NR.

Then there exists Q ∈ IP (N,F ) such that

(3.25) P ⊂ int NQ and Q ⊂ int NR,

P is related to Q, and Q is related to R.

Proof. We will show that

A := P1,

V := int NR1

satisfy assumptions of Lemma 3.1. From properties (a) and (c) in the definition
of an index pair:

Inv −N ⊂ int NP1 ⊂ P1 and F (P1) ∩N ⊂ P1,

and so assumption (3.1) is satisfied and V is a neighborhood of A, because
of (3.24). Therefore, from Lemma 3.1 we obtain that there exists a compact
neighborhood Z of P1 in N such that

(3.26) F+
N (Z) ⊂ int NR1.

Let us put

(3.27) Q1 := F+
N (Z).
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Note that from the definition of F+
N and from condition (3.26), the following

inclusions hold

(3.28) P1 ⊂ int NQ1 and Q1 ⊂ int NR1.

Similarly,
K := P2,

U := int NR2

satisfy assumptions of Lemma 3.2. As a consequence of properties (a) and (c)
in the definition of an index pair, we obtain

Inv +N ∩ P2 = ∅ and F (P2) ∩N ⊂ P2,

and assumption (3.10) is satisfied. Moreover, U is a neighborhood of K by
the assumption (3.24). Therefore, by applying Lemma 3.2 we infer that there
exists a compact neighborhood Z ′ of P2 in N such that

(3.29) F+
N (Z ′) ⊂ int NR2.

By putting

(3.30) Q2 := F+
N (Z ′)

we immediately conclude that

(3.31) P2 ⊂ int NQ2 and Q2 ⊂ int NR2,

as a consequence of the definition of F+
N and condition (3.29).

It remains to show that Q = (Q1, Q2) defined by formulas (3.27) and (3.30)
is an index pair, P is related to Q and Q is related to R.

Let us first check that Q is an index pair.
• Condition (a) in the definition of an index pair follows from the definition

of F+
N .
• Let us check condition (c). From the assumption that P is an index pair

in an isolating neighborhood N and from (3.28), we obtain that

(3.32) Inv −N ⊂ int NP1 ⊂ P1 ⊂ int NQ1.

From condition (c) for the index pair R and from the inclusion Q2 ⊂ R2, which
follows from (3.31), we obtain that

(3.33) Inv +N ⊂ N \R2 ⊂ N \Q2.

Concluding, formulas (3.32) and (3.33) give condition (c) in the definition of
an index pair for Q.

• Let us now prove condition (b) in the definition of an index pair and the
inclusion

(3.34) Q1 \Q2 ⊂ int N.
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The second inclusion in (3.28) and the first inclusion in (3.31) imply that

(3.35) Q1 \Q2 ⊂ R1 \Q2 ⊂ R1 \ P2.

From the assumption that the pair P is related to R there follows that

(3.36) R1 \ P2 ⊂ int N and F (R1 \ P2) ⊂ int N.

As a consequence of (3.35) and (3.36), we obtain property (b) and (3.34) for a
pair Q.

• Let us show that both Q1 and Q2 are compact.
Conditions (3.26) and (3.32) imply that

Inv −N ⊂ Z ⊂ N,

and so the assumptions of Lemma 2.4 (b) are satisfied, therefore, Q1 is a
compact set.

From (3.33) we know that Inv +N ⊂ N \ Q2 ⊂ N \ Z ′, because Z ′ ⊂ Q2

by definition (3.30); thence

Inv +N ∩ Z ′ = ∅,

and Z ′ is compact, and therefore, as a conclusion from Lemma 2.5, the set Q2

is compact.
Concluding, we proved that

Q ∈ IP (N,F ).

To complete the proof it is enough to show that P is related to Q and Q
is related to R. Due to (3.28) and (3.31), we know that

(3.37) P ⊂ Q ⊂ R,

and the assumption that the pair P is related to R implies that

R1 \ P2 ⊂ int N ∩ F−1(int N).

Therefore, using (3.37), we obtain that

(3.38) Q1 \ P2 ⊂ R1 \ P2 ⊂ int N ∩ F−1(int N),

and thus P is related to Q. Moreover,

(3.39) R1 \Q2 ⊂ R1 \ P2 ⊂ int N ∩ F−1(int N),

and as a consequence Q is related to R.

The following simple fact will be used in the proof of the next theorem.

Lemma 3.7. ([2], Lemma 4.2) For a compact subset N ⊂ X, the maps λ →
Inv +

Fλ
N , λ → Inv −

Fλ
N and λ → Inv Fλ

N , for λ ∈ I are upper semicontinuous.
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Theorem 3.8. Consider F ∈ USCc(X×[0, 1], X) and by Fν ∈ USCc(X, X)
for ν ∈ [0, 1] denote the following multivalued map

(3.40) Fν(x) := F (x, ν), for x ∈ X.

Let N be an isolating neighborhood for Fν , for some parameter ν ∈ [0, 1].
Moreover, assume that P ν and Qν are index pairs for Inv Fν N such that P ν

is related to Qν and

(3.41) P ν ⊂ int NQν .

Then there exists a neighborhood Λ0 of ν in [0, 1] such that for any λ ∈ Λ0

there exists an index pair P λ for Inv Fλ
N such that

P ν ⊂ P λ ⊂ Qν .

Proof. We will show that for λ sufficiently close to ν a pair of sets

(3.42) P λ := (Fλ)+N (P ν)

is an index pair which satisfies requirements of the theorem.
• We first show that for λ sufficiently close to ν the following condition

holds:

(3.43) P ν
1 ⊂ P λ

1 ⊂ Qν
1 .

The first inclusion is obvious. To prove the second inclusion, consider a com-
pact set

(3.44) K := N \ int NQν
1 ,

for which we will show that

(3.45) (Fν)−N (K) ∩ P ν
1 = ∅.

Let us assume that for some x ∈ K there exists y ∈ (Fν)−N (x)∩ P ν
1 . Then,

for some n ≥ 0,

(3.46) x ∈ (Fν)N,n(y) ⊂ (Fν)N,n(P ν
1 ) ⊂ P ν

1 ,

where the last inclusion is a consequence of property (a) in the definition of an
index pair. Formula (3.46) is in contradiction with the following fact

(3.47) x ∈ K = N \ int NQν
1 ⊂ N \ P ν

1 ,

and so we have proved (3.45).
From Theorem 3.1 (a) in [7] or Theorem 4.1 (a) in [2], we know that there

exists a compact neighborhood ∆ of ν in [0, 1] such that

(3.48) N is an isolating neighborhood for Fλ, for all λ ∈ ∆.
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From Lemma 4.2 in [2] and property (c) in the definition of an index pair for
Qν by diminishing if needed the neighborhood ∆, we obtain

(3.49) Inv −
Fλ

N ⊂ int NQν
1 , for λ ∈ ∆.

Let us define a map

(3.50) G : X ×∆ 3 (x, λ) ( Fλ(x)× {λ} ⊂ X ×∆;

it is upper semicontinuous. It is easy to see that

(3.51) M := N ×∆

is an isolating neighborhood of the invariant set

Inv GM =
⋃
{Inv Fλ

N × {λ} : λ ∈ ∆}.

From (3.49) we know that K ⊂ N \ Inv −
Fλ

N for λ ∈ ∆. Moreover, from (3.51)
we know that

(3.52) M \ Inv −
GM =

⋃
{(N \ Inv −

Fλ
N)× {λ} : λ ∈ ∆},

therefore,

(3.53) K ×∆ ⊂ M \ Inv −
GM.

Notice that G−
M can be expressed by the formula

(3.54) G−
M (x, λ) = (Fλ × idI)−N×∆(x, λ) = (Fλ)−N (x)× {λ},

where (x, λ) ∈ X ×∆.
For any x ∈ K, the following equality holds due to (3.54) and (3.45):

(3.55) G−
M (x, ν) ∩ (P ν

1 ×∆) = ((Fν)−N (x) ∩ P ν
1 )× {ν} = ∅.

From uppersemicontinuity of

G−
M |

M\Inv −
GM

: M \ Inv −
GM ( M

(see Conclusion 4.2 in [6]) and (3.55), for any x ∈ K, we can find Vx, an open
neighborhood of x in N \ Inv −

Fλ
N , and ∆x, an open neighborhood of ν in ∆,

such that

(3.56) G−
M (y, λ) ∩ (P ν

1 ×∆) = ∅, for any (y, λ) ∈ Vx ×∆x.

By compactness of K, there exist x1, . . . , xn such that K ⊂ Vx1 ∪ . . .∪ Vxn

and from (3.56) and (3.54), we obtain

(3.57) (Fλ)−N (y) ∩ P ν
1 = ∅, for (y, λ) ∈ K ×∆0,

where ∆0 := ∆x1 ∩ . . . ∩∆xn . Obviously, condition (3.57) is equivalent to

(3.58) K ∩ (Fλ)+N (x) = ∅, for (x, λ) ∈ P ν
1 ×∆0.
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From definition (3.42), from (3.58) and (3.44), we obtain

P λ
1 = (Fλ)+N (P ν

1 ) ⊂ N \K = int NQν
1 ⊂ Qν

1 , for λ ∈ ∆0.

Thus we proved that P ν
1 ⊂ P λ

1 ⊂ Qν
1 , for λ close to ν.

• Let us proceed to the proof of the second inclusion. We want to show
that for λ sufficiently close to ν

(3.59) P ν
2 ⊂ P λ

2 ⊂ Qν
2 .

As in the previous case, inclusion P ν
2 ⊂ P λ

2 is obvious. To prove the right-hand
side inclusion, first notice that

(3.60) (Fν)+N (x) ⊂ P ν
2 , for x ∈ P ν

2 .

Assumption (3.41) and (3.60) imply that

(3.61) (Fν)+N (P ν
2 ) ⊂ int NQν

2 .

It is easy to check that

(3.62) G+
M (x, λ) = (Fλ × idI)+N×∆(x, λ) = (Fλ)+N (x)× {λ},

for (x, λ) ∈ X ×∆.
Due to the upper semicontinuity of

G+
M |

M\Inv +
GM

: M \ Inv +
GM ( M

and (3.61), as previously, for any x ∈ P ν
2 we can find V ′

x, an open neighborhood
of x in N \ Inv +

Fλ
N , and ∆′

x, an open neighborhood of ν in ∆, such that

(3.63) G+
M (y, λ) ⊂ int NQν

2 ×∆′
x, for any (y, λ) ∈ V ′

x ×∆′
x.

By the compactness of P ν
2 , there exist x1, . . . , xm such that P ν

2 ⊂ V ′
x1
∪. . .∪V ′

xm
;

by (3.62) and (3.63)

(Fλ)+N (y) ⊂ int NQν
2 ⊂ Qν

2 , for (y, λ) ∈ P ν
2 ×∆1,

where ∆1 := ∆′
x1
∩ . . . ∩∆′

xn
, which completes the proof of (3.59).

Let us prove now that P λ is an index pair.
• We first show that P λ

1 and P λ
2 are compact.

From condition (c) in the definition of an index pair and Lemma 3.7, we
infer that

Inv −
Fλ

N ⊂ int NP ν
1 ⊂ P ν

1 ⊂ N, for λ close to ν,

and P ν
1 is compact, therefore, by Lemma 2.4 (b) the set

P λ
1 = (Fλ)+N (P ν

1 ) is compact.

From condition (c) in the definition of an index pair and Lemma 3.7, we
infer that

Inv +
Fλ

N ⊂ N \ P ν
2 , for λ close to ν,
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therefore, Inv +
Fλ

N ∩ P ν
2 = ∅ and P ν

2 ; thus from Lemma 2.5 (b) we infer that
the map (Fλ)+N is upper semicontinuous on the set P ν

2 and has compact values
hence the set

P λ
2 = (Fλ)+N (P ν

2 ) is compact.

• To prove condition (a) in the definition of an index pair, it is enough to
notice that for i = 1, 2 there is

Fλ(P λ
i ) ∩N = Fλ((Fλ)+N (P ν

i )) ∩N ⊂ (Fλ)+N (P ν
i ) = P λ

i .

• We want to show that

P λ
1 \ P λ

2 ⊂ int N,

and that condition (b) in the definition of an index pair is satisfied.
Since

P λ
1 ⊂ Qν

1 and P ν
2 ⊂ P λ

2 ,

then

P λ
1 \ P λ

2 ⊂ Qν
1 \ P ν

2 ,

and the assumption that P ν is related to Qν implies that

Qν
1 \ P ν

2 ⊂ int N ∩ F−1
ν (int N),

thus

P λ
1 \ P λ

2 ⊂ int N and Fν(P λ
1 \ P λ

2 ) ⊂ int N.

Because F : X × I ( X is upper semicontinuous, also

Fλ(P λ
1 \ P λ

2 ) ⊂ int N,

for λ close to ν.
• In order to prove condition (c) in the definition of an index pair, it is

enough to notice that using property (c) for an index pair P ν , Lemma 3.7 and
(3.43), we obtain

Inv −
Fλ

N ⊂ int NP ν
1 ⊂ int NP λ

1 ,

for λ sufficiently close to ν. Similarly, exploiting property (c) for an index pair
Qν , Lemma 3.7 and (3.59), we obtain

Inv +
Fλ

N ⊂ N \Qν
2 ⊂ N \ P λ

2 ,

for λ close to ν. This completes the proof.
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