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FIRST-ORDER DIFFERENTIAL INVARIANTS OF THE

SPLITTING SUBGROUPS OF THE POINCARÉ GROUP P (1, 4)

by V.M. Fedorchuk and V.I. Fedorchuk

Abstract. The functional bases of the first-order differential invariants
for the splitting subgroups of the Poincaré group P (1, 4) are constructed.
Some of the results obtained are presented.

The differential invariants of Lie groups of point transformations play an
important role in geometry (see, for example, [14]), group analysis of differen-
tial equations (see, for example, [12, 14, 15]), etc. In particular, with the help
of these invariants we can construct differential equations with non-trivial sym-
metry groups. Differential invariants have been studied in many works (see, for
example, [8, 9, 11–15, 17–19]). The present paper is devoted to the construc-
tion of functional bases of the first-order differential invariants for the splitting
subgroups of the generalized Poincaré group P (1, 4). The group P (1, 4) is the
group of rotations and translations of the five-dimensional Minkowski space
M(1, 4). This group has many applications in theoretical and mathematical
physics (see, for example, [5, 7, 10]). In order to present some of the results
obtained, we consider the Lie algebra of the group P (1, 4).

1. The Lie algebra of the group P (1, 4) and its non-conjugate
subalgebras.

The Lie algebra of the group P (1, 4) is given by the 15 basis elements
Mµν = −Mνµ (µ, ν = 0, 1, 2, 3, 4) and P ′

µ (µ = 0, 1, 2, 3, 4), satisfying the
commutation relations[

P ′
µ, P ′

ν

]
= 0,

[
M ′

µν , P
′
σ

]
= gµσP ′

ν − gνσP ′
µ,[

M ′
µν ,M

′
ρσ

]
= gµρM

′
νσ + gνσM ′

µρ − gνρM
′
µσ − gµσM ′

νρ,



22

where g00 = −g11 = −g22 = −g33 = −g44 = 1, gµν = 0, if µ 6= ν. Here and in
what follows, M ′

µν = iMµν .
Let us consider the following representation of the Lie algebra of the group

P (1, 4):

P ′
0 =

∂

∂x0
, P ′

1 = − ∂

∂x1
, P ′

2 = − ∂

∂x2
, P ′

3 = − ∂

∂x3
,

P ′
4 = − ∂

∂x4
, M ′

µν = −
(
xµP ′

ν − xνP
′
µ

)
.

Further, we will use the following basis elements:

G = M ′
40, L1 = M ′

32, L2 = −M ′
31, L3 = M ′

21,

Pa = M ′
4a −M ′

a0, Ca = M ′
4a + M ′

a0, (a = 1, 2, 3),

X0 =
1
2

(
P ′

0 − P ′
4

)
, Xk = P ′

k (k = 1, 2, 3), X4 =
1
2

(
P ′

0 + P ′
4

)
.

For the study of the subgroup structure of the group P (1, 4), we used the
method proposed in [16]. Splitting subgroups of the group P (1, 4) have been
found in [1, 2, 4].

One of the important consequences of the study of the non-conjugate sub-
algebras of the Lie algebra of the group P (1, 4) is that the Lie algebra of the
group P (1, 4) contains, as subalgebras, the Lie algebra of the Poincaré group
P (1, 3), and the Lie algebra of the extended Galilei group G̃(1, 3) (see also [7]).
The Lie algebra of the group G̃(1, 3) is generated by the following basis ele-
ments:

L1, L2, L3, P1, P2, P3, X0, X1, X2, X3, X4.

2. The first-order differential invariants of splitting subgroups of
the group P (1, 4).

For all splitting subgroups of the group P (1, 4), the functional bases of
the first-order differential invariants are constructed. In the construction of
the differential invariants, it has turned out that different splitting subalgebras
of the Lie algebra of the group P (1, 4) may have the same functional basis
of the first-order differential invariants. Consequently, there is no one-to-one
correspondence between non-conjugate splitting subalgebras of the Lie algebra
of the group P (1, 4) and their respective functional bases of the first-order
differential invariants. Moreover, some of the functional bases (which are of
the same dimension) may be equivalent. Our aim is to obtain non-equivalent
functional bases only. Let {J (1)

1 , J
(1)
2 , . . . , J

(1)
t } and {J (2)

1 , J
(2)
2 , . . . , J

(2)
t } be the

functional bases of the first-order differential invariants which correspond to
the splitting subalgebras L1 and L2 of the Lie algebra of the group P (1, 4).
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Lemma. Two functional bases {J (1)
1 , J

(1)
2 , . . . , J

(1)
t } and {J (2)

1 , J
(2)
2 , . . . , J

(2)
t }

are equivalent if and only if they satisfy the following conditions:

(∗)
X̃

(1)
1 J

(2)
1 = 0, X̃

(1)
1 J

(2)
2 = 0, . . . , X̃

(1)
r1 J

(2)
t = 0

X̃
(2)
1 J

(1)
1 = 0, X̃

(2)
1 J

(1)
2 = 0, . . . , X̃

(2)
r2 J

(1)
t = 0,

where {X̃(1)
1 , X̃

(1)
2 , . . . , X̃

(1)
r1 }, {X̃

(2)
1 , X̃

(2)
2 , . . . , X̃

(2)
r2 } are the first-prolonged bases

operators of the Lie subalgebra L1 and L2, respectively; r1, r2 are the dimen-
sions of the subalgebras L1 and L2.

Proof. The necessity.

Let functional bases {J (1)
1 , J

(1)
2 , . . . , J

(1)
t } and {J (2)

1 , J
(2)
2 , . . . , J

(2)
t } be equiva-

lent. Then there exist smooth functions f1, f2, . . . , ft and g1, g2, . . . , gt such
that

(∗∗)

J
(2)
1 = f1(J

(1)
1 , J

(1)
2 , . . . , J

(1)
t ) J

(1)
1 = g1(J

(2)
1 , J

(2)
2 , . . . , J

(2)
t )

J
(2)
2 = f2(J

(1)
1 , J

(1)
2 , . . . , J

(1)
t ) J

(1)
2 = g2(J

(2)
1 , J

(2)
2 , . . . , J

(2)
t )

. . . . . . . . . . . . . . . . . . . . . . . . . . . and . . . . . . . . . . . . . . . . . . . . . . . . . . .

J
(2)
t = ft(J

(1)
1 , J

(1)
2 , . . . , J

(1)
t ) J

(1)
t = gt(J

(2)
1 , J

(2)
2 , . . . , J

(2)
t ).

Since f1(J
(1)
1 , J

(1)
2 , . . . , J

(1)
t ), f2(J

(1)
1 , J

(1)
2 , . . . , J

(1)
t ), . . . , ft(J

(1)
1 , J

(1)
2 , . . . , J

(1)
t )

are the first-order differential invariants for the subalgebra L1, therefore, we
obtain (see, for example, [14, 15])

X̃
(1)
1 J

(2)
1 = 0, X̃

(1)
1 J

(2)
2 = 0, . . . X̃(1)

r1
J

(2)
t = 0.

Since g1(J
(2)
1 , J

(2)
2 , . . . , J

(2)
t ), g2(J

(2)
1 , J

(2)
2 , . . . , J

(2)
t ), . . . , gt(J

(2)
1 , J

(2)
2 , . . . , J

(2)
t )

are the first-order differential invariants for the subalgebra L2, therefore, we
obtain

X̃
(2)
1 J

(1)
1 = 0, X̃

(2)
1 J

(1)
2 = 0, . . . , X̃(2)

r2
J

(1)
t = 0.

Thus, the conditions (∗) are satisfied.
The necessity is proved.

The sufficiency.
Let the conditions (∗) be satisfied.

The condition

X̃
(1)
1 J

(2)
1 = 0, X̃

(1)
1 J

(2)
2 = 0, . . . , X̃(1)

r1
J

(2)
t = 0

give us (see, for example, [14, 15]) that the functions J
(2)
1 , J

(2)
2 , . . . ., J

(2)
t are the

first-order differential invariants for the subalgebra L1 and, therefore, have the
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following form:

J
(2)
1 = f1(J

(1)
1 , J

(1)
2 , . . . , J

(1)
t )

J
(2)
2 = f2(J

(1)
1 , J

(1)
2 , . . . , J

(1)
t )

. . . . . . . . . . . . . . . . . . . . . . . . . . .

J
(2)
t = ft(J

(1)
1 , J

(1)
2 , . . . , J

(1)
t ),

where f1, f2, . . . , ft are arbitrary smooth functions.
The conditions

X̃
(2)
1 J

(1)
1 = 0, X̃

(2)
1 J

(1)
2 = 0, . . . , X̃(2)

r2
J

(1)
t = 0

imply that the functions J
(1)
1 , J

(1)
2 , . . . , J

(1)
t are first-order differential invariants

for the subalgebra L2 and, therefore, can be written in the following form:

J
(1)
1 = g1(J

(2)
1 , J

(2)
2 , . . . , J

(2)
t )

J
(1)
2 = g2(J

(2)
1 , J

(2)
2 , . . . , J

(2)
t )

. . . . . . . . . . . . . . . . . . . . . . . . . . .

J
(1)
t = gt(J

(2)
1 , J

(2)
2 , . . . , J

(2)
t ),

where g1, g2, . . . , gt are arbitrary smooth functions. Thus, we have obtained
the relations (∗∗). The sufficiency is proved.

Proposition. There exist 243 non-equivalent functional bases of the first-
order differential invariants for the splitting subgroups of the group P (1, 4).

Proof. The list of the splitting subalgebras of the Lie algebra of the group
P (1, 4) contains 281 non-conjugate ones [6].

Taking into account the general ranks of matrices which contain coordi-
nates of the one-prolonged basis elements of the subalgebras of the Lie algebra
considered, and the theorem on number of invariants of the Lie group of the
point transformations (see, for example, [14, 15]), we can make sure that all of
the splitting subalgebras of the Lie algebra of the group P (1, 4) have the func-
tional bases of the first-order differential invariants. Therefore, there are 281
functional bases of the first-order differential invariants. Among them, there
are equivalent ones. Equivalent functional bases can only be among those
which have the same dimensions. Let L1 be a splitting subalgebra of the
Lie algebra of the group P (1, 4) which has the t-dimensional functional ba-
sis of the first-order differential invariants {J (1)

1 , J
(1)
2 , . . . , J

(1)
t }. To find the

bases which are equivalent to {J (1)
1 , J

(1)
2 , . . . , J

(1)
t }, we use the Lemma. Let

{J (2)
1 , J

(2)
2 , . . . , J

(2)
t } be t-dimensional functional basis of the first-order differ-

ential invariants of the other splitting subalgebra L2. Following to the Lemma,
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if these functional bases satisfy the conditions (∗), then the considered bases
are equivalent. Otherwise, the considered bases are not equivalent. In the
analogous manner, we check whether other t-dimensional functional bases of
the first-order differential invariants are equivalent to the {J (1)

1 , J
(1)
2 , . . . , J

(1)
t }

or not. In this way, we obtain all t-dimensional functional bases which are
equivalent to {J (1)

1 , J
(1)
2 , . . . , J

(1)
t }.

In the analogous manner, we construct classes of the equivalent functional
bases of other dimensions.

The direct check provides 243 non-equivalent functional bases of the first-
order differential invariants for the splitting subgroups of the group P (1, 4).
The Proposition is proved.

It is impossible to present all non-equivalent functional bases here. Some
of them can be found in [3]. Therefore, below we only give a short review of
the results obtained.

Below, for some of the splitting subalgebras of the Lie algebra of the group
P (1, 4), we write their basis elements and corresponding functional bases of
differential invariants.

1. There exists one two-dimensional functional basis

〈G, P1, P2, P3, X0, X1, X2, X3, X4〉,
〈L3 + eG, P1, P2, P3, X0, X1, X2, X3, X4, e > 0〉,
〈G, L3, P1, P2, P3, X0, X1, X2, X3, X4〉,
〈G, L1, L2, L3, P1, P2, P3, X0, X1, X2, X3, X4〉,
〈G, C1, C2, C3, L1, L2, L3, P1, P2, P3, X0, X1, X2, X3, X4〉,
J1 = u, J2 = u2

0 − u2
1 − u2

2 − u2
3 − u2

4 ;

uµ ≡ ∂u

∂xµ
, µ = 0, 1, 2, 3, 4.

2. There exist 7 three-dimensional non-equivalent functional bases. Let us
give some examples.

1. 〈G, P1, P2, P3, X1, X2, X3, X4〉,
〈L3 + eG, P1, P2, P3, X1, X2, X3, X4, e > 0〉,
〈G, L3, P1, P2, P3, X1, X2, X3, X4〉,
〈G, L1, L2, L3, P1, P2, P3, X1, X2, X3, X4〉,

J1 = u, J2 = u2
0 − u2

1 − u2
2 − u2

3 − u2
4, J3 =

x0 + x4

u0 − u4
;
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2. 〈P1, P2, P3, X0, X1, X2, X3, X4〉,
〈L3 − P3, P1, P2, X0, X1, X2, X3, X4〉,
〈L3, P1, P2, P3, X0, X1, X2, X3, X4〉,
〈L1, L2, L3, P1, P2, P3, X0, X1, X2, X3, X4〉,
J1 = u, J2 = u0 − u4, J3 = u2

0 − u2
1 − u2

2 − u2
3 − u2

4 .

3. There exist 18 four-dimensional non-equivalent functional bases. Let us
give some examples.

1. 〈G, P3, L3, X1, X2, X3, X4〉,

J1 = u, J2 =
x0 + x4

u0 − u4
, J3 = u2

1 + u2
2, J4 = u2

0 − u2
3 − u2

4;

2. 〈L3, P3, X0, X1, X2, X3, X4〉,
J1 = u, J2 = u2

0 − u2
1 − u2

2 − u2
3 − u2

4, J3 = u0 − u4,

J4 = u2
1 + u2

2 .

4. There exist 37 five-dimensional non-equivalent functional bases. Let us
give some examples.

1. 〈G, P3, L3, X0, X3, X4〉, 〈G, P3, C3, L3, X0, X3, X4〉,

J1 = (x2
1 + x2

2)
1/2, J2 = u, J3 = x1u2 − x2u1,

J4 = u2
1 + u2

2, J5 = u2
0 − u2

3 − u2
4 ;

2. 〈L1, L2, L3, X1, X2, X3, X4〉,
J1 = x0 + x4, J2 = u, J3 = u0, J4 = u4, J5 = u2

1 + u2
2 + u2

3 .

5. There exist 51 six-dimensional non-equivalent functional bases. Let us
give some examples.

1. 〈L3 + eG, P1, P2, X3, X4, e > 0〉,

J1 = u, J2 =
x0 + x4

u0 − u4
,

J3 =
(

x1 +
x0 + x4

u0 − u4
u1

)2

+
(

x2 +
x0 + x4

u0 − u4
u2

)2

,

J4 = e arctan
(

u1(x0 + x4) + x1(u0 − u4)
u2(x0 + x4) + x2(u0 − u4)

)
+ ln(x0 + x4),

J5 = u3, J6 = u2
0 − u2

1 − u2
2 − u2

4 ;
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2. 〈L3, P1, P2, X3, X4〉,
J1 = x0 + x4, J2 = u,

J3 =
(

x1

x0 + x4
+

u1

u0 − u4

)2

+
(

x2

x0 + x4
+

u2

u0 − u4

)2

,

J4 = u3, J5 = u0 − u4, J6 = u2
0 − u2

1 − u2
2 − u2

4 .

6. There exist 58 seven-dimensional non-equivalent functional bases. Let
us give some examples.

1. 〈G, L3, X3, X4〉,

J1 = (x2
1 + x2

2)
1/2, J2 = u, J3 = x1u2 − x2u1,

J4 = (x0 + x4)(u0 + u4), J5 = u3, J6 = u2
1 + u2

2, J7 = u2
0 − u2

4 ;

2. 〈P1, P2, X3, X4〉,
J1 = x0 + x4, J2 = u, J3 = u1(x0 + x4) + x1(u0 − u4),

J4 = u2(x0 + x4) + x2(u0 − u4), J5 = u3, J6 = u0 − u4,

J7 = u2
0 − u2

1 − u2
2 − u2

4 .

7. There exist 40 eight-dimensional non-equivalent functional bases. Let
us give some examples.

1. 〈G, L3, X4〉,

J1 = x3, J2 = (x2
1 + x2

2)
1/2, J3 = u, J4 = x1u2 − x2u1,

J5 = (x0 + x4)(u0 + u4), J6 = u3, J7 = u2
0 − u2

4, J8 = u2
1 + u2

2 ;

2. 〈L3 − P3, X3, X4〉,

J1 = x0 + x4, J2 = (x2
1 + x2

2)
1/2, J3 = u, J4 = x1u2 − x2u1,

J5 = u0 − u4, J6 = u2
1 + u2

2, J7 = u2
0 − u2

3 − u2
4,

J8 = arctan
u1

u2
− u3

u0 − u4
.

8. There exist 21 nine-dimensional non-equivalent functional bases. Let us
give some examples.

1. 〈L3 + eG, X4, e > 0〉,

J1 = x3, J2 = (x2
1 + x2

2)
1/2, J3 = ln(x0 + x4) + e arctan

x1

x2
,

J4 = u, J5 = x1u2 − x2u1, J6 = (x0 + x4)(u0 + u4), J7 = u3,

J8 = u2
0 − u2

4, J9 = u2
1 + u2

2 ;
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2. 〈P1, P2〉,

J1 = x3, J2 = x0 + x4, J3 = (x2
0 − x2

1 − x2
2 − x2

4)
1/2, J4 = u,

J5 = u1(x0 + x4) + x1(u0 − u4), J6 = u2(x0 + x4) + x2(u0 − u4),

J7 = u3, J8 = u0 − u4, J9 = u2
0 − u2

1 − u2
2 − u2

4 .

9. There exist 10 ten-dimensional non-equivalent functional bases. Let us
give some examples.

1. 〈P3 + C3 + eL3, e > 2〉,

J1 = (x2
1 + x2

2)
1/2, J2 = (x2

3 + x2
4)

1/2, J3 = x0, J4 = u,

J5 = 2arctan
x1

x2
− e arctan

x3

x4
, J6 = x1u2 − x2u1,

J7 = x3u4 − x4u3, J8 = u0, J9 = u2
1 + u2

2, J10 = u2
3 + u2

4 ;

2. 〈L3 − P3〉,

J1 = x0 + x4, J2 = (x2
0 − x2

3 − x2
4)

1/2, J3 = (x2
1 + x2

2)
1/2,

J4 = u, J5 = x1u2 − x2u1, J6 =
x3

x0 + x4
+

u3

u0 − u4
,

J7 = arctan
x1

x2
+

x3

x0 + x4
, J8 = u0 − u4, J9 = u2

0 − u2
3 − u2

4,

J10 = u2
1 + u2

2 .

It should be noted that in Cases from 2 to 9, the second functional basis
is invariant under the splitting subalgebra of the Lie algebra of the extended
Galilei group G̃(1, 3).

3. On some applications of the results obtained.
It is well known (see, for example, [5–7, 10–15, 18]) that differential equa-

tions with non-trivial symmetry groups play an important role in theoretical
and mathematical physics, mechanics, gas dynamics etc. Therefore, the con-
struction and investigation of equations of this type are important from phys-
ical and mathematical points of view. In particular, the results obtained can
be used in order to construct the first-order differential equations in the space
M(1, 4)×R(u), which are invariant under the splitting subgroups of the group
P (1, 4). Indeed, (see, for example, [13–15]), in many cases these equations can
be written in the following form:

F (J1, J2, . . . , Jt) = 0,

where F is an arbitrary smooth function of its arguments, {J1, J2, . . . , Jt} are
functional bases of the first-order differential invariants of the corresponding
splitting subgroups of the group P (1, 4). In this way, we have constructed 243
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classes of the first-order differential equations in the space M(1, 4)×R(u) with
non-trivial symmetry property.

Since the Lie algebra of the group P (1, 4) contains, as subalgebras, the
Lie algebra of the Poincaré group P (1, 3) and the Lie algebra of the extended
Galilei group G̃(1, 3) (see also [7]), the obtained differential equations can be
used in relativistic and non-relativistic physics.
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