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THE DEGREE OF THE INVERSE OF A POLYNOMIAL

AUTOMORPHISM

by Sabrina Brusadin ∗ and Gianluca Gorni

Abstract. Let F : Cn → Cn be an invertible map for which both F and
F−1 are polynomials. Then deg F−1 ≤ (deg F )n−1. This is a well-known
result. The proof that we give here, at least for low n, does not depend on
advanced algebraic geometry.

1. Introduction. In his 1939 paper [4] O.H. Keller introduced what is
known as Jacobian Conjecture: prove or disprove that any polynomial map-
ping from Cn to itself with everywhere nonvanishing Jacobian determinant is
necessarily invertible. The conjecture has attracted quite a number of mathe-
maticians over the years, but it is still unanswered, even in dimension n = 2.
A recent up-to-date report on the subject is van den Essen’s book [3].

A polynomial mapping from Cn to itself which has a polynomial inverse is
called a polynomial automorphism. Among the encouraging results in favour of
the Jacobian conjecture there are the known facts that an injective polynomial
mapping is necessarily an automorphism, together with a sharp estimate on the
degree of the inverse. Both these results have been long known among algebraic
geometers, with proofs that are rather inaccessible to outsiders. W. Rudin
in [7] (1995) gave a proof of the invertibility result that only draws from basic
complex analysis and algebra. Here we try to do the same for the degree
estimate.

The degree of a polynomial mapping F = (F1, . . . , Fn) of Cn into itself
is defined as the largest of the degrees of the components F1, . . . , Fn. The
estimate that we are going to prove is that if F is a polynomial automorphism
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of Cn then

(1) deg F−1 ≤ (deg F )n−1.

The ingredients of our proof are some lemmas on the sets of zeros of holo-
morphic functions, straightforward consequences of Weierstrass’ preparation
theorem, and Bézout’s classic theorem: if a system of m polynomial equations
in m variables has a finite number of solutions, then this number is not larger
than the product of the degrees of the polynomials (for a general proof see
 Lojasiewicz [5]). Actually, for the proof of estimate (1) in dimension n, only
Bézout’s theorem in dimension n− 1 is needed. This means that when n = 2
one can dispense with Bézout’s theorem altogether and just use the Fundamen-
tal Theorem of Algebra. When n = 3, we need Bézout’s theorem in the plane,
a case for which elementary proofs are known, using the concept of resultant
of two polynomials (see, e.g., [2] and [9]).

Earlier proofs of the results, that we are aware of, can be found in Bass,
Connell and Wright [1], Rusek and Winiarski [8], P loski [6], Yu [10] (which is
rather simple and also uses Bézout’s theorem) and van den Essen [3].

2. Complex Analysis preliminaries. The following facts from Com-
plex Analysis are easy, and something similar has probably already appeared
in textbooks. We provide a proof for the convenience of the reader.

Proposition 1. Let n ≥ 2, m ≥ 1, Ω′ be a nonempty open subset of Cn−1,
a0, . . . , am : Ω′ → C be holomorphic functions, with am not identically 0. Define

(2) f(z′, zn) := a0(z′) + a1(z′)zn + · · ·+ am(z′)zm
n

for z′ ∈ Cn−1, zn ∈ C.

Then there exist a nonempty open subset Ω′′ of Ω′ and holomorphic functions
α1, . . . , αM : Ω′′ → C and integers m1, . . . ,mM such that α1(z′), . . . , αM (z′)
are pairwise distinct for any z′ ∈ Ω′′ and f factorizes as

(3) f(z′, zn) = am(z′)
M∏

k=1

(
zn − αk(z′)

)mk for all z′ ∈ Ω′′, zn ∈ C.

Proof. We can assume that am 6= 0 on all of Ω′ (otherwise remove from
Ω′ the set of zeros of am, which is closed with empty interior). Our claim
is obvious if m = 1. Suppose it is true for all r < m and let us prove it
for r = m. The set of zeros of f is nonempty. Let (z̄′, z̄n) ∈ Ω′ ×C a zero of f
with minimum order k1 ≥ 1 with respect to zn. By Weierstrass preparation
theorem, possibly after shrinking Ω′, we can factorize f as

(4) f(z′, zn) = p(z′, zn)h(z′, zn) ,
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where

(5) p(z′, zn) = b0(z′) + · · ·+ bk1−1(z′)zk1−1
n + zk1

n ,

h, b1, . . . , bk1−1 are holomorphic, and p and h share no zero. Now, for all z′

the roots of the polynomial mapping zn 7→ p(z′, zn) must all coincide, because
otherwise there would be a zero of p, and hence of f , with multiplicity strictly
less than k1 with respect to zn. Call this common root α1(z′). The function
α1 is holomorphic, and we can write

(6) f(z′, zn) =
(
zn − α1(z′)

)k1h(z′, zn).

The function h is seen now to be obtained by dividing the one-variable poly-
nomial zn 7→ f(z′, zn) k1 times by the monomial zn − α1(z′). Hence h is a
function of the same form of f :

(7) h(z′, zn) = b0(z′) + b1(z′)zn + · · ·+ bm−k1(z′)zm−k1
n ,

with bi holomorphic and bm−k1 = am. We can apply the induction hypothesis
on h and get the result.

Proposition 2. Let f : Cn → C be an n-variable polynomial whose gradi-
ent never vanishes. Then there exists z̄′ ∈ Cn−1 such that all zeros of zn 7→
f(z̄′, zn) are simple.

Proof. Let m be the degree of f with respect to zn. If m = 0 the claim
is trivially true. If m > 0 we can apply the previous Proposition, thus there
exists a nonempty open set Ω′ ⊂ Cn−1 and holomorphic, everywhere distinct
functions α1, . . . , αM : Ω′ → C, and integers m1, . . . ,mM , such that

(8) f(z′, zn) = am(z′)
M∏

k=1

(
zn − αk(z′)

)mk

over Ω′ × C; am is polynomial and does not vanish in Ω′. For no k can the
exponent mk be larger than 1, because otherwise the gradient of f would vanish
at the points of the form (z′, αk(z′)), as one can readily verify by differentiation.
Hence for any z′ ∈ Ω the one-variable polynomial zn 7→ f(z′, zn) has m distinct
roots.

3. Estimate of the degree of the inverse.

Theorem 3. Let F : Cn → Cn be a polynomial automorphism. Then

(9) deg F−1 ≤ (deg F )n−1.
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Proof. Denote by (z1, . . . , zn) the variables in Cn, F = (F1, . . . , Fn),
F−1 = G = (G1, . . . , Gn). Up to a linear change of coordinates, we can assume
that the degree of G1 with respect to zn coincides with the full degree of G:

(10) deg G = deg G1 = degzn
G1 =: m ≥ 1.

The gradient of G1 never vanishes, because it is the first row of the Jacobian
matrix of G. Hence we can apply the previous Proposition to G1: there exists
z̄′ ∈ Cn−1 such that the number of distinct roots of the one-variable polynomial
zn 7→ G1(z̄′, zn) is the same as its degree:

(11) m = deg G = degzn
G1 = #

{
zn ∈ C : G1(z̄′, zn) = 0

}
.

(#A means the cardinality of the set A). Since G is bijective and G(F (w)) = w,
we can write

m = #
{
zn ∈ C : G1(z̄′, zn) = 0

}
= #

{
(z′, zn) ∈ Cn−1 × C : z′ = z̄′, G1(z̄′, zn) = 0

}
= #G

({
(z′, zn) ∈ Cn−1 × C : z′ = z̄′, G1(z̄′, zn) = 0

})
= #

{
w ∈ Cn : ∃(z′, zn) s.t. w = G(z′, zn), z′ = z̄′, G1(z̄′, zn) = 0

}
= #

{
w ∈ Cn : ∃(z′, zn) s.t. (z′, zn) = F (w), z′ = z̄′, G1(z̄′, zn) = 0

}
= #

{
w ∈ Cn : ∃zn s.t. (F1(w), . . . , Fn−1(w)) = z̄′,

Fn(w) = zn, G1(F (w)) = 0
}

= #
{
w ∈ Cn : (F1(w), . . . , Fn−1(w)) = z̄′, w1 = 0

}
= #

{
(w2, . . . , wn) ∈ Cn−1 : F1(0, w2, . . . , wn) = z̄1, . . . ,

Fn−1(0, w2, . . . , wn) = z̄n−1

}
.

This means that the degree of G is the same as the number of solutions of
the following system of n − 1 polynomial equations in the n − 1 unknowns
w2, . . . , wn:

(12)


F1(0, w2, . . . , wn) = z̄1

...
Fn−1(0, w2, . . . , wn) = z̄n−1

(z̄1, . . . , z̄n−1 are fixed). Hence the number of solutions of this system is finite,
and by Bézout’s theorem

(13) m ≤ (deg F1)(deg F2) · · · (deg Fn−1) ≤ (deg F )n−1.
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4. Keller O.H., Ganze Cremona-Transformationen, Monatsh. Math. Phis., 47 (1939), 299–

306.
5.  Lojasiewicz S., Introduction to complex analytic geometry, Birkhäuser Verlag, Basel, 1991.
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