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INFINITE SYSTEMS OF HYPERBOLIC

DIFFERENTIAL-FUNCTIONAL INEQUALITIES

by Danuta Jaruszewska-Walczak

Abstract. The paper deals with systems of hyperbolic differential-functio-
nal inequalities related to initial problem on the generalized Haar pyramid
for equations

∂tzλ(t, x) = fλ(t, x, z, ∂xzλ(t, x)), λ ∈ Λ,

where (t, x) = (t, x1, . . . , xn), z = {zλ}λ∈Λ and Λ is a compact set of indices.
A theorem on strong differential-functional inequalities is the main result
of the paper. Extremal solutions of initial problems for infinite systems of
ordinary differential-functional equations are used in the proof of a theorem
on weak partial differential-functional inequalities.

1. Introduction. The classical theory of partial differential inequalities
has been developed extensively in monographs [6], [7] and [8]. As it is well
known, they apply in the investigation of different problems. The basic ex-
amples of such questions are: estimates of solutions of partial equations, es-
timates of the domain of the existence of solutions, criterion of uniqueness,
estimates of the error of approximate solutions. Moreover, discrete versions
of differential inequalities are used to prove the convergence of approximate
methods. Differential-functional inequalities play a similar role in the the-
ory of differential-functional equations with partial derivatives. Monograph
[3] contains an exposition of hyperbolic differential-functional inequalities and
their applications.

The aim of this paper is to contribute to the theory of first order partial
differential-functional inequalities. We deal with infinite systems of hyperbolic
differential-functional inequalities related to initial problems on the Haar pyra-
mid.
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Our results extend the results of paper [4] where comparison theorems for
infinite systems were presented. Existence results for initial problems can be
found in [5].

Infinite systems of parabolic differential-functional equations were investi-
gated in [1] and [2].

For any metric spaces X and Y , by C(X, Y ) we denote the class of all
continuous functions from X into Y .

Now we formulate the problem. Let a > 0, r0 ∈ R+, R+ = [0,+∞) and
let the functions α, β : [0, a) → Rn, α = (α1, . . . , αn), β = (β1, . . . , βn) and
α̃, β̃ : [0, a) → Rn, α̃ = (α̃1, . . . , α̃n), β̃ = (β̃1, . . . , β̃n) satisfy the conditions:

(i) α and β are of class C1 on [0, a) and α(t) < β(t) for t ∈ [0, a),
(ii) α̃, β̃ ∈ C([−r0, 0], Rn) and α̃(t) ≤ β̃(t) for t ∈ [−r0, 0],
(iii) β(0) = β̃(0) = b where b = (b1, . . . , bn), bi > 0 for 1 ≤ i ≤ n and

α(0) = α̃(0) = −b.
Let E be the generalized Haar pyramid

E =
{

(t, x) ∈ R1+n : t ∈ (0, a), x = (x1, . . . , xn) ∈ [α(t), β(t)]
}

and

E0 =
{

(t, x) ∈ R1+n : t ∈ [−r0, 0], x ∈ [α̃(t), ˜β(t)]
}

, ∂0E = ∂E ∩ ((0, a)×Rn),

where ∂E is the boundary of E.
Write St = [α̃(t), β̃(t)] for t ∈ [−r0, 0] and St = [α(t), β(t)] for t ∈ [0, a).

Put Et = (E0 ∪ E) ∩ ([−r0, t]×Rn) for t ∈ [−r0, a). Let Λ ⊂ R be a compact
set of indices with an arbitrary number of elements and

X =
{

p = {pλ}λ∈Λ : p ∈ C(Λ, R)
}

.

For p, p̄ ∈ X , p = {pλ}λ∈Λ, p̄ = {p̄λ}λ∈Λ, we write p < p̄ if pλ < p̄λ for λ ∈ Λ.
We define the relation p ≤ p̄ in the similar way.

Write Γ = E × C(E0 ∪ E,X )×Rn and suppose that

f = {fλ}λ∈Λ, fλ : Γ → R, ϕ = {ϕλ}λ∈Λ, ϕλ : E0 → R,

are given functions. We consider the initial value problem

∂tzλ(t, x) = fλ(t, x, z, ∂xzλ(t, x)), λ ∈ Λ,(1)
z(t, x) = ϕ(t, x), (t, x) ∈ E0,(2)

where z = {zλ}λ∈Λ and ∂xzλ(t, x) = (∂x1zλ(t, x), . . . , ∂xnzλ(t, x)).
Let F [z] = {Fλ[z]}λ∈Λ be the Nemytski operator corresponding to (1), i.e.

Fλ[z](t, x) = fλ(t, x, z, ∂xzλ(t, x)), λ ∈ Λ.

A function u : E0 ∪E → X , u = {uλ}λ∈Λ, will be called a function of class
D if
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(i) the function ū : (E0 ∪ E) × Λ → R defined by ū(t, x, λ) = uλ(t, x) is
continuous on (E0 ∪ E)× Λ,

(ii) for each λ ∈ Λ, the function uλ has the total differential on ∂0E and
partial derivatives of first order in an interior of E.

We will say that the function f = {fλ}λ∈Λ, fλ : Γ → R, satisfies the
Volterra condition if for each (t, x) ∈ E, q ∈ Rn and for z, z̄ ∈ C(E0 ∪ E,X )
such that z(τ, s) = z̄(τ, s) for (τ, s) ∈ Et there is f(t, x, z, q) = f(t, x, z̄, q).

We will say that the function f = {fλ}λ∈Λ, fλ : Γ → R, satisfies the
monotonicity condition W+ if for λ ∈ Λ, (t, x) ∈ E, q ∈ Rn, z, z̄ ∈ C(E0 ∪
E,X ) such that z(τ, s) ≤ z̄(τ, s), (τ, s) ∈ Et and zλ(t, x) = z̄λ(t, x) there is
fλ(t, x, z, q) ≤ fλ(t, x, z̄, q).

Remark 1. Let a function f̃ = {f̃λ}λ∈Λ, where

f̃λ : E ×X × C(E0 ∪ E,X )×Rn → R

in variables (t, x, p, z, q), p = {pλ}λ∈Λ, be given. We assume that for λ ∈ Λ
the function f̃λ is non-decreasing with respect to the functional variable z and
non-decreasing with respect to each pµ, µ ∈ Λ and µ 6= λ. The function
f = {fλ}λ∈Λ, fλ : Γ → R given by

f(t, x, z, q) = f̃(t, x, z(t, x), z, q)

satisfies the monotonicity condition W+.

2. Strong differential-functional inequalities. For each (t, x) ∈ E,
there exist (possibly empty) sets of integers I0[t, x], I+[t, x], I−[t, x] such that

I+[t, x] ∩ I−[t, x] = ∅, I0[t, x] ∪ I+[t, x] ∪ I−[t, x] = {1, . . . , n}
and xi = βi(t) for i ∈ I+[t, x], xi = αi(t) for i ∈ I−[t, x], αi(t) < xi < βi(t) for
i ∈ I0[t, x].

Theorem 1. Suppose that
1) a function f = {fλ}λ∈Λ, fλ : Γ → R, in the variables (t, x, z, q), q =

(q1, . . . , qn), satisfies the Volterra condition and the monotonicity condition
W+,

2) for (t, x, z, q) ∈ Γ, q̄ ∈ Rn such that qj ≤ q̄j for j ∈ I−[t, x], qj ≥ q̄j for
j ∈ I+[t, x] and qj = q̄j for j ∈ I0[t, x] there is

fλ(t, x, z, q)− fλ(t, x, z, q̄) +
∑

j∈I−[t,x]

α′j(t)(qj − q̄j) +
∑

j∈I+[t,x]

β′j(t)(qj − q̄j) ≤ 0,

where λ ∈ Λ,
3) functions u, v : E0 ∪E → X , u = {uλ}λ∈Λ, v = {vλ}λ∈Λ, are of class D

and
u(t, x) ≤ v(t, x), (t, x) ∈ E0, u(0, x) < v(0, x), x ∈ [−b, b],
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4) the differential-functional inequality

∂tu(t, x)− F [u](t, x) < ∂tv(t, x)− F [v](t, x)

holds on E.
Under these assumptions,

(3) u(t, x) < v(t, x) for (t, x) ∈ E.

Proof. We define the function r : E0 ∪E → X , r = {rλ}λ∈Λ, by r(t, x) =
u(t, x)− v(t, x) and the function r̄ : (E0 ∪E)× Λ → R by r̄(t, x, λ) = rλ(t, x).
We prove that

(4) r(t, x) < 0 for (t, x) ∈ E.

Let J denote the set

J = {t ∈ (0, a) : r(τ, x) < 0 for (τ, x) ∈ E and τ ≤ t}.
From assumption 3) it follows that

r̄(0, x, λ) < 0

for every x ∈ [−b, b] and λ ∈ Λ. The function r̄ is continuous on (E0 ∪E)× Λ
thus there exists t ∈ (0, a) such that for every (τ, x, λ) ∈ E ×Λ, τ ≤ t, there is
r̄(τ, x, λ)) < 0 and the set J is not empty.

Let us put t∗ = supJ . We prove that t∗ = a.
Suppose that it is not true and 0 < t∗ < a. Then r̄(τ, x, λ) < 0 for

(τ, x, λ) ∈ E × Λ, τ < t∗, r̄(t∗, x, λ) ≤ 0 for (x, λ) ∈ St∗ × Λ and there is a
sequence of points (xk, λk) ∈ St∗×Λ such that lim

k→∞
r̄(t∗, xk, λk) = 0. The points

(xk, λk) are in a compact set, thus there exists lim
m→∞

(xkm , λkm) = (x∗, λ∗),

(x∗, λ∗) ∈ St∗ × Λ, for some subsequence. By the continuity of the function r̄,
we obtain r̄(t∗, x∗, λ∗) = 0 or equivalently rλ∗(t∗, x∗) = 0.

There is ∂xjrλ∗(t∗, x∗) ≥ 0 for j ∈ I+[t∗, x∗], ∂xjrλ∗(t∗, x∗) ≤ 0 for j ∈
I−[t∗, x∗] and ∂xjrλ∗(t∗, x∗) = 0 for j ∈ I0[t∗, x∗].

Define η : [0, t∗] → R, η = (η1, . . . , ηn) in the following way:

ηj(t) = αj(t) for j ∈ I−[t∗, x∗],

ηj(t) = βj(t) for j ∈ I+[t∗, x∗],
ηj(t) = x∗j for j ∈ I0[t∗, x∗].

Put γ(t) = rλ∗(t, η(t)). The function γ attains its maximum at t = t∗. Thus,
γ′(t∗) ≥ 0 or

∂trλ∗(t∗, x∗)+
∑

j∈I−[t∗,x∗]

α′j(t
∗)∂xjrλ∗(t∗, x∗)

+
∑

j∈I+[t∗,x∗]

β′j(t
∗)∂xjrλ∗(t∗, x∗) ≥ 0.

(5)
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From the assumptions we deduce that

∂trλ∗(t∗, x∗) = ∂t(uλ∗(t∗, x∗)− vλ∗(t∗, x∗)) <

< Fλ∗ [u](t∗, x∗)− Fλ∗ [v](t∗, x∗) ≤

≤ fλ∗(t∗, x∗, v, ∂xuλ∗(t∗, x∗))− fλ∗(t∗, x∗, v, ∂xvλ∗(t∗, x∗)) ≤

≤ −
∑

j∈I−[t∗,x∗]

α′j(t
∗)∂xjrλ∗(t∗, x∗)−

∑
j∈I+[t∗,x∗]

β′j(t
∗)∂xjrλ∗(t∗, x∗),

which contradicts (5). Thus inequality (4) holds and the assertion follows.

Remark 2. It is enough to assume that the differential-functional inequal-
ities in assumption 4) of Theorem 1 hold for (t, x) ∈ ∆, where
∆ =

{
(t∗, x∗) ∈ E : u(t, x) ≤ v(t, x) on Et∗ and there is λ∗ ∈ Λ such that

uλ∗(t∗, x∗) = vλ∗(t∗, x∗)
}

.

Remark 3. In Theorem 1, instead of assumption 4), we may assume that
for λ ∈ Λ

∂xuλ(t, x) ≤ Fλ[u](t, x) and ∂xvλ(t, x) ≥ Fλ[v](t, x),

where (t, x) ∈ E and for each (t, x) at most one of the above inequalities turns
out to be an equality.

Remark 4. Let

E0 = [−r0, 0]× [−b, b]

and

E =
{

(t, x) : t ∈ (0, a), −b + Mt ≤ x ≤ b−Mt
}

,

where M = (M1, . . . ,Mn) ∈ Rn
+. We assume that b − aM > 0. If a function

f = {fλ}λ∈Λ, fλ : E×C(E0∪E,X )×Rn → R, satisfies the Lipschitz condition

|fλ(t, x, z, q)− fλ(t, x, z, q̄)| ≤
n∑

j=1

Mj |qj − q̄j |, λ ∈ Λ

on E × C(E0 ∪ E,X ) × Rn, then assumption 2) of Theorem 1 holds with
α(t) = −b + Mt and β(t) = b−Mt.
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3. Comparison problems. Put X+ =
{

p ∈ X : p = {pλ}λ∈Λ, pλ ≥

0, λ ∈ Λ
}

and Γ̃ = (0, a)× C([−r0, a),X+).

Assumption H[σ]. Suppose that σ = {σλ}λ∈Λ, σλ : Γ̃ → R+ and
1) the function σ̄ : Γ̃×Λ → R+ given by σ̄(t, w, λ) = σλ(t, w) is continuous

on Γ̃× Λ,
2) σ satisfies the Volterra condition and the monotonicity condition W+,
3) there is L ∈ X+ such that

σ(t, w) ≤ L on Γ̃.

A function ϕ : [−r0, a) → X , ϕ = {ϕλ}λ∈Λ, will be called a function of
class D0 if the function ϕ̄ : [−r0, a) × Λ → R defined by ϕ̄(t, λ) = ϕλ(t) is
continuous on [−r0, a)× Λ.

Lemma 1. Suppose that Assumption H[σ] is satisfied and a function η :
[−r0, 0] → X+ is of class D0. Then on [−r0, a) there exists the maximum
solution ω̃ = {ω̃λ}λ∈Λ of the problem

w′(t) = σ(t, w)(6)
w(t) = η(t), t ∈ [−r0, 0].(7)

and ω̃ : [−r0, a) → X+ is of class D0. Moreover, if ϕ : [−r0, a) → X+ is of
class D0 and satisfies the differential-functional inequality

(8) D−ϕ(t) ≤ σ(t, ϕ)

and the initial estimate ϕ(t) ≤ η(t) holds for t ∈ [−r0, 0], then

ϕ(t) ≤ ω̃(t) for t ∈ (0, a).

Proof. Let ε > 0 be an arbitrary fixed number and let the same symbol ε
denote ε : Λ → R+, ε = {ελ}λ∈Λ, where ελ = ε, λ ∈ Λ. Consider the problem

w′(t) = σ(t, w) + ε,(9)
w(t) = η(t) + ε, t ∈ [−r0, 0].(10)

We will prove that on [−r0, a) there exists the solution ω(·, ε) = {ωλ(·, ε)}λ∈Λ

of problem (9), (10) and it is of class D0. Let m ≥ 1 be a natural number and
let h = a

m . Define the function ω(m) : [−r0, a) → X+, ω(m) = {ω(m)
λ }λ∈Λ in the

following way:

ω(m)(t) = η(t) + ε, t ∈ [−r0, 0],

ω(m)(t) = η(0) + ε, t ∈ [0, h],(11)

ω(m)(t) = η(0) + ε +
∫ t−h

0

(
σ(s, ω(m)) + ε

)
ds, t ∈ [h, a).
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The functions ω̄(m)(t, λ) = ω
(m)
λ (t), (t, λ) ∈ [−r0, a)× Λ form the class of uni-

formly bounded and equicontinuous functions. Thus there exists a subsequence
uniformly convergent on [−r0, a)×Λ. Suppose that {ω(m)} is convergent. Then

ω(t, ε) = lim
m→+∞

ω(m)(t)

is a function of class D0. It follows from (11) that

ω(t, ε) = η(t) + ε, t ∈ [−r0, 0]

ω(t, ε) = η(0) + ε +
∫ t

0

(
σ(s, ω(·, ε)) + ε

)
ds, t ∈ [0, a).

Therefore ω(·, ε) is the solution of (9), (10).
Assume that ϕ : [−r0, a) → X+ is of class D0, satisfies inequality (8) and

ϕ(t) ≤ η(t), t ∈ [−r0, 0]. We prove that

(12) ϕ(t) < ω(t, ε), t ∈ [−r0, a).

The set
J = {t ∈ (0, a) : ϕ(τ) < ω(τ, ε), 0 ≤ τ ≤ t}

is nonempty. It is enough to prove that for t∗ = supJ there is t∗ = a. Suppose
that it is not true and t∗ < a. Then ϕλ(τ) < ωλ(τ, ε) for 0 ≤ τ < t∗,
λ ∈ Λ and there exists λ∗ ∈ Λ such that ϕλ(t∗) < ωλ(t∗, ε) for λ ∈ Λ and
ϕλ∗(t∗) = ωλ∗(t∗, ε). In this situation,

D−

(
ϕλ∗(t∗)− ωλ∗(t∗, ε)

)
≥ 0.

On the other hand, it follows from the assumptions that

D−

(
ϕλ∗(t∗)− ωλ∗(t∗, ε)

)
≤

≤ σλ∗(t∗, ϕ)− σλ∗(t∗, ω(·, ε))− ε ≤ −ε < 0.

The contradiction proves (12).
Now let the sequence {ε(k)} be such that ε(k+1) < ε(k) for each natural k

and lim
k→+∞

ε(k) = 0. It is easy to see that

ω(t, ε(k+1)) < ω(t, ε(k))

and there exists ω̃ : [−r0, a) → X+ of class D0 such that

ω̃(t) = lim
k→+∞

ω(t, ε(k)).

It follows from the relations

ω(t, ε(k)) = η(0) + ε(k) +
∫ t

0

(
σ(s, ω(·, ε(k))) + ε(k)

)
ds, t ∈ [0, a),

ω(t, ε(k)) = η(t) + ε(k), t ∈ [−r0, 0]
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that

ω̃(t) = η(0) +
∫ t

0
σ(s, ω̃)ds, t ∈ [0, a),

ω̃(t) = η(t), t ∈ [−r0, 0]
or that ω̃ is a solution of the problem (6), (7). Moreover, every other solution
ϕ : [−r0, a) → X+ of class D0 of (6), (7) satisfies

ϕ(t) < ω(t, ε(k)) ≤ ω̃(t), t ∈ [0, a).

Thus ω̃ is the maximum solution of problem (6), (7).
4. Weak differential-functional inequalities.
For a function z = {zλ}λ∈Λ, z ∈ C(E0 ∪ E,X ) and for t ∈ [−r0, a) let

V z = {Vλz}λ∈Λ where

(Vλz)(t) = max{|zλ(t, x)| : x ∈ St}.
The following property of V is important in our considerations.

Lemma 2. If z ∈ C(E0 ∪ E,X ) then

V z ∈ C([−r0, a),X+).

The lemma may be proved with use of methods developed in the proof of
Theorem 33.1 in [8].

Theorem 2. Suppose that Assumption H[σ] is satisfied and let ω(t) = 0,
t ∈ [−r0, a) be the unique solution of the problem w′(t) = σ(t, w), w(t) = 0
for t ∈ [−r0, 0]. We assume that

1) for z, z̄ ∈ C(E0 ∪ E,X ) such that z(τ, x) ≤ z̄(τ, x) on Et there is

f(t, x, z̄, q)− f(t, x, z, q) ≤ σ(t, V (z̄ − z)), (t, x, q) ∈ E ×Rn,

2) the function f satisfies the Volterra condition and monotonicity condi-
tion W+,

3) for (t, x, z, q) ∈ Γ, q̄ ∈ Rn such that qj ≤ q̄j for j ∈ I−[t, x], qj ≥ q̄j for
j ∈ I+[t, x] and qj = q̄j for j ∈ I0[t, x] there is

fλ(t, x, z, q)− fλ(t, x, z, q̄) +
∑

j∈I−[t,x]

α′j(t)(qj − q̄j) +
∑

j∈I+[t,x]

β′j(t)(qj − q̄j) ≤ 0,

where λ ∈ Λ,
4) functions u, v : E0 ∪E → X , u = {uλ}λ∈Λ, v = {vλ}λ∈Λ, are of class D

and
u(t, x) ≤ v(t, x), (t, x) ∈ E0,

5) the differential-functional inequality

∂tu(t, x)− F [u](t, x) ≤ ∂tv(t, x)− F [v](t, x)

holds on E.
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Under these assumptions

(13) u(t, x) ≤ v(t, x) for (t, x) ∈ E.

Proof. We consider the problem

w′λ(t) = σλ(t, w) + ε, λ ∈ Λ,(14)
wλ(t) = ε, t ∈ [−r0, 0], λ ∈ Λ,(15)

where ε ∈ R+ is chosen arbitrarily. From Lemma 1 it follows that on [−r0, a)
there exists the maximum solution ωε = {ωε

λ}λ∈Λ of (14), (15).
Define uε(t, x) = u(t, x)−ωε(t). It follows that uε(t, x) < v(t, x) on E0 and

∂tu
ε
λ(t, x)− Fλ[uε](t, x) =

= ∂tuλ(t, x)− Fλ[u](t, x)− σλ(t, ωε)− ε+

+fλ(t, x, u, ∂xuλ(t, x))− fλ(t, x, uε, ∂xuλ(t, x)) ≤

≤ ∂tuλ(t, x)− fλ(t, x, u, ∂xuλ(t, x))− σλ(t, ωε)− ε + σ(t, V (u− uε)) =

= ∂tuλ(t, x)− fλ(t, x, u, ∂xuλ(t, x))− ε <

< ∂tuλ(t, x)− fλ(t, x, u, ∂xuλ(t, x)) ≤ ∂tvλ(t, x)− fλ(t, x, v, ∂xvλ(t, x)).

It follows from Theorem 1 that

uε(t, x) < v(t, x) on E.

Since for each λ ∈ Λ the function ωε
λ : [−r0, a) → R is non-decreasing with

respect to ε, there is
lim
ε→0

ωε
λ(t) = 0

uniformly for t ∈ [−r0, a) and λ ∈ Λ. The proof is finished.

As an application of Theorem 2, the following uniqueness result can be
derived.

Lemma 3. Suppose conditions 1)–3) of Theorem 2 hold.
Then Cauchy problem (1), (2) admits at most one solution of class D on

E0 ∪ E.

Proof. For two solutions z and z̄ of (1), (2), there is

∂tz(t, x)− F [z](t, x) ≤ ∂tz̄(t, x)− F [z̄](t, x)

and
∂tz̄(t, x)− F [z̄](t, x) ≤ ∂tz(t, x)− F [z](t, x).

Thus z(t, x) = z̄(t, x) on E0 ∪ E.
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