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A GEOMETRICAL VERSION OF THE MOORE THEOREM IN

THE CASE OF INFINITE DIMENSIONAL BANACH SPACES

by Marcin Ziomek

Abstract. In this paper the Author shows that if one de�nes a triod in a
suitable way, then it is possible to prove the Moore theorem in the in�nite
dimensional case.

1. Introduction. The classical Moore theorem is a certain re�nement of
the Suslin property of separable spaces (each family of pairwise disjoint open
sets is countable). In [4] Moore has formulated the following property:

Each family of triods in R2 is countable.

A triod is a set homeomorphic with [−1, 1]×{0}∪{0}×[0, 1]. The generalization
of this theorem for Rn was proved by Young in [5]. By a �triod� in Rn one means
a set which is homeomorphic to �an umbrella� (by an n-dimensional umbrella

we understand the union of an n-ball Q and a simple arc L such that the set
Q ∩ L contains exactly one point lying in the set Q\intQ and being an end
point of L). Another version of such properties was proved by Bing and Borsuk
in [1].

A direct generalization to the case of in�nite dimensional Banach spaces is
not true. Indeed, let us consider the space l2. Let

B = {x ∈ l2 : x1 = 0 ∧ ‖x‖ ≤ 1} ∪ {x ∈ l2 : x1 ∈ [0, 1] ∧ ∀k ≥ 2 xk = 0}.

If one understands a triod as a set, homeomorphic (or even isometric) to B,
then the property from the Moore theorem does not hold. Indeed, consider
the hyperplanes Hc = {x ∈ l2 : x1 = c} and c ∈ R. It follows from the Riesz
theorem, that H0 is isometric to l2. Let v = (c, 0, . . . ), then Hc = H0 + v and
thus Tv(H0) = Hc, where Tv : l2 → l2 and Tv(x) = x+v. Hence we have a triod
in each hyperplane Hc. But these hyperplanes form an uncountable family of
pairwise disjoint sets.
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However, it is possible to prove a kind of Moore theorem in in�nite dimen-
sional case if one considers a more �rigid� notion of the triod.

2. The main theorem. Let (E, ||.||) be a real Banach space, let E∗ be
the conjugate of E and let x, u ∈ E, r > 0, f ∈ E∗ such that f(x) 6= f(u) and
‖x− u‖ = r. Let B(x, r) be an (open) ball with the center at x and the radius
r, and let ab denote the segment with ends a and b.

Definition 1. The hyperplane de�ned by a functional f and a constant c
is the set {y ∈ E : f(y) = c}. We will denote it by Hf,c (clearly Hf,0 = ker f).

Definition 2. A triod given by the parameters x, r, f and u is the set(
B(x, r) ∩Hf,f(x)

)
∪ xu.

It will be denoted by T (x, r, f, u). The point x will be called the emanation
point, the number r will be called the radius of the triod and the segment
joining the points x and u will be called a handle.

Clearly if λ 6= 0, then Hf,f(x) = Hλf,λf(x), i.e. without loss of generality we
may assume that the norm of f equals 1.

We will below use the following simple lemmas.

Lemma 3. If A is an uncountable set and h : A→ (0,+∞) is an arbitrary

function, then there exists a real positive number d such that card{a ∈ A :
h(a) ≥ d} > ℵ0.

Proof. Since A =
⋃
An, where

An = {a ∈ A : h(a) ≥ 1
n
}

then An must be uncountable for at least one n.

Lemma 4. Let x, y, z ∈ E and d > 0 be such that

(1) max{‖x− y‖ , ‖x− z‖ , ‖y − z‖} ≤ d

4

and f, g, h ∈ E∗. If the sets B(x, d)∩Hf,f(x), B(y, d)∩Hg,g(y), B(z, d)∩Hh,h(z)

are pairwise disjoint, then

y, z /∈ Hf,f(x) ∧ x, z /∈ Hg,g(y) ∧ x, y /∈ Hh,h(z),(2)

Hf,f(x) ∩ yz 6= ∅ ∨Hg,g(y) ∩ xz 6= ∅ ∨Hh,h(z) ∩ xy 6= ∅.(3)

Proof. Property (2) follows from the fact that the centers are pairwise
di�erent and from the assumed inequality.
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Suppose now that (3) does not hold. This implies in particular, that x, y, z
are not co-linear and then dim lin{x− y, x− z} = 2. Denote H = lin{x− y, x−
z}+ x, Lx = H ∩Hf,f(x), Ly = H ∩Hg,g(y), Lz = H ∩Hh,h(z). Our hypothesis
now implies that

(4) Lx ∩ yz = ∅ ∧ Ly ∩ xz = ∅ ∧ Lz ∩ xy = ∅.
Because x, y, z ∈ H, then from (2) we obtain dimLx = dimLy = dimLz = 1.
Then (4) implies that the lines Lx, Ly, Lz cannot be parallel. Hence one of
them � say Lx � cuts Ly and Lz. We set: Lx ∩Ly = a, Lx ∩Lz = b. Since (4),
then a 6= b. Because the considered sets are disjoint by the assumptions of the
Lemma, there is ‖a− x‖ ≥ d or ‖a− y‖ ≥ d and ‖b− x‖ ≥ d or ‖b− z‖ ≥ d.
Since (1), then

(5) min{‖a− x‖ , ‖a− y‖ , ‖a− z‖ , ‖b− x‖ , ‖b− y‖ , ‖b− z‖} ≥ 3d
4
.

Now we will check that Ly ∩ Lz 6= ∅. Suppose that Ly ∩ Lz = ∅. Hence
(4) implies x ∈ ab. In consequence, (Ly + (x− y)) ∩ yz 6= ∅. This intersection
is a single-point set; denote it by s. Because the lines Ly, Lz, Ly + (x− y) are
parallel and (4) and (5) hold, then ‖x− s‖ ≥ 3d

4 . But this is impossible, since

‖x− s‖ ≤ ‖x− y‖+ ‖y − s‖ < d

4
+ ‖y − z‖ ≤ d

2
.

We denote the intersection Ly ∩ Lz by c. Clearly c 6= a and c 6= b as well

as min{‖c− x‖ , ‖c− y‖ , ‖c− z‖} ≥ 3d
4 .

We observe that (4) implies x ∈ ab or y ∈ ac or z ∈ bc. Because of symmetry
it is su�cient to consider the case of x ∈ ab. Without loss of generality we may
assume that ‖a− x‖ ≥ ‖b− x‖, thus 2 ‖a− x‖ ≥ ‖b− x‖+ ‖a− x‖ = ‖a− b‖.
In consequence

(6)
‖a− b‖
‖a− x‖

≤ 2.

Now we denote by c′ and b′ the points such that: c′ ∈ Lx, cc
′||xy and

b′ ∈ Ly, bb
′||xy.

We now observe that c /∈ ya, hence it is su�cient to consider the following
cases:

1. y ∈ ca.
Now there are two possibilities:

(a) b ∈ c′x.
Thus zy ∩ bb′ 6= ∅. Let us denote the common point by t. Then
from (1), (6) and the Tales theorem, we obtain

‖b− b′‖
d
4

≤ ‖b− b′‖
‖x− y‖

=
‖a− b‖
‖a− x‖

≤ 2.
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In consequence, ‖b− b′‖ ≤ d
2 . Thus by (5) there is

3d
4
≤ ‖b− y‖ ≤ ‖b− t‖+ ‖t− y‖ <

∥∥b− b′
∥∥ + ‖t− y‖ ≤ d

2
+ ‖t− y‖ .

This leads to the contradiction, since

d

4
< ‖t− y‖ ≤ ‖z − y‖ ≤ d

4
.

(b) c′ ∈ bx.
Hence zy ∩ cc′ 6= ∅. To obtain a contradiction, it is su�cient to
repeat the reasoning from 1(a) replacing b by c′ and b′ by c and
using the fact that in this case ‖a− c′‖ ≤ ‖a− b‖ .

2. a ∈ yc.
In this case zy ∩ bb′ 6= ∅ and we use the same argument as in 1(a).

We will also use the following theorem (its proof can be found in [2]).

Theorem 5. If X is a topological space satisfying the second countabil-

ity axiom, then for each set A ⊂ X the set of points in A which are not its

condensation points is countable.

Theorem 6. If E is a real separable Banach space, then any family of

pairwise disjoint triods in E is countable.

Proof. Suppose that E is a separable Banach space and let = be an un-
countable family of pairwise disjoint triods.

It follows from Lemma 3 that there exist d > 0 and an uncountable subset
=1 of = such that all triods in =1 have the radius d.

Without loss of generality we may assume that all triods in =1 have the
radius equal d and are still pairwise disjoint.

Observe that the set =1 can be written as the union of two sets
{T (x, d, f, u) ∈ =1 : f(x) < f(u)} and {T (x, d, f, u) ∈ =1 : f(x) > f(u)}.
Hence, at least one of them (without loss of generality we assume that the
�rst one) is uncountable. It follows from Lemma 3 that there exists δ > 0
such that the set =2 = {T (x, d, f, u) ∈ =1 : f(u − x) ≥ δ} is uncountable.
Since the triods are pairwise disjoint, then the set of their emanation points
G = {x ∈ E : T (x, d, f, u) ∈ =2} is uncountable. By Theorem 5, there exists
(in G) an emanation point which is its condensation point. Consider the ball
with the center at this point and with the radius δ

8 . It follows from Lemma 4
that there exist the triods T (θ, d, g, w) and T (x, d, f, u) in =2 (using a transla-
tion if necessary, we may assume that the origin is the �rst emanation point)
such that g(x) > 0. Hence g(w) ≥ δ and 0 < ‖x‖ < δ

4 .
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Notice that δ ≤ d. Indeed, since ‖g‖ = 1, g(w) ≥ δ, by the de�nition of the
radius it follows that

(7) δ ≤ g(w) ≤ ‖w‖ = d.

Moreover,

g(x) ≤ ‖x‖ < δ

4
,(8)

g(x)
g(w)

<
1
4
.(9)

Observe that x /∈ Rw and consider the following cases:

1. Rw and Hf,f(x) have exactly one common point.
We denote this point by w. Then there exists λ ∈ R such that

(10) w = λw.

Hence w ∈ Hf,f(x) and

‖w‖ = |λ| d,(11)

g(w) = λg(w).(12)

(a) 0 < λ < 1
2 .

In consequence, using (8), (11) and (7), we obtain

‖x− w‖ ≤ ‖x‖+ ‖w‖ < δ

4
+
d

2
< d.

But w ∈ Hf,f(x), hence w ∈ T (x, d, f, u). This is impossible, since
the triods are pairwise disjoint (clearly, w ∈ T (θ, d, g, w)).

(b) 1
2 ≤ |λ|.
Since g(w) 6= g(x), hence R(w − x) + x and ker g have exactly
one common point; let us denote it by t. Let α ∈ R be such that
w = t+ α(x− t). Hence ‖w − t‖ = |α| ‖x− t‖ and g(w) = αg(x).
In consequence,

|g(w)| = ‖w − t‖
‖x− t‖

g(x).

In consequence, using (10), (12) and (9), we obtain

‖x− t‖ =
g(x) ‖w − t‖

|g(w)|
=
g(x) ‖λw − t‖
|λ| g(w)

<
‖λw − t‖

4 |λ|

≤ ‖w‖
4

+
‖t‖
4 |λ|

≤ d

4
+
‖t‖
2
.
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Therefore, using (8) and (7), we obtain

‖t‖ ≤ ‖x‖+ ‖x− t‖ < δ

4
+
d

4
+
‖t‖
2
≤ d

2
+
‖t‖
2

‖t‖ < d.

In consequence, since t ∈ ker g, we obtain t ∈ T (θ, d, g, w).
Moreover,

‖x− t‖ < d

4
+
‖t‖
2

< d.

Then, since t ∈ Hf,f(x), we obtain t ∈ T (x, d, f, u). This is impos-
sible, since the triods are pairwise disjoint.

(c) −1
2 < λ ≤ 0.

Hence ‖w‖ < d
2 and g(w) ≤ 0. Let t be the intersection point of

the segment xw and ker g. Since ‖w‖ < d
2 , by (8) there also is

‖t‖ < d
2 . Therefore t ∈ T (x, d, f, u) ∩ T (θ, d, g, w).

2. Rw and Hf,f(x) are disjoint.

Denote ŵ = g(x)
g(w)w; then g(ŵ) = g(x). Observe that

(13) x− ŵ ∈ (Rw + x) ∩ ker g ∧ Rw + x ⊂ Hf,f(x).

Moreover,

‖ŵ‖ =
g(x)
g(w)

d <
d

4
,(14)

‖x− ŵ‖ <
δ

4
+
d

4
≤ d

2
.(15)

It follows from (13) and (14) that x−ŵ ∈ T (x, d, f, u), but from (13)
and (15) there follows x− ŵ ∈ T (θ, d, g, w). This is impossible, since the
triods are pairwise disjoint.

3. Rw contains in Hf,f(x).

In this situation, θ ∈ Hf,f(x). Because dist(x, θ) < δ
4 ≤ d

4 , then
θ ∈ T (x, d, f, u). This is impossible, since the triods are pairwise disjoint.

Remark 7. In the proof of Theorem 6, the form of �the handle� (a segment)
is used in the case 1(a) only, i.e. when Rw and Hf,f(x) have exactly one point

in common and this point is of the form λw for a λ ∈ (0, 1
2).

We can slightly generalize the de�nition of the triod.
Let (E, ||.||) be a real Banach space, let E∗ be the conjugate of E and

let x, u ∈ E, r > 0, f ∈ E∗, ϕ ∈ E[a,b] for some a, b ∈ R, a < b such
that f(x) 6= f(u), ‖x− u‖ = r, ϕ is continuous and ϕ(a) = x, ϕ(b) = u,
f(ϕ(t)) 6= f(x) (ϕ(t) /∈ Hf,f(x)) for t ∈ (a, b].
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Definition 8. A generalized triod given by the parameters x, r, f, u and
ϕ is the set (

B(x, r) ∩Hf,f(x)

)
∪ {ϕ(t) : t ∈ [a, b]} .

It will be denoted by T (x, r, f, u, ϕ).

The main theorem of this paper is the following one.

Theorem 9. If E is a real separable Banach space, then each family of

pairwise disjoint generalized triods in E is countable.

Proof. Suppose that E is a separable Banach space and let = be an un-
countable family of pairwise disjoint generalized triods.

As before in Theorem 6, by Lemma 3, we may then without loss of generality
assume that all generalized triods in = have radii greater or equal to d for some
d > 0. Fix an arbitrary triod T (x, r, f, u, ϕ) and consider the sphere S(x, d

2).
Then

∃c ∈ (a, b)
{
‖x− ϕ(c)‖ =

d

2
∧ ∀t ∈ (a, c) ‖x− ϕ(t)‖ < d

2

}
.

Consider

=′ = {T (x, r′, f, u′, ϕ) : T (x, r, f, u, ϕ) ∈ = ∧ r′ =
d

2
∧ u′ = ϕ(c)}.

This is a family of pairwise disjoint generalized triods.
Repeating the reasoning from the proof of Theorem 6, without loss of gen-

erality, we may assume that for all generalized triods T (x, r′, f, u′, ϕ) in =′ the
inequality f(u′−x) ≥ δ holds for some �xed 0 < δ ≤ d. It follows from Lemma
4 and Theorem 5 that there exist triods T (θ, d

2 , g, w
′, ψ) and T (x, d

2 , f, u
′, ϕ) in

=′ such that g(x) > 0 and 0 < ‖x‖ < δ
4 .

Notice that it is su�cient to consider the case of Rw′ ∩ Hf,f(x) = {λw′}
for λ ∈ (0, 1

2). In all other cases (Remark 7), we can repeat the reasoning from
the proof of Theorem 6. Since θ and w′ lie on opposite sides of the hyperplane
Hf,f(x), hence the curve joining θ and w′ has the common point, say t, with

this hyperplane. Since the entire curve is contained in the closed ball B(θ, d
2),

hence

‖x− t‖ < δ

4
+
d

2
< d

which is impossible, since the generalized triods are pairwise disjoint.
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