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MARKOV INEQUALITY ON A CERTAIN
COMPACT SUBSET OF R2

BY MIECZYSLAW JEDRZEJOWSKI

Abstract. We construct a compact subset K of R? which satisfies the
Markov inequality — but K is not polynomially cuspidal at the point (0; 0).
The set K is connected and fat (i.e. K is equal to the closure of its interior).

The Markov inequality gives the estimation for the derivative of the poly-
nomial (of the given degree) if the estimation for the norm of the polynomial
is known. This inequality is very useful in the theory of polynomial approxi-
mation. For multivariate polynomials it is often a very difficult task to prove
that the Markov inequality is fulfilled (or not fulfilled) for a given compact set
(by the way, for the polynomials of one variable this problem is sometimes also
difficult, e.g. for Cantor-type sets). There are several important papers (in the
multidimensional case) about the Markov inequality on sets with polynomial
cusps (e.g. Pawtucki and Plesniak [6], Baran [I], Kro6 and Szabados [5]). The
case of non-polynomial cusps is much more difficult. Some examples of the
sets (satisfying the Markov inequality) that are not polynomially cuspidal can
be found e.g. in: [2], [4], [7], [8]. Recently Erdélyi and Kroo (|3]) obtained
interesting results: one of the theorems proved in their paper gives the con-
struction of the set (with one non-polynomial cusp) satisfying the Markov-type
inequality (i.e. the constant is “worse” than that in the Markov inequality).

We construct the set (with one non-polynomial cusp) satisfying the Markov
inequality:

THEOREM. Let vy = %,fy > 2 (k,l are positive integers). Suppose that f1, fo
are two functions continuous on the interval [0;1] and constant on the interval
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[%; 1]. Suppose also that for 0 < z < é

filz) = %x”(—logaz), fa(z) =227 (—log x).
Define the set
K :={(z,y) € R?:0<z<1,fi(z)<y< fa(z)}.

Then the Markov inequality is fulfilled for K :
there exist two positive real numbers M, 3 such that for all positive integers n

OP OP
Sup{ a‘,E(ﬂﬂ,y)‘ + ‘ay(w,y)
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where P(x,y) is any polynomial of degree n (with real coefficients).

Let us observe that for e <0
%ir% t°(—logt) = +o0

and for e > 0
1%ir%ta(—logt) = 0.

Therefore, there exists no polynomial map R > t — (t) = (z(t),y(t)) € R?
such that ¢(t) € K for all 0 <t¢ <1 and ¥(0) = (0; 0) (K is not polynomially
cuspidal at (0; 0)). Hence the theorems from [5] or [6] cannot be used, but the
proof from [3] can be easily adapted.

PRrROOF. We begin by recalling the notion of the extremal function. Let Ky
be a compact subset of C. The extremal function of Leja is defined by

1
i (2) 1= sup {|p(z)| %7 |, zeC,

the supremum being taken over all polynomials p : C — C (of degree at least 1)
with ||p||x, <1 (||p||x, denotes sup |p|(Kp)). It is known that for a line segment
[a;b] C R

q)[a;b}(z) = ’U(Z)’, z€C,

_ b+a—2z+2/(b—2)(a—z)

v(z) 5

where

with the branch of the root properly chosen (so that |v(z)| > 1 for all com-
plex z).
It is easy to check that for 0 < a <b

(Va+ Vb)®

. v
PO = = Vo + va)

Vi
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It follows immediately from the definition of ®x, that

d
p(2)| < [lpll Ko (Pro(2)) 757

for each polynomial p (z € C). The above-mentioned inequality is known as
the Bernstein—Walsh inequality.

We will also use the classical Markov inequality for the line segment [a; b] CR

2n?
|p,(l')|§ b_a||p||[a;b}7 a<z<b,

where p is any polynomial of degree at most n.

Let us also recall the following property of the function h which is convex

on a line segment [0;1o], lp > 0 (and fulfils the conditions: h(0) = 0, A’ exists
on [0;1o)):

h(wy 4+ w2) > h(wr) + h(w2), w1 >0, wy >0, w; + w2 < .

The proof is standard. The function
o(x) = h(x +w1) — h(z) — h(wy), 0<z<ly— wi,

has the derivative ¢’(z) which is nonnegative, because the derivative h’ of the
convex function h is increasing. From this we conclude that ¢ is increasing on
[0;1p — w;]. Hence
p(w2) = ¢(0) =0,
which is the desired conclusion.
The properties of the function

f(z) =Cz"(=logz), 0<z<1, f(0):=0

(C e R,y € R,C > 0,y > 2) will also be useful in our proof. We leave it to
the reader to verify that the function f fulfils the following conditions:

_;)
=)
i 1
(2) fis convex for 0 < x <exp(—= — ﬁ)
<

@) [f(@)<C (1 + ﬁ) exp (% - 2) if 0 <z <exp <—l),
Let us observe that for v > 2

Xp 5 Xp i exp | = )
1—|—L exp 1—2 < 2exp —§ <

v-1 gl 2

Define (for each positive integer n) the subset of K:
K(n) = {(z,y) e R?: 0 <z < Xexp(—dn), fi(z) <y < fol2)},

(1) f is increasing for 0 < x < exp

2=

N |
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where

and d, := 2llog (9n2). Hence

1 |
W’ (=Nt =3.

We fix a polynomial (of degree m) with real coefficients: P = P(x,y)
((z,y) € R?). Without loss of generality we can assume that ||P||x < 1
(||P||x denotes the supremum norm on K). Let

Q) = [T )| +| G|

exp (—d,) =

We have to estimate Q(zo,yo), where (z9,yo) € K. We first consider the
case (x0,y0) ¢ K(n). An easy computation shows that

F2NexD(—dn) = fihexp(~dn) > -

where A is a real positive constant (depending on k and [). From this (and from
the conditions fulfilled by the function f(z) = CzY(—logx),C > 0,7 > 2) we
conclude that the set K contains two segments (a vertical one and a horizontal
one) passing through (x,y0), whose length is at least By the classical
Markov inequality for the line segment in R, we get

1
Andk”

Q(z0,y0) < 2 (QnQAn‘”“) — 4 ApRT2,

We now turn to the case (zg,y0) € K(n). Consider the polynomial of one
real variable:

o opP l k

where t > 0. Of course the degree of H is not greater than nk. We first observe
that the points

(2(8), y(1) = (w0 + ¢, 30 + dut")

t < (9n?)~! (for these values of the parameter
). Of course (z(t),y(t)) ¢ K(n), because

th > (9n2)_21 =exp (—dp) > Aexp (—d,) .

We have to prove that (x(t),y(t)) € K. Suppose, contrary to our claim,
that (z(t),y(t)) ¢ K. Then either y(t) > fa(x(t)) or y(t) < fi(x(t)). Let us
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consider the possibility: y(t) > fa(z(t)). Take the interval

J = [0; 1 l] .
(9n?)

It is easy to check that for all u € J
dpu't < fo(u) = 21 (—logu).
Of course x(t) — xg = t! € J. Therefore

dnt® = dy (2(t) — 20)T < fo (x(t) — 20).

The function fa(u) is convex and differentiable for 0 < u < £ (the condition
f2(0) = 0 is also fulfilled). Hence

fo(z(t)) > fo (x(t) — m0) + fa(zo) > dnt® +yo = y(t),

a contradiction.
Consider now the possibility: y(t) < fi(z(t)). We have x(t) > exp(—d,)
and zg < Aexp(—d,). It follows that

x(t) —xo T B
0 T am ot

From this we deduce that

U(t) = o+ dut® = yo + dn (a(1) — 20) > o (1= N2t = 2 (a(0))F
This gives
1 3 dp, k
filw() = 5 @) (- loga()) > y(t) = T (2(6)T .

We thus get x(t) < exp(—d,,), which is impossible.

We are now in a position to prove the Markov inequality in the case:
(z0,y0) € K(n). We apply the Bernstein—-Walsh inequality (p = H, z = 0,
Ko = [(9n%)72;(9n?)7!]) and get

‘GP

By o vo)| = [HO) < [1Hll, (D, (0)) %"

nk
<[|5 | (HS”)
1

From what has already been proved,

7

< 2 Antkt2,

’K\K
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It is easy to check that the function h(t) = log 1t (0 < ¢ < 1) is convex.
From this it follows that for 0 < ¢ < %

h(t) < 3tlog2 < 3t.

Hence
14 L\ 1+ 4 k
31" =exp | nklog 31" < exp L —

It is now obvious that

oP

a—y(a:o, Yo)| < 24eFntFt2,
The same conclusion can be drawn for %—}; :

oP

%(xo,yo) < 2Aekntk+2,

We thus get
Q(zo,y0) < 4Ae"n 12,

This completes the proof of the theorem (we obtain the constants M =
4Ack, B = 4k + 2). O
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