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MARKOV INEQUALITY ON A CERTAIN

COMPACT SUBSET OF R2

by Mieczysław Jędrzejowski

Abstract. We construct a compact subset K of R2 which satisfies the
Markov inequality – but K is not polynomially cuspidal at the point (0; 0).
The set K is connected and fat (i.e. K is equal to the closure of its interior).

The Markov inequality gives the estimation for the derivative of the poly-
nomial (of the given degree) if the estimation for the norm of the polynomial
is known. This inequality is very useful in the theory of polynomial approxi-
mation. For multivariate polynomials it is often a very difficult task to prove
that the Markov inequality is fulfilled (or not fulfilled) for a given compact set
(by the way, for the polynomials of one variable this problem is sometimes also
difficult, e.g. for Cantor-type sets). There are several important papers (in the
multidimensional case) about the Markov inequality on sets with polynomial
cusps (e.g. Pawłucki and Pleśniak [6], Baran [1], Kroó and Szabados [5]). The
case of non-polynomial cusps is much more difficult. Some examples of the
sets (satisfying the Markov inequality) that are not polynomially cuspidal can
be found e.g. in: [2], [4], [7], [8]. Recently Erdélyi and Kroó ([3]) obtained
interesting results: one of the theorems proved in their paper gives the con-
struction of the set (with one non-polynomial cusp) satisfying the Markov-type
inequality (i.e. the constant is “worse” than that in the Markov inequality).

We construct the set (with one non-polynomial cusp) satisfying the Markov
inequality:

Theorem. Let γ = k
l , γ ≥ 2 (k, l are positive integers). Suppose that f1, f2

are two functions continuous on the interval [0; 1] and constant on the interval
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[15 ; 1]. Suppose also that for 0 < x ≤ 1
5

f1(x) =
1
2
xγ(− log x), f2(x) = 2xγ(− log x).

Define the set

K :=
{
(x, y) ∈ R2 : 0 ≤ x ≤ 1, f1(x) ≤ y ≤ f2(x)

}
.

Then the Markov inequality is fulfilled for K:
there exist two positive real numbers M,β such that for all positive integers n

sup
{∣∣∣∣∂P∂x (x, y)

∣∣∣∣+ ∣∣∣∣∂P∂y (x, y)
∣∣∣∣ : (x, y) ∈ K

}
≤Mnβ sup{|P (x, y)| : (x, y) ∈ K},

where P (x, y) is any polynomial of degree n (with real coefficients).

Let us observe that for ε ≤ 0

lim
t→0

tε(− log t) = +∞

and for ε > 0
lim
t→0

tε(− log t) = 0.

Therefore, there exists no polynomial map R 3 t→ ψ(t) = (x(t), y(t)) ∈ R2

such that ψ(t) ∈ K for all 0 ≤ t ≤ 1 and ψ(0) = (0; 0) (K is not polynomially
cuspidal at (0; 0)). Hence the theorems from [5] or [6] cannot be used, but the
proof from [3] can be easily adapted.

Proof. We begin by recalling the notion of the extremal function. Let K0

be a compact subset of C. The extremal function of Leja is defined by

ΦK0(z) := sup
{
|p(z)|

1
deg p

}
, z ∈ C,

the supremum being taken over all polynomials p : C → C (of degree at least 1)
with ||p||K0 ≤ 1 (||p||K0 denotes sup |p|(K0)). It is known that for a line segment
[a; b] ⊂ R

Φ[a;b](z) = |v(z)|, z ∈ C,
where

v(z) =
b+ a− 2z + 2

√
(b− z)(a− z)

b− a
,

with the branch of the root properly chosen (so that |v(z)| ≥ 1 for all com-
plex z).

It is easy to check that for 0 < a < b

Φ[a;b](0) =

∣∣∣∣∣ (
√
a+

√
b)2

(
√
b−

√
a)(
√
b+

√
a)

∣∣∣∣∣ =
∣∣∣∣∣1 +

√
a
b

1−
√

a
b

∣∣∣∣∣ .
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It follows immediately from the definition of ΦK0 that

|p(z)| ≤ ||p||K0 (ΦK0(z))
deg p

for each polynomial p (z ∈ C). The above-mentioned inequality is known as
the Bernstein–Walsh inequality.

We will also use the classical Markov inequality for the line segment [a; b]⊂R

|p′(x)| ≤ 2n2

b− a
||p||[a;b], a ≤ x ≤ b,

where p is any polynomial of degree at most n.
Let us also recall the following property of the function h which is convex

on a line segment [0; l0], l0 > 0 (and fulfils the conditions: h(0) = 0, h′ exists
on [0; l0]):

h(w1 + w2) ≥ h(w1) + h(w2), w1 ≥ 0, w2 ≥ 0, w1 + w2 ≤ l0.

The proof is standard. The function

ϕ(x) := h(x+ w1)− h(x)− h(w1), 0 ≤ x ≤ l0 − w1,

has the derivative ϕ′(x) which is nonnegative, because the derivative h′ of the
convex function h is increasing. From this we conclude that ϕ is increasing on
[0; l0 − w1]. Hence

ϕ(w2) ≥ ϕ(0) = 0,
which is the desired conclusion.

The properties of the function

f(x) = Cxγ(− log x), 0 < x ≤ 1, f(0) := 0

(C ∈ R, γ ∈ R, C > 0, γ ≥ 2) will also be useful in our proof. We leave it to
the reader to verify that the function f fulfils the following conditions:

(1) f is increasing for 0 ≤ x ≤ exp
(
− 1

γ

)
.

(2) f is convex for 0 ≤ x ≤ exp
(
− 1

γ −
1

γ−1

)
.

(3) |f ′(x)| ≤ C
(
1 + 1

γ−1

)
exp

(
1
γ − 2

)
if 0 ≤ x ≤ exp

(
− 1

γ

)
.

Let us observe that for γ ≥ 2

exp
(
−1
γ

)
> exp

(
−1
γ
− 1
γ − 1

)
≥ exp

(
−3

2

)
>

1
5

and (
1 +

1
γ − 1

)
exp

(
1
γ
− 2
)
≤ 2 exp

(
−3

2

)
<

1
2
.

Define (for each positive integer n) the subset of K:

K(n) :=
{
(x, y) ∈ R2 : 0 ≤ x < λ exp(−dn), f1(x) ≤ y ≤ f2(x)

}
,
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where

λ := 1−
(

1
2

) 1
γ

= 1−
(

1
2

) l
k

> 0

and dn := 2l log
(
9n2
)
. Hence

exp (−dn) =
1

(9n2)2l
, (1− λ)

k
l =

1
2
.

We fix a polynomial (of degree n) with real coefficients: P = P (x, y)
((x, y) ∈ R2). Without loss of generality we can assume that ||P ||K ≤ 1
(||P ||K denotes the supremum norm on K). Let

Q(x, y) :=
∣∣∣∣∂P∂x (x, y)

∣∣∣∣+ ∣∣∣∣∂P∂y (x, y)
∣∣∣∣ .

We have to estimate Q(x0, y0), where (x0, y0) ∈ K. We first consider the
case (x0, y0) /∈ K(n). An easy computation shows that

f2(λ exp(−dn))− f1(λ exp(−dn)) >
1

An4k
,

where A is a real positive constant (depending on k and l). From this (and from
the conditions fulfilled by the function f(x) = Cxγ(− log x), C > 0, γ ≥ 2) we
conclude that the set K contains two segments (a vertical one and a horizontal
one) passing through (x0, y0), whose length is at least 1

An4k . By the classical
Markov inequality for the line segment in R, we get

Q(x0, y0) ≤ 2
(
2n2An4k

)
= 4An4k+2.

We now turn to the case (x0, y0) ∈ K(n). Consider the polynomial of one
real variable:

H(t) :=
∂P

∂y

(
x0 + tl, y0 + dnt

k
)
,

where t ≥ 0. Of course the degree of H is not greater than nk. We first observe
that the points

(x(t), y(t)) =
(
x0 + tl, y0 + dnt

k
)

belong to K\K(n) for (9n2)−2 ≤ t ≤ (9n2)−1 (for these values of the parameter
t we have 0 ≤ x(t) < 1

81 + 1
9 <

1
5 ). Of course (x(t), y(t)) /∈ K(n), because

x(t) = x0 + tl ≥ tl ≥
(
9n2
)−2l = exp (−dn) > λ exp (−dn) .

We have to prove that (x(t), y(t)) ∈ K. Suppose, contrary to our claim,
that (x(t), y(t)) /∈ K. Then either y(t) > f2(x(t)) or y(t) < f1(x(t)). Let us
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consider the possibility: y(t) > f2(x(t)). Take the interval

J :=

[
0;

1

(9n2)l

]
.

It is easy to check that for all u ∈ J

dnu
k
l ≤ f2(u) = 2u

k
l (− log u) .

Of course x(t)− x0 = tl ∈ J . Therefore

dnt
k = dn (x(t)− x0)

k
l ≤ f2 (x(t)− x0) .

The function f2(u) is convex and differentiable for 0 ≤ u ≤ 1
5 (the condition

f2(0) = 0 is also fulfilled). Hence

f2(x(t)) ≥ f2 (x(t)− x0) + f2(x0) ≥ dnt
k + y0 = y(t),

a contradiction.
Consider now the possibility: y(t) < f1(x(t)). We have x(t) ≥ exp(−dn)

and x0 < λ exp(−dn). It follows that

x(t)− x0

x(t)
= 1− x0

x(t)
≥ 1− λ.

From this we deduce that

y(t) = y0 + dnt
k = y0 + dn (x(t)− x0)

k
l ≥ dn ((1− λ)x(t))

k
l =

dn

2
(x(t))

k
l .

This gives

f1(x(t)) =
1
2

(x(t))
k
l (− log x(t)) > y(t) ≥ dn

2
(x(t))

k
l .

We thus get x(t) < exp(−dn), which is impossible.
We are now in a position to prove the Markov inequality in the case:

(x0, y0) ∈ K(n). We apply the Bernstein–Walsh inequality (p = H, z = 0,
K0 =

[
(9n2)−2; (9n2)−1

]
) and get∣∣∣∣∂P∂y (x0, y0)
∣∣∣∣ = |H(0)| ≤ ||H||K0

(ΦK0(0))deg H

≤
∣∣∣∣∣∣∣∣∂P∂y

∣∣∣∣∣∣∣∣
K\K(n)

(
1 + 1

3n

1− 1
3n

)nk

.

From what has already been proved,∣∣∣∣∣∣∣∣∂P∂y
∣∣∣∣∣∣∣∣

K\K(n)

≤ 2An4k+2.
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It is easy to check that the function h(t) = log 1+t
1−t (0 ≤ t < 1) is convex.

From this it follows that for 0 < t ≤ 1
3

h(t) ≤ 3t log 2 < 3t.

Hence(
1 + 1

3n

1− 1
3n

)nk

= exp

(
nk log

(
1 + 1

3n

1− 1
3n

))
< exp

(
nk

n

)
= ek.

It is now obvious that∣∣∣∣∂P∂y (x0, y0)
∣∣∣∣ ≤ 2Aekn4k+2.

The same conclusion can be drawn for ∂P
∂x :∣∣∣∣∂P∂x (x0, y0)

∣∣∣∣ ≤ 2Aekn4k+2.

We thus get
Q(x0, y0) ≤ 4Aekn4k+2.

This completes the proof of the theorem (we obtain the constants M =
4Aek, β = 4k + 2).
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