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A GEOMETRICAL VERSION OF THE MOORE THEOREM IN
THE CASE OF INFINITE DIMENSIONAL BANACH SPACES

BY MARCIN ZIOMEK

Abstract. In this paper the Author shows that if one defines a triod in a
suitable way, then it is possible to prove the Moore theorem in the infinite
dimensional case.

1. Introduction. The classical Moore theorem is a certain refinement of
the Suslin property of separable spaces (each family of pairwise disjoint open
sets is countable). In [4] Moore has formulated the following property:

Each family of triods in R? is countable.

A triod is a set homeomorphic with [—1, 1] x{0}U{0} x [0, 1]. The generalization
of this theorem for R” was proved by Young in [5]. By a “triod” in R™ one means
a set which is homeomorphic to “an umbrella” (by an n-dimensional umbrella
we understand the union of an n-ball ) and a simple arc L such that the set
Q@ N L contains exactly one point lying in the set Q\int @ and being an end
point of L). Another version of such properties was proved by Bing and Borsuk
in [1].

A direct generalization to the case of infinite dimensional Banach spaces is
not true. Indeed, let us consider the space l. Let

B={zecl:z1=0A|z|| <1}U{z€ly:z €[0,1]] AVEk >2 z; = 0}.

If one understands a triod as a set, homeomorphic (or even isometric) to B,
then the property from the Moore theorem does not hold. Indeed, consider
the hyperplanes H. = {x € Iy : 1 = ¢} and ¢ € R. It follows from the Riesz
theorem, that Hy is isometric to ls. Let v = (¢,0,...), then H. = Hy + v and
thus T,,(Hp) = H,, where T,, : ly — Iy and T;,(z) = z+v. Hence we have a triod
in each hyperplane H.. But these hyperplanes form an uncountable family of
pairwise disjoint sets.
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However, it is possible to prove a kind of Moore theorem in infinite dimen-
sional case if one considers a more “rigid” notion of the triod.

2. The main theorem. Let (E,||||) be a real Banach space, let E* be
the conjugate of E and let z,u € E, r > 0, f € E* such that f(z) # f(u) and
||l — u|| = r. Let B(x,r) be an (open) ball with the center at = and the radius
r, and let ab denote the segment with ends a and b.

DEFINITION 1. The hyperplane defined by a functional f and a constant ¢
is the set {y € E: f(y) = c}. We will denote it by Hy . (clearly Hyg = ker f).

DEFINITION 2. A triod given by the parameters z, r, f and u is the set
(B(z,r) N Hy p(z)) Uzu.

It will be denoted by T'(x,r, f,u). The point x will be called the emanation
point, the number r will be called the radius of the triod and the segment
joining the points x and v will be called a handle.

Clearly if A # 0, then Hy ¢,y = Hxpaf(x), 1-€- without loss of generality we
may assume that the norm of f equals 1.
We will below use the following simple lemmas.

LEMMA 3. If A is an uncountable set and h : A — (0,400) is an arbitrary
function, then there exists a real positive number d such that card{a € A :

h(a) > d} > .

PROOF. Since A = J 4, where
Ap={a€ A:h(a) > -}

then A,, must be uncountable for at least one n. O

1
n

LEMMA 4. Let x,y,z € E and d > 0 be such that

d
(1) max{llz —yll, [lz —z[l, [ly — 2lI} < §

and f,g,h € E*. If the sets B(x,d)ﬂvaf(w), By, d)ﬂHgg(y), B(z,d)ﬂHm(z)
are pairwise disjoint, then

(2) Yoz & Hy oy N, 2 & Hy gy A2,y & Hp (2,
(3) Hf’f(x)ﬂyz#Z\/Hgyg(y)ﬂxz#Q\/Hhﬁ(z)ﬁmy;é@.

PROOF. Property follows from the fact that the centers are pairwise
different and from the assumed inequality.
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Suppose now that does not hold. This implies in particular, that x, y, z
are not co-linear and then dimlin{z —y, z — z} = 2. Denote H = lin{z —y, z —
2} +x, Ly = HO Hy g3y, Ly = HN Hg gy, L. = H N Hy, ). Our hypothesis
now implies that

(4) L:Nyz=@ANLyNxz=NL. Ny = 2.

Because z,y,z € H, then from we obtain dim L, = dim L, = dim L, = 1.
Then implies that the lines L., L,, L, cannot be parallel. Hence one of
them — say L, — cuts L, and L.. We set: L, N L, = a, L, N L, = b. Since ,
then a # b. Because the considered sets are disjoint by the assumptions of the
Lemma, there is [la —z|| > d or la —y[| > d and [[b—=| > d or |[b—z| > d.
Since , then

. 3d
(5)  min{fla—z|,la =yl lla ==, o ==l o=yl [b - 2]} = -

Now we will check that L, N L, # @. Suppose that L, N L, = &. Hence
implies « € ab. In consequence, (L, + (x —y)) Nyz # @. This intersection
is a single-point set; denote it by s. Because the lines Ly, L., L, + (z —y) are
parallel and and hold, then ||z — s| > %. But this is impossible, since

d d
o= sl <l =gl + ly = sl < G+ ly = 2l < 5.

We denote the intersection L, N L. by c. Clearly ¢ # a and ¢ # b as well
: d
as min{flc — x|, le —y, le — 2]} > .

We observe that (4)) implies x € abor y € acor z € be. Because of symmetry
it is sufficient to consider the case of x € ab. Without loss of generality we may
assume that ||a — z|| > ||b — z||, thus 2 ||a — z|| > ||b — z|| + || — z|| = ||a — b].
In consequence
la — bl
6 .
) Ja—a] =

Now we denote by ¢ and b the points such that: ¢ € L,, c¢d||xy and
v e Ly, bv||zy.

We now observe that ¢ ¢ ya, hence it is sufficient to consider the following
cases:

1. y € ca.
Now there are two possibilities:
(a) be .
Thus zy NbY # @. Let us denote the common point by ¢. Then
from , @ and the Tales theorem, we obtain
/ /
=¥l o=Vl _la=bl _,

¢ =yl le—=~
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In consequence, [|b— || < 4. Thus by (5) there is

3d d
ZS\Ib—yllé\lb—t!\+llt—y\\<IIb—b’\\+llt—y!!§§+Ilt—yll.

This leads to the contradiction, since

NS

d
1 <lt=yl<llz-yl=

(b) ¢ € bx.
Hence zy Ned # @. To obtain a contradiction, it is sufficient to
repeat the reasoning from 1(a) replacing b by ¢ and b by ¢ and
using the fact that in this case ||a — /|| < [ja — b .
2. a € yc.
In this case zy N bV # @ and we use the same argument as in 1(a).

O
We will also use the following theorem (its proof can be found in [2]).

THEOREM 5. If X s a topological space satisfying the second countabil-
ity aziom, then for each set A C X the set of points in A which are not its
condensation points is countable.

THEOREM 6. If E is a real separable Banach space, then any family of
pairwise disjoint triods in E is countable.

PROOF. Suppose that F is a separable Banach space and let & be an un-
countable family of pairwise disjoint triods.

It follows from Lemma [3] that there exist d > 0 and an uncountable subset
&1 of & such that all triods in & have the radius d.

Without loss of generality we may assume that all triods in &7 have the
radius equal d and are still pairwise disjoint.

Observe that the set & can be written as the union of two sets
{T(x,d, f,u) € 1 5 f(@) < f()} and {T(z,d, f.u) € S ¢ f(z) > Fu)}.
Hence, at least one of them (without loss of generality we assume that the
first one) is uncountable. It follows from Lemma [3| that there exists 6 > 0
such that the set Sy = {T'(z,d, f,u) € 1 : f(u —x) > J§} is uncountable.
Since the triods are pairwise disjoint, then the set of their emanation points
G={r € E:T(x,d, f,u) € 2} is uncountable. By Theorem |5 there exists
(in G) an emanation point which is its condensation point. Consider the ball
with the center at this point and with the radius g. It follows from Lemma
that there exist the triods T'(0,d, g, w) and T'(z,d, f,u) in J9 (using a transla-
tion if necessary, we may assume that the origin is the first emanation point)

such that g(x) > 0. Hence g(w) > ¢ and 0 < ||z < $.
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Notice that § < d. Indeed, since ||g|| = 1, g(w) > ¢, by the definition of the
radius it follows that

7) 5 < glw) < [lw = d.
Moreover,
©) o) < loll <,
9(x) 1
®) ow) < 1

Observe that © ¢ Rw and consider the following cases:

1. Rw and Hy y(,) have exactly one common point.
We denote this point by w. Then there exists A € R such that

(10) w = Aw.
Hence w € Hy y(,) and
(11) [wl| = |Ald,
(12) g) = Ag(w).
(a) 0< A< 3.
In consequence, using , and , we obtain
_ _ 0 d
Iz~ < ol + ] < § + 5 <d.

But w € Hy f(;), hence w € T(x,d, f,u). This is impossible, since
the triods are pairwise disjoint (clearly, w € T'(0,d, g, w)).
(b) <Al
Since g(w) # g(x), hence R(w — x) + = and ker g have exactly
one common point; let us denote it by ¢. Let a € R be such that
w=1t+ a(xr—t). Hence |w —t|| = |a||lz — t|| and g(w) = ag(x).
In consequence,
_ ot

()| = 90,

In consequence, using , and @D, we obtain
g(@) [w -t _ g(z) M-t _ [IAw —¢]
lg(w)| [Alg(w) 4 Al

le =t =
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Therefore, using and , we obtain

e <l + e ol < 2+ 4 M 2 1
4 2 2 2
HtH <d.
In consequence, since t € ker g, we obtain ¢t € T'(0,d, g, w).
Moreover,
le —t|| < - + H;H < d.

Then, since t € Hy f(y), we obtaln t € T(x,d, f,u). This is impos-
sible, since the triods are pairwise disjoint.
(c) -3 <A <o.
Hence ||w]| < d and g(w) < 0. Let t be the intersection point of
the segment 2w and kerg. Since |[w] < 4, by there also is
[t < 4. Therefore t € T(z,d, f,u) NT(0,d, g, w).
2. Rw and Hy y(,) are disjoint.

Denote w = ;7((76))10 then g(w) = g(z). Observe that

(13) r—w € (Rw+x)Nkerg ARw 42 C Hy f(z).-
Moreover,

. g(x) . _d
14 w|| = d< —,
(1) jal = 45d<
0 d _d
15 — @ °r8ce
(13 el < 2+d<?

It follows from and that z—w € T'(x,d, f,u), but from
and there follows x —w € T'(0,d, g, w). This is impossible, since the

triods are pairwise disjoint.
3. Rw contains in Hy ¢(,).
In this situation, 0 € Hy ;). Because dist(z,0) < g < %, then
0 € T(x,d, f,u). Thisis impossible, since the triods are pairwise disjoint.
O

REMARK 7. In the proof of Theorem|[6] the form of “the handle” (a segment)
is used in the case 1(a) only, i.e. when Rw and Hy, f(z) have exactly one point

in common and this point is of the form A\w for a A € (0, %)

We can slightly generalize the definition of the triod.

Let (E,|'||) be a real Banach space, let E* be the conjugate of E and
let z,u € E, r > 0, f € E*, p € Elob for some a,b € R, a < b such
that f(z) # f(u), ||t —ul = r, ¢ is continuous and ¢(a) = z, ¢(b) = wu,
Fle() # f(x) (p(t) ¢ Hy,g()) for t € (a,b].
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DEFINITION 8. A generalized triod given by the parameters x, r, f, u and
© is the set
(B(z,r) N Hy () U{e(t) : t € [a,b]}.
It will be denoted by T'(z, 7, f,u, ¢).

The main theorem of this paper is the following one.

THEOREM 9. If E is a real separable Banach space, then each family of
pairwise disjoint generalized triods in E is countable.

PROOF. Suppose that F is a separable Banach space and let & be an un-
countable family of pairwise disjoint generalized triods.
As before in Theorem[6] by Lemma[3], we may then without loss of generality
assume that all generalized triods in & have radii greater or equal to d for some
. . . . d
d > 0. Fix an arbitrary triod T'(z,r, f,u,¢) and consider the sphere S(z, §).
Then

d d
€ (@) { o~ pl0)] = 5 AV € () o= ol0] < 5 |
Consider
d
S =A{T(w,r', ful,0) : T(w,r, fru,0) € S AT =5 Al = ()}

This is a family of pairwise disjoint generalized triods.

Repeating the reasoning from the proof of Theorem [, without loss of gen-
erality, we may assume that for all generalized triods T'(z,r/, f,u/, ¢) in ' the
inequality f(u'—x) > § holds for some fixed 0 < § < d. It follows from Lemma
and Theoremthat there exist triods T'(0, %, g,w'; ) and Tz, %, fiu ) in
Y’ such that g(z) > 0 and 0 < |jz]| < 3.

Notice that it is sufficient to consider the case of Rw' N Hy ¢, = {\w'}
for A € (0, %) In all other cases (Remark , we can repeat the reasoning from
the proof of Theorem [} Since 6 and w’ lie on opposite sides of the hyperplane
H¢ ¢, hence the curve joining € and w’ has the common point, say ¢, with

f.f (@)
this hyperplane. Since the entire curve is contained in the closed ball B(6, %),
hence

6 d
—t]<-+-<d
||z H<4+2<

which is impossible, since the generalized triods are pairwise disjoint. O
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