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Dedicated to my husband Maciej.

Abstract. This paper was inspired by the work of B. Beauzamy and
S. Guerre [3], who gave a new version of the strong law of large numbers tak-
ing a generalization of Cesaro averages and then considering independent
random variables with values in Lp spaces. We first investigate analogues
of this theorem with Cesaro-type averages given by Orlicz functions and
then we modify the random variables so as to place ourselves in a modular
space.

1. Introduction. In [3] B. Beauzamy and S. Guerre introduced a summa-
tion process generalizing the Cesaro averages, which permitted them to obtain
new versions of the strong law of large numbers, also for random variables with
values in Lp spaces.

Our aim is to investigate under what kind of hypothesis one can obtain
a strong law of large numbers with Cesaro-type averages given by an Orlicz
function or a sequence of Orlicz functions. Then we turn to considering random
variables defining functions in a uniformly convex Banach space of measurable
functions. Finally, with reference to [9], we consider the problem in modular
spaces.

For more information about geometrical properties of Musielak–Orlicz spa-
ces see e.g. [4], [5], [7], [8]. One may found notions related to probability
theory in Banach spaces in [11].
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Throughout this paper (Ω, A, P ) denotes a probability space and X1(ω),
X2(ω), . . . are independent and identically distributed (iid, for short) random
variables. Unless stated otherwise, they are supposed to take values in R.

Any function Φ: R+ −→ R+ which is strictly convex, differentiable and
such that Φ(0) = 0 will be called an Orlicz function.

Given such a function, for t ∈ R and ω ∈ Ω, we can define a Cesaro-type
average of the form

ϕn(t, ω) :=
1
n

n∑
k=1

Φ(| t−Xk(ω) |).

Most of the time, we omit the variable ω and write simply ϕn(t) instead of
ϕn(t, ω) as long as it does not lead to confusion. This function ϕn(t) may be
regarded as a kind of distance from the point (X1(ω), . . . , Xn(ω)) ∈ Rn to the
diagonal.

Observe that whenever ω is fixed, ϕn(t) is a strictly convex function such
that there is the unique point Sn(ω) in which ϕn(t) attains its minimum. This
obviously defines a new random variable. It has analogous properties to these
described in [3].

Remark now that if we assume that the expectation

E(Φ′(| Xk(ω) |) sgn(Xk(ω))) = 0,

then

(∗) ∂

∂t
ϕn(t, ω)

∣∣
t=0

= ϕ′n(0, ω) =
1
n

n∑
k=1

Φ′(| Xk(ω) |) sgn(Xk(ω)) 1−−→ 0,

applying the standard (Khintchine’s) strong law of large numbers (here the ar-
row 1−−→ denotes convergence with probability 1, i.e. almost surely). Indeed,
in the strong law of large numbers there is P1+...+Pn

n
1−−→ 0 for iid random vari-

ables Pn such that E(Pn) = 0. It is clear that Φ′(|Xn(ω)|)sgn(Xn(ω)) satisfy
these assumptions.

On the other hand, from the convexity of ϕn(t) we obtain

(∗∗) 0 ≤ ϕn(0, ω)− ϕn(Sn(ω), ω) ≤| Sn(ω) | · | ϕ′n(0, ω) |,

(since the graph of a convex function is contained in the upper half plane
delimited by any of its supporting lines).

We finally define

δM (ε) := inf
{

1−
2Φ(x+y

2 )
Φ(x) + Φ(y)

; x, y ∈ R+, x, y ≤M, | x− y |≥ ε

}
.
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Since Φ is strictly convex, there is Φ(x+y
2 ) < Φ(x)+Φ(y)

2 , and so 2Φ(x+y
2

)

Φ(x)+Φ(y) < 1.
Thus, δM (ε) > 0, since the infimum is taken on a compact set.

The inequality 1− 2Φ(x+y
2

)

Φ(x)+Φ(y) ≥ δM (ε) is obvious and it is equivalent to

(∗∗∗) Φ
(
x+ y

2

)
≤ 1

2
(1− δM (ε))(Φ(x) + Φ(y)),

for x, y ∈ R+ such that x, y ≤M and |x− y| ≥ ε.

2. Strong law of large numbers for Orlicz functions and for mod-
ulars. We maintain the notations introduced in the first section and we begin
with the following easy lemma:

Lemma 2.1. let Φ: R+ → R+ be a convex function such that Φ(0) = 0.
Then for all t ≥ 0 and λ ≥ 1 there is Φ(λt) ≥ λΦ(t).

Proof. By the convexity of Φ,

Φ(t) = Φ
(

1
λ

(λt)
)
≤

(
1− 1

λ

)
Φ(0) +

1
λ

Φ(λt),

which gives the result.

Now we turn to proving the following lemma.

Lemma 2.2. Suppose that the variables X1(ω), X2(ω), . . . are pointwise
bounded. Then

2δM (| Sn(ω) |)Φ
(∣∣∣∣Sn(ω)

2

∣∣∣∣) ≤ ϕn(0)− ϕn(Sn(ω)) ≤| ϕ′n(0) || Sn(ω) |,

for a well-chosen M = M(ω) > 0.

Proof. Fix ω ∈ Ω, n ∈ N and put (m1, . . . ,mn) := (X1(ω), . . . , Xn(ω)) ∈
Rn. Let s denote the minimum point of ϕn(t) = 1

n

∑n
j=1 Φ(|t−mj |) and suppose

that
M > max{|s−m1|, . . . , |s−mn|, |m1|, . . . , |mn|}.

Then by (∗∗∗) the following holds for all t small enough:

Φ
(∣∣∣∣s+ t

2
−mj

∣∣∣∣) ≤ 1
2
(1− δM (| t− s |))(Φ(|s−mj |) + Φ(|t−mj |)).

Since the latter is equal to
1
2
(Φ(|s−mj |) + Φ(|t−mj |))−

1
2
δM (| t− s |)(Φ(|s−mj |) + Φ(|t−mj |)),

by the convexity of Φ we obtain

Φ
(∣∣∣∣s+ t

2
−mj

∣∣∣∣) ≤ Φ(|s−mj |) + Φ(|t−mj |)
2

− δM (| t− s |)Φ
(∣∣∣∣ t− s

2

∣∣∣∣).
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Thence (remember that s is the minimum point)
n∑

j=1

Φ(|s−mj |) ≤
n∑

j=1

Φ
(∣∣∣∣s+ t

2
−mj

∣∣∣∣)

≤
n∑

j=1

Φ(|s−mj |)
2

+
n∑

j=1

Φ(|t−mj |)
2

− nδM (| t− s |)Φ
(∣∣∣∣ t− s

2

∣∣∣∣).
Dividing by n we get

1
2
ϕn(s) ≤ 1

2
ϕn(t)− δM (| t− s |)Φ

(∣∣∣∣ t− s

2

∣∣∣∣),
whence

ϕn(t)− ϕn(s) ≥ 2δM (| t− s |)Φ
(∣∣∣∣ t− s

2

∣∣∣∣).
Since s = Sn(ω), for t := 0 there is

ϕn(0)− ϕn(Sn(ω)) ≥ 2δM (| Sn(ω) |)Φ
(∣∣∣∣Sn(ω)

2

∣∣∣∣),
which combined with (∗) ends the proof.

This lemma yields the following counterpart of one of the Beauzamy–
Guerre results:

Theorem 2.3. If Φ : R+ −→ R+ is an Orlicz function and

E(Φ′(| Xk(ω) |) sgn(Xk(ω))) = 0

for k=1, 2, . . . , and if the iid variables X1(ω), X2(ω), . . . are pointwise bounded,
then for the minimum point Sn(ω) of ϕn(t, ω) = 1

n

∑n
k=1 Φ(| t−Xk(ω) |), there

is Sn(ω) 1−−→ 0.

Proof. The statement follows directly from the inequalities which we have
just obtained:

2δM (| Sn(ω) |)Φ
(∣∣∣∣Sn(ω)

2

∣∣∣∣) ≤ ϕn(0)− ϕn(Sn(ω)) ≤| ϕ′n(0) || Sn(ω) | .

Indeed,
2δM (| Sn(ω) |)Φ

(∣∣Sn(ω)
2

∣∣)
| Sn(ω) |

≤| ϕ′n(0, ω) | 1−−→ 0,

in view of (∗).
Suppose Sn(ω) does not converge to 0 with probability one and set

D := {ω ∈ Ω; Sn(ω) 6→ 0}.
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Then D is of a positive measure and for each ω ∈ D we can find d = d(ω) > 0
and a subsequence {Snk

(ω)} (with k = k(ω)) such that | Snk
(ω) |≥ d > 0.

Then by the convexity of Φ (cf. Lemma 2.1)

|ϕ′nk
(0, ω)| ≥

2δM (| Snk
(ω) |)Φ

( |Snk
(ω)|

2

)
| Snk

(ω) |

=
2δM (| Snk

(ω) |)Φ
( |Snk

(ω)|
d

d
2

)
| Snk

(ω) |

≥
2δM (| Snk

(ω) |) |Snk
(ω)|

d Φ(d
2)

| Snk
(ω) |

=
2δM (| Snk

(ω) |)Φ(d
2)

d

≥
2δM (d)Φ(d

2)
d

> 0.

Hence ϕn(0, ω) 6→ 0 on D, which leads to a contradiction.

If we drop the boundedness condition in the last theorem, we have to
assume that the numbers

δ(ε) := inf
{

1−
2Φ(x+y

2 )
Φ(x) + Φ(y)

; | x− y |≥ ε, x, y ∈ R+

}
are strictly positive for all ε small enough (hence for all ε), which is true for
uniformly convex functions. Then the following theorem holds.

Theorem 2.4. Let Φ be an Orlicz function and X1(ω), X2(ω), . . . a se-
quence of iid random variables such that

E(Φ′(| Xk(ω) |) sgn(Xk(ω))) = 0.

If δ(ε) > 0 holds for any ε > 0 and Sn(ω) are the minimum points of the
function

ϕn(t, ω) =
1
n

n∑
k=1

Φ(| t−Xk(ω) |),

then Sn(ω) 1−−→ 0.

Proof. It is analogous to the previous one and so we omit it here.

Example 2.5. For some kind of Orlicz functions the boundedness of the
random variables is not a necessary condition and we are automatically in the
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setting of the first theorem. Consider Φ(t) = tp for t ∈ R+, p > 1. We compute

1−
2(x+y

2 )p

xp + yp
= 1−

( x+y
2(x+y)

)p(
x

x+y

)p +
( y

x+y

)p = 1−
2
(

x
2(x+y) + y

2(x+y)

)p(
x

x+y

)p +
( y

x+y

)p .

So there is

inf
{

1−
2Φ(x+y

2 )
Φ(x) + Φ(y)

; x, y ∈ R+ |x− y| ≥ ε

}
= inf

{
1−

2Φ(x+y
2 )

Φ(x) + Φ(y)
; x, y ∈ R+ |x− y| ≥ ε, x ≤ 1, y ≤ 1

}
.

Example 2.6. Among Orlicz functions such that

inf
{

1−
2Φ(x+y

2 )
Φ(x) + Φ(y)

; x, y ∈ R+ |x− y| ≥ ε

}
= 0,

there are functions Φ having an oblique asymptote, e.g.

Φ(x) :=
axn

bxn−1 + c
, a 6= 0, n ∈ N.

Indeed, if one takes x = 0, y > 0, then

2Φ(x+y
2 )

Φ(x) + Φ(y)
=

2Φ(y
2 )

Φ(y)
=

2a(y
2 )n[byn−1 + c]

[b(y
2 )n−1 + c]ayn

= 1.

Example 2.7. There exist Orlicz functions without oblique asymptotes but
for which δ(ε) = 0. One can easily construct an example of such a function
starting from the function tp with p > 1. The idea is first to take a sequence
of disjoint intervals. Then to cut out the graph of tp above such an interval,
replacing it by a curve ‘close’ to a segment, doing this in such a way that the
obtained function Φ is still differentiable. Then, obviously, δ(ε) = 0.

Example 2.8. Any Orlicz function Φ which is uniformly convex gives
δ(ε) > 0 directly from the definition of uniform convexity, which precisely
says that for each ε > 0 there exists a δ > 0 such that for any two points
satisfying |x− y| ≥ ε, there is

Φ
(
x+ y

2

)
≤ (1− δ)

(
Φ(x) + Φ(y)

2

)
.
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We now turn to considering Musielak–Orlicz modulars.

Let now Φ := {Φi}∞i=1 be a Musielak–Orlicz function (i.e. all Φi are Orlicz
functions) and put

ρn
Φ(x) :=

n∑
i=1

Φi(| xi |)

for a finite sequence x = {xi}n
i=1 of real numbers.

Set

δi(ε) := inf
{

1−
2Φi(x+y

2 )
Φi(x) + Φi(y)

; x, y ∈ R+ | x− y |≥ ε, i = 1, . . . , n
}
,

and
δΦ(ε) := inf{δi(ε), i = 1, 2, . . . }.

Analogously, for any M > 0, we define δΦM (ε).
Finally, if

ϕn(t, ω) :=
1
n
ρn
Φ((t, . . . , t)− (X1(ω), . . . , Xn(ω)),

then it is a strictly convex function with a (unique) minimum point (it follows
from the fact, that a strictly convex non-decreasing function composed with a
convex one is still strictly convex; and if f1, f2 are strictly convex functions both
having a minimum point, then f1 + f2 is strictly convex and has a minimum
point, automatically unique).

Obviously

ϕ′n(0, ω) =
1
n

n∑
i=1

Φ′i(|Xi(ω)|) sgn(Xi(ω)).

Hence, if the considered variables are independent and such that the variables
Φ′i(|Xi(ω)|)sgn(Xi(ω)) are identically distributed and have expectation zero,
then by the strong law of large numbers ϕ′n(0) 1−−→ 0 (compare with (∗)). Thus
the following theorem is true.

Theorem 2.9. Let {Φi}∞i=1 be a sequence of Orlicz functions and let Sn(ω)
denote the minimum point of the strictly convex function

ϕn(t, ω) =
1
n

n∑
i=1

Φi(|t−Xi(ω)|),

where the random variables Xi(ω) are independent and such that the variables
Φ′i(|Xi(ω)|)sgn(Xi(ω)) are identically distributed. Assume that

E(Φ′i(|Xi(ω)|)sgn(Xi(ω))) = 0, i = 1, 2, . . . .

If moreover one of the following conditions is fulfilled:
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(i) δΦ(ε) > 0 for any ε > 0 and the function Φ̃(x) := inf{Φi(x); i =
1, 2, . . . } is strictly positive for all x > 0;

(ii) the random variables X1(ω), X2(ω), . . . have a common pointwise bound
and δΦM (ε) > 0 (which is automatically verified if Φ consists of a finite
number of different functions Φi),

then Sn(ω) 1−−→ 0.

Proof. Fix ω ∈ Ω. By the convexity of ϕ, as earlier we obtain

0 ≤ ϕn(0)− ϕn(Sn(ω)) ≤| ϕ′n(0) || Sn(ω) | .

Executing similar computations as in Lemma 2.2, we get

2δΦ(| Sn(ω) |)
∑n

i=1 Φi

(∣∣Sn(ω)
2

∣∣)
n | Sn(ω) |

≤| ϕ′n(0) | .

Put D := {ω ∈ Ω; Sn(ω) 6→ 0} and suppose that P (D) > 0. Then for each
ω ∈ D we can find d = d(ω) > 0 and a subsequence Snk

(ω) ≥ d, k = 1, 2, . . .
Thus, by Lemma 2.1, for ω ∈ D, there is

2δΦ(| Snk
(ω) |)

∑nk
i=1 Φi

(∣∣Snk
(ω)

2

∣∣)
nk | Snk

(ω) |
≥

2δΦ(| Snk
(ω) |) |Snk

(ω)|
d(ω)

∑nk
i=1 Φi

(d(ω)
2

)
nk | Snk

(ω) |

≥
2δΦ(d(ω))nkΦ̃

(d(ω)
2

)
nkd(ω)

> 0.

Hence for ω ∈ D we have found a subsequence | ϕ′nk
(0, ω) |≥ c(ω) > 0. That

means that | ϕ′n(0, ω) |6→ 0 for all ω ∈ D, which, D being of a positive measure,
leads to a contradiction.

3. Minimum points in uniformly convex Banach space. Consider
a uniformly convex Banach space (X, || · ||), where X is a subspace of L0([a, b]),
the space of measurable functions, and suppose that X contains the constants,
which we shall denote by ft ≡ t.

The following theorem is true.

Theorem 3.1. In the setting introduced, suppose that the norm is of class
C1 and X1, X2, . . . are X-valued independent random variables such that
||Xn(ω)|| ≤M = M(ω), n = 1, 2, . . . Let Sn(ω) = fSn(ω) denote the minimum
point of the strictly convex function

φn : R 3 t 7→ φn(t, ω) := ||ft −Xn(ω)|| ∈ R

and suppose that φ′n(0) 1−−→ 0.
If for all t ∈ R lim infn→+∞ ||ft − Xn(ω)|| > 0 for almost all ω, then also
Sn(ω) 1−−→ 0.



53

Proof. By the uniform convexity of X, for all x1, x2 ∈ X with ||x1|| =
||x2|| = 1, if ||x1 − x2|| ≥ ε, then∣∣∣∣∣∣∣∣x1 + x2

2

∣∣∣∣∣∣∣∣ ≤ (1− δ(ε)).

For all x, y ∈ X such that ||x|| = ||y|| = d > 0 put x1 = x
||x|| i x2 = y

||y|| . Then
we obtain the following characterization of the uniform convexity

||x− y|| ≥ ε =⇒
∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣ ≤ (
1− δ

(
ε

d

))(
||x||+ ||y||

2

)
,

which follows from straightforward computation.
Now take x, y ∈ X and suppose that ||y|| ≥ ||x|| > 0. There exists α ∈ (0, 1]

such that ||x|| = ||αy||. By the uniform convexity condition we get

||x+ αy|| ≤
(

1− δ

(
||x− αy||
||x||

))
(||x||+ α||y||).

Consequently,

||x+ y|| ≤ ||x+ αy||+ (1− α)||y||

≤
(

1− δ

(
||x− αy||
||x||

))
(||x||+ α||y||) + (1− α)||y||

=
(

1− δ

(
||x− αy||
||x||

))
||x||+

(
1− αδ

(
||x− αy||
||x||

))
||y||

≤
(

1− αδ

(
||x− αy||
||x||

))
(||x||+ ||y||).

Now take xn = Sn(ω) − Xn(ω) and yn = −Xn(ω). Since Sn(ω) is the
element of best approximation among constants for Xn(ω), there holds ||xn|| ≤
||yn|| and we can find αn ∈ (0, 1] such that the norms of xn and αnyn are equal.
By the above inequality we obtain

||Sn(ω)− 2Xn(ω)||

≤
(

1− αnδ

(
||Sn(ω)− (1− αn)Xn(ω)||

||Sn(ω)−Xn(ω)||

))
(||Sn(ω)−Xn(ω)||+ ||Xn(ω)||).

Since 2Sn(ω) is the element of best approximation among constants for 2Xn(ω),
there also is

2||Sn(ω)−Xn(ω)|| ≤ ||Sn(ω)− 2Xn(ω)||.
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On the other hand ||Sn(ω)−Xn(ω)||+ ||−Xn(ω)|| ≥ ||Sn(ω)−2Xn(ω)||. Thus
we finally obtain

||Xn(ω)|| − ||Sn(ω)−Xn(ω)||

≥ αnδ

(
||Sn(ω)− (1− αn)Xn(ω)||

||Sn(ω)−Xn(ω)||

)
||Sn(ω)− 2Xn(ω)||.

Observe that on the left-hand side we have in fact φn(0, ω) − φn(Sn(ω), ω),
which is obviously not greater than |φ′n(0, ω)||Sn(ω)| (by the strict convexity
of φn(·, ω)). Thus

|φ′n(0, ω)||Sn(ω)| ≥ αnδ

(
||Sn(ω)− (1− αn)Xn(ω)||

||Sn(ω)−Xn(ω)||

)
2||Sn(ω)−Xn(ω)||.

Set DS := {ω ∈ Ω; Sn(ω) 6→ 0}, Dφ := {ω ∈ Ω; φ′n(0, ω) 6→ 0} and
D := {ω ∈ Ω; ∃nk → +∞ : ||Snk

(ω) − Xnk(ω)|| → 0}. By the assumptions,
there is P (D) = P (Dφ) = 0. Thus P (DS) = P (DS \ (Dφ ∪D)).

Suppose that P (DS) > 0 and take ω ∈ DS \ (Dφ ∪D). Then there exists
d = d(ω) > 0 and a sequence nk → +∞ such that |Snk

(ω)| ≥ d. By the choice
of ω, there is a constant c = c(ω) > 0 such that ||Snk

(ω)−Xnk(ω)|| ≥ c.
Since ||Xn(ω)|| > 0, then αn = ||Sn(ω)−Xn(ω)||

||Xn(ω)|| , and thus αnk
≥ c

M(ω) > 0.
Observe also that

||Sn(ω)|| ≤ ||Sn(ω)−Xn(ω)||+ ||Xn(ω)||

= ||Sn(ω)−Xn(ω)||+ ||Sn(ω)−Xn(ω)||
αn

≤ 2||Sn(ω)−Xn(ω)||
αn

,

whence finally

||Sn(ω)−Xn(ω)|| ≥ αn

2
||Sn(ω)|| = αn

2
||f1|| · |Sn(ω)|.

Besides, δ(ε) is decreasing with ε; thus, since ||Sn(ω)−Xn(ω)||≤||Xn(ω)||≤
M(ω), then

δ

(
||Sn(ω)− (1− αn)Xn(ω)||

||Sn(ω)−Xn(ω)||

)
≥ δ

(
||Sn(ω)− (1− αn)Xn(ω)||

M(ω)

)
.

Therefore, we obtain

|φ′nk
(0, ω)||Snk

(ω)| ≥ δ

(
||Snk

(ω)− (1− αnk
)Xnk(ω)||

M(ω)

)
c2

M(ω)2
|Snk

(ω)|.

Since αnk
∈ (0, 1], we may assume (possibly extracting a subsequence) that

αnk
→ α. Obviously, α ∈ [0, 1], but we already know that α 6= 0.
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If there were α = 1, then for any sufficiently large k we would obtain

||Snk
(ω)− (1− αnk

)Xnk(ω)|| ≥ ||Snk
(ω)||
2

=
||f1||

2
|Snk

(ω)|

≥ ||f1||
2

d =: N(ω).

On the other hand, if α < 1, then in view of the fact that

||Sn(ω)|| ≤ ||Sn(ω)−Xn(ω)||+ ||Xn(ω)|| ≤ 2M(ω),

we may assume (possibly extracting subsequences from Snk
(ω) and fromXnk(ω))

that Snk
(ω) and Xnk(ω) are convergent. Let S(ω), X(ω) denote the corre-

sponding limits.
Now if there were (for these subsequences) ||Snk

(ω)−(1−αnk
)Xnk(ω)|| → 0,

then

||S(ω)− (1− α)Xnk(ω)|| ≤||S(ω)− Snk
(ω)||+ ||Snk

(ω)− (1− αnk
)Xnk(ω)||

+ ||(1− αnk
)Xnk(ω)− (1− α)Xnk(ω)||

would lead to ∣∣∣∣∣∣∣∣ S(ω)
(1− α)

−Xnk(ω)
∣∣∣∣∣∣∣∣ → 0,

which contradicts our assumptions, since S(ω)
1−α is a constant.

Thus there exists N(ω) > 0 such that

||Snk
(ω)− (1− αnk

)Xnk(ω)|| ≥ N(ω).

This finally yields

|φ′nk
(0, ω)||Snk

(ω)| ≥ δ

(
N(ω)
M(ω)

)
c2

M(ω)2
|Snk

(ω)|,

whence

|φ′nk
(0, ω)| ≥ δ

(
N(ω)
M(ω)

)
c2

M(ω)2
> 0.

But that implies |φ′nk
(0, ω)| 6→ 0 for ω ∈ DS \ (Dφ ∪D) and since this set is of

a positive measure we get a contradiction.

4. Strong law of large numbers in Orlicz spaces. In this section,
we will consider independent random variables Xn(ω) with values in an Orlicz
space defined as follows:

Consider the measure space ([0, 1], µ) with some Borel finite measure µ. If
Φ is an Orlicz function, then by LΦ we will denote the space of all µ-measurable
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functions f : [0, 1] → R such that limλ→0+ ρΦ(λf) = 0, where ρΦ is the modular
defined by

ρΦ(f) :=
∫ 1

0
Φ(|f(τ)|)dµ(τ).

This obviously means that for some λ > 0 there is
∫ 1
0 Φ(|λf(τ)|)dµ(τ) < +∞.

Under some assumptions on Φ this will be satisfied for all λ > 0. All the
previously introduced definitions have their respectives analogues in this case
too. The space LΦ with the norm || · ||Φ defined as earlier is a Banach space.
Moreover, since Φ is convex and tends to infinity when t → +∞, LΦ ⊂ L1.
Actually, if Φ(t) = tp for some p > 1, then LΦ = Lp.

We now consider a function

ϕn(t, ω) =
1
n

n∑
k=1

ρΦ(|ft −Xk(ω)|) for t ∈ R, ω ∈ Ω,

where ft ≡ t is a constant function (constants obviously belong to LΦ). As
earlier, by Sn(ω) ∈ LΦ we denote the point at which the convex function
ϕn(·, ω) attains its minimum. Note that Sn(ω) is a constant function.

From now on, assume that Φ is of class C1. If we calculate the derivative
of t 7→ ϕn(t, ω) (with ω fixed), we obviously get

d

dt
ϕn(t, ω) = lim

s→t

ϕn(s, ω)− ϕn(t, ω)
s− t

=
∫ 1

0

1
n

n∑
k=1

Φ′(|t−Xk(ω)(τ)|)sgn(t−Xk(ω)(τ))dµ(τ).

To be able to apply usual versions of the strong law of large numbers, we
have to recall the following definitions (cf. [6]):

Definition 4.1. Let {Xn} be a sequence of X-valued random variables
satisfying EXn = 0. {Xn} is said to satisfy the strong law of large numbers if

1
n

n∑
j=1

Xj
1−−→ 0.

To be able to show that ϕ′n(0) 1−−→ 0 (which is crucial for our purposes), it
would be enough to know that the variables X ′

k(ω) := Φ′(|Xk(ω)|)sgn(Xk(ω))
satisfy the strong law of large numbers. The first problem we meet is, however,
the fact that X ′

k(ω) have their values in a function space. Then the problem
is: under what kind of assumptions X ′

k will satisfy the strong law of large
numbers.

Observe that for Lp spaces, X ′
k(ω) ∈ Lq for q = p

p−1 (cf. [3]). We will need
more preparatory work.
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Recall that a Rademacher sequence is a sequence {ri} of independent ran-
dom variables taking the values 1 and −1 with probability 1/2. We take ri on
[0, 1].

Definition 4.2. A Banach space X is said to be of (Rademacher) type
p for some 1 ≤ p < +∞ if there is a constant C > 0 such that for all finite
sequences {xi}n

1 ⊂ X,

(?) E

∣∣∣∣∣∣∣∣ n∑
i=1

rixi

∣∣∣∣∣∣∣∣p ≤ C
n∑

i=1

||xi||p.

It is clear (by the triangle inequality) that every Banach space is of type 1.
Besides, Khintchine’s classic inequalities imply that the definition makes sense
only for p ≤ 2.

Equivalently, X is of type p with 1 ≤ p ≤ 2 if for any sequence {xi} in X
such that {||xi||} ∈ lp the series

∑∞
i=1 rixi converges a.e. (i.e. with probability

1) on [0, 1]. The equivalence follows from a closed graph argument (namely the
inclusion of lp(X) ⊂ C(X) := {{xi};

∑
i rixi converges in probability} has a

closed graph whenever X is of type p).
Moreover, by the Kahane inequality, condition (?) is equivalent to

E

∣∣∣∣∣∣∣∣ n∑
i=1

rixi

∣∣∣∣∣∣∣∣ ≤ const.
( n∑

i=1

||xi||p
) 1

p

.

Let us finally note that a Banach space of type p is also of type p′ ≤ p and
that every Hilbert space is of type 2.

Then the following is true.

Theorem 4.3. ([6] Thm 2.1) Let 1 ≤ p ≤ 2, then the strong law of large
numbers holds for all sequences {Xn} of independent X-valued Radon variables
satisfying

EXn = 0 and
+∞∑
n=1

E||Xn||p

np
<∞

iff the space X is of type p.

Recall that a Radon variable ξ is by definition a variable regular with
respect to compact sets, i.e., for each ε > 0 there is a compact K such that
P (ξ ∈ K) ≥ 1−ε. Equivalently, one may assume that the space X is separable.

Before we turn to proving the main theorem of this section we give an
example to illustrate it.

Example 4.4. Consider the following Orlicz function: Φq(t) = et
q − 1, for

q ≥ 1. For f ∈ LΦq it is clear that ρΦq(λf) <∞ iff
∫ 1
0 e

|f(t)|q dµ(t) <∞. Since
|f |q ≤ e|f |

q
, then f ∈ Lq.
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We compute Φ′q(|f |)sgn(f) = q|f |q−1e|f |
q
sgn(f) and so it is clear that it

suffices to consider |f |q−1e|f |
q

only. This obviously belongs to Lp for p = q
q−1 .

Thus, Ψ(t) := tp is the Orlicz function sought for, if q > 1.

Theorem 4.5. If X1(ω), X2(ω), . . . are independent random variables with
values in LΦ such that ρΦ(Xk(ω)) ≤M = M(ω) for all k and if, moreover,

(i) E(Φ′k(|Xk(ω)(τ)|)sgn(Xk(ω)(τ))) = 0,
(ii) there is a Banach function space X of type p such that

Φ′(Xk(ω))sgn(Xk(ω)) ∈ X

and
∞∑

k=1

E||Φ′(|Xk(ω)|)||X
kp

< +∞,

then ρΦ(Sn(ω)) 1−−→ 0, where ϕn(t, ω) is the function introduced at the begin-
ning of this section and Sn(ω) is its minimum point.

Proof. Suppose that for some ω there is a sequence nk → +∞ such that
Snk

(ω) 6→ 0. Then there exists d > 0 such that |Snk
(ω)| ≥ d for all k. Fix such

α > 0 that αd ≥ 1. Then by Lemma 2.1

Φ
(
|Snk

(ω)|α 1
α

)
≥ α|Snk

(ω)|Φ
(

1
α

)
whence

ρΦ(|Snk
(ω)|) ≥ Φ

(
1
α

)
α

∫ 1

0
|Snk

(ω)|dµ(τ)

= Φ
(

1
α

)
α|Snk

(ω)|µ([0, 1])

≥ Φ
(

1
α

)
αdµ([0, 1]) > 0,

since Snk
is a constant function on [0,1].

Thus Sn(ω) 6→ 0 implies ρΦ(|Sn(ω)|) 6→ 0. On the other hand, if Sn(ω) → 0,
then Φ(|Sn(ω)|) → 0 (by continuity), and so∫ 1

0
Φ(|Sn(ω)|)dµ(τ) → 0,

that is ρΦ(|Sn(ω)|) → 0. In other words Sn(ω) 1−−→ 0 iff ρΦ(|Sn(ω)|) 1−−→ 0.
Hence we only need to show that Sn(ω) 1−−→ 0.
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Applying a standard argument, in view of the convexity of ϕn and compu-
tations similar to those of Lemma 2.2, we obtain

2ρΦ(|Sn(ω)
2 |)δM (|Sn(ω)|)
|Sn(ω)|

≤ |ϕ′n(0, ω)|.

So if ω ∈ Ω is such that Sn(ω) 6→ 0, there is a subsequence nk → +∞ and a
constant d = d(ω) > 0 such that |Snk

(ω)| ≥ d.
Now

2ρΦ

(
|Snk

(ω)|
2

)
δM (|Snk

(ω)|)

|Snk
(ω)|

≥ 2
δM (d)
|Snk

(ω)|

∫ 1

0
Φ

(
|Snk

(ω)|
2

)
dµ

≥ 2
δM (d)
|Snk

(ω)|
Φ

(
|Snk

(ω)|
2

)
µ([0, 1]),

since the integrand is a constant.
Choose now α > 0 such that αd

2 ≥ 1. Then

Φ
(
|Snk

(ω)|
2

)
= Φ

(
1
α
α
|Snk

(ω)|
2

)
≥ α

|Snk
(ω)|
2

Φ
(

1
α

)
by Lemma 2.1.

Finally we obtain

|ϕ′nk
(0, ω)|≥2

δM (d)
|Snk

(ω)|
α
|Snk

(ω)|
2

Φ
(

1
α

)
µ([0, 1])=δM (d)αΦ

(
1
α

)
µ([0, 1]) > 0,

whence ϕ′n(0, ω) 6→ 0. But as ϕ′n(0, ω) 1−−→ 0 (cf. our assumptions), we get
Sn(ω) 1−−→ 0.

To get a full counterpart of Proposition 2 from [3], we now consider the
convex function

ψn(f, ω) :=
1
n

n∑
k=1

ρΦ(f −Xk(ω)), for f ∈ LΦ, ω ∈ Ω.

It is (when we fix ω) the distance (computed in the sum of modulars) from
the point (X1(ω), . . . , Xn(ω)) ∈ (LΦ)n to the diagonal. Thus there exists the
unique Sn(ω) ∈ LΦ realizing the minimum of ψn(·, ω) (in this case it may be
non-constant).

It is clear that if by S̃n(ω)(τ) we denote the minimum point of the strictly
convex function

ψ̃n(τ, ω) : R 3 t 7→ 1
n

n∑
k=1

Φ(|t−Xk(ω)(τ)|) ∈ R,

then S̃n(ω) = Sn(ω) µ-almost everywhere on [0, 1].
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Therefore, if we apply the previous ideas to these functions, we easily get
an extension of the last theorem:

Theorem 4.6. Under the assumptions of the previous theorem, for Sn(ω) ∈
LΦ being the minimum point of ψn, there is ρΦ(Sn(ω)) 1−−→ 0.
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