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GENERIC PROPERTIES OF ITERATED FUNCTION
SYSTEMS WITH PLACE DEPENDENT PROBABILITIES

BY TOMASZ BIELACZYC

Abstract. It is shown that a learning system defined on a compact convex
subset of IR™ such that the Hausdorff dimension of its invariant measure is
equal to zero is typical in the family of all systems satisfying the average
contractivity condition.

1. Introduction. Generic properties of Markov operators have been stud-
ied in [2], 6], [7, 10]. Szarek [10] has proved that a typical continuous Markov
operator acting on the space of Borel measures defined on a Polish space is
asymptotically stable and its stationary distribution has the Hausdorff dimen-
sion equal to zero.

In this paper we investigate iterated function systems with place depen-
dent probabilities defined on a compact convex subset of IR"™, known as learning
systems. Generic properties of iterated function systems have been studied by
Lasota and Myjak [2], who have proved that a typical nonexpansive iterated
function system is asymptotically stable and its stationary distribution is sin-
gular. Szarek [7] has generalized this result to learning systems satisfying the
average contractivity condition: A(g,) = maxgex Zf\i 1pi(x)L; < 1.

We prove a more general result. Namely, for most of learning systems
satisfying the average contractivity condition the Hausdorff dimension of the
stationary distribution is equal to zero. We use the method developed by
Lasota and Myjak [2], and Szarek [7].
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The organization of the paper is as follows. In Section [2| we introduce
definitions and notation. Section [3|contains auxiliary lemmas which are used in
proving the main result of the paper. The main theorem is proved in Section [4]

2. Preliminaries. Let X C IR* be a compact convex set. By B(x,r) we
denote the open ball with center at x € X and radius » > 0. Given a set
A C X and a number r > 0, by diam A, we denote the diameter of the set A
and by B(A,r) the r-neighbourhood of the set A, i.e.

B(A,r)={z € X: p(z,A) <r},

where p(z, A) = inf{p(x,y): y € A}.

Let B(X) denote the o-algebra of all Borel subsets of X and let M denote
the family of all finite Borel measures on X. By M, we denote the set of all
u € M such that p(X) = 1. The elements of M; will be called distributions.

Let Mg = {1 — pa: p1,u2 € M} be the space of all finite signed Borel
measures on X. For every [ > 1 we introduce the Fortet-Mourier norm (see [1)

[l = sap{[(f, w|: f € Fi},

where (f, ) = [y f(z)u(dz) and Fj is the space of all continuous functions
f+ X — IR such that SupzeX [f(z)] <1and |f(z) = f(y)| <z —yll (here |||
denotes a norm in IR¥).

An operator P: M — M is called a Markov operator if it satisfies the
following two conditions:

(i) positive linearity:

P(Ap + Aapz) = M Ppy + Ao Pps

for A1, Ao > 0 and pq, o € M,
(ii) preservation of the norm:

Pu(X)=uwX) forpue M.
An operator P: M — M is called nonezpansive in the norm | -|;, 1 > 1, if
[Pra — Ppall < [lpy — pelly - for pa, po € M.

A measure p € M is called stationary or invariant if Pu = u. A Markov
operator P is called asymptotically stable if there exists a stationary distribu-
tion py such that

Jim () = () for pe M, f € C(X)

(here C(X) stands for the space of all continuous functions f: X — IR).
Clearly, the stationary distribution is unique provided P is asymptotically
stable.
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A Markov operator P is called a Feller operator if there is a linear operator
U: C(X)— C(X) (dual to P) such that

(Uf,pm) =(f,Pu) for f€C(X),neM.
For A C X and s,0 > 0, define

H3(A) =inf { ) (diamU;)*: A | JU;, diamU; < 6}
=1 =1
and
H*(A) = lim H3(A).

The restriction of H® to the o-algebra of H®-measurable sets is called the
s-dimensional Hausdorff measure. Note that all Borel sets are H*-measurable.
The value

dimpyg A = inf{s > 0: H*(A4) =0}

is called the Hausdorff dimension of the set A. As usual, we admit inf () = +oo.
The Hausdorff dimension of a measure y € M is defined by the formula

dimy p = inf{dimyg A: A € B(X),u(A) =1}.

Fix an integer N > 1. By an iterated function system with place dependent
probabilities (or shorter, learning system)

(Sap) = (Slv"'75N7p1a""pN)

we mean a finite sequence of continuous transformations 5;: X — X and
continuous functions p;: X — [0,1],s =1,..., N, such that le\il pi(z)=1. A
sequence (pi)gvzl as above is called a probability vector. We assume that .5; is
lipschitzian with a Lipschitz constant L; for i =1,..., N.

For a learning system (.5, p), we define the value

N
Asp) = max > pi(w)Li-
=1

We denote by F the set of all learning systems (S, p) such that \g,) < 1.
In F, we introduce a metric d defined by

N N
d((S.p),(T.q) =) max |p;(z) — qi(x)] + > max [|Si(z) — Ti(w)l|
=1 =1

for (S,p), (T,q) € F. It is easy to prove that F endowed with the metric d is
a complete metric space.
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For a given learning system (.5, p), we define the corresponding Markov
operator P(g ;) : M — M by

N
Pspyu(4) = /S L P@(E) for g M A € BX)
=1 i

and its dual Ugpy: C(X) — C(X) by

N
U f(@) =) pi(x)f(Si(x)) for f € C(X),z € X.
i=1

We say that a learning system (S, p) has a stationary distribution (resp.
is asymptotically stable) if the corresponding Markov operator P(g,) has a
stationary distribution (resp. is asymptotically stable).

Finally recall that a subset of a complete metric space X is called residual
if its complement is a set of first Baire category. A property is said to be
satisfied by most elements of the space X if it is satisfied on a residual subset.
Such a property is also called generic or typical.

3. Auxiliary results.
LEMMA 3.1. Let ju1, 2 € My, 1> 1 and € > 0. If ||u1 — poll; < €2, then
p1(B(A;€)) = pa(A) —€
for every A € B(X).

The lemma follows from [11, Lemma 3.1].

Consider now an asymptotically stable learning system (S,p). Let P =
Pispy and p = pi(5,) denote the corresponding Markov operator and invariant
distribution, respectively. We define

X(S,p) = {.’L‘ € X: u({x}) > 0}
LEMMA 3.2. For every v € X(g,) andi € {1,...,N},
(3.1) pl(a:) > 0= SZ(LU) S X(S,p)‘

PROOF. Fix x € X(gp) and i € {1,..., N}. Assume that p;(x) > 0. Using
the definition of the corresponding Markov operator and the fact that p is
invariant, we obtain

u(Si(x)) = pi(a)u(S7H(Si(x))) = pi(a)u({z}) > 0.
The proof is complete. O

LEMMA 3.3. If u(X(s,)) > 0, then (X (s,) = 1.
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The lemma follows from Theorem 2.1 in [3]. For the reader’s convienience we
shall give a proof of the lemma (see also the proof of Proposition 2.3 in [5]).

PROOF. Consider the measure fi: B(X) — IR given by

AN X(sp)

() == om for A € B(X).

=)

Then

N
PR)=3 [ i)
e,

S /S y pi()p(dx)

IU’(X(S,]))) (A)QX(SJ))
for A € B(X). From Lemma 3.2 there follows that
{7 € X(sp): pi(r) >0} C S;l(X(57p)) forie {1,...,N}.

Using this inclusion, we obtain
N

=1 i

1
Pi(A) < — / pi(@)p(dz)
1(X(sp)) ; S (ANX (s 1))
1 :U’(A N X(S p)) —~
= — P AN X)) = ——2P — [i(A)
M(X(S,p)> (S,p) (S,p) ,U«(X(S,p))

for A € B(X). Since Pu(X) = p(X) = 1, this implies that P = . From the
uniqueness of the invariant distribution it follows that @ = pu. Consequently,
M(X(Svp)) =1. ]

COROLLARY 3.1. If u(X(gp)) > 0, then for every e > 0 there exists a finite
set Ze C X(gp) such that p(Ze) > 1 —e.

PrOOF. Since pu({r}) > 0 for every z € X(g,), it is easy to see that the
set X(gp) is countable. By Lemma there is

L=uXsp)=n( |J {eh)= > nl{z})
z€X (3 p) TE€X(3,p)

and the statement of the corollary follows. O

LEMMA 3.4. Let (S,p) be a learning system from F with the following
properties:
(3.2) )\(S,p) <1,
(3.3) p; is lipschitzian and p;(x) >0 forie {1,...,N} and z € X.



40

Then there exists I > 1 such that the corresponding Markov operator Fg ) is
nonexpansive in the norm || - ||;.

Similarly as in the proof of Remark 3.1 in [7], a simple calculation shows that
the statement of the lemma holds for

Ly
I- )‘(S,p)

71}7

l:max{

where L, = max;<;<y Lipp;.

LEMMA 3.5. Let P be a nonexpansive Markov operator. Assume that for
every € > 0 there are a Borel set A with diam A < €, a real number a > 0 and
an integer n such that

(3.4) P"u(A) > for pe M.
Then P s asymptotically stable and
(3.5) | PR (g — )|t < e +2(1 —a)f  for g, o € My, k € IN.

For details, see the proof of Theorem 3.1 in [8]. In fact, Theorem 3.1 was
proved for [ = 1, but the same argument works for every [ > 1.
The proof of the next lemma is based on the proof of Theorem 4.2 in [9].

LEMMA 3.6. Assume that a learning system (S, p) satisfies conditions
and . Then (S, p) is asymptotically stable and for every € > 0 there exists
an integer n such that

1Py — Plspymzlli < e for pn, p2 € My,
where [ is defined as in Lemma[3.7.

PRrROOF. Fix ¢ > 0. From Lemm there follows that Pg,) is non-
expansive in the norm || - ||;. From (3.2) it follows that there exists iy €
{1,..., N} such that S;, is contractive. Thus there exists an integer n such
that diam S} (X) < €/2. By an induction argument, it is easy to verify that

Pl pyi(Sig (X)) = (gn (x), Pl pyitd = (U py sy ()5 14)

N
=Y @)oo o S,))

il,---,inzl
X ﬂsg)(x)(sin ©...0 511)(3?)M(d90)
> (inf pio())"w(X) = (inf pi ()
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for every u € M. Consequently, by (3.3) we obtain
Pl p(S5(X)) > (inf piy ()" >0 for € My,

Hence the assumptions of Lemma are satisfied. Thus the system (.59, p) is
asymptotically stable and inequality (3.5 holds. Let & € IN be such that

. mk €
(1= (inf pio (@))")" < 7.
Using (3.5) with €/2 instead of € finishes the proof. O
Let F be the set of all (S, p) € F satisfying (3.2) and (3.3]) and such that
(3.6) Hsp) (Kisp) > 0,

where fi(g,,) is the stationary distribution corresponding to (S, p).
Since the set Fi is contained in Fy defined in [7], the next lemma is more
general then Lemma 3.1 from [7].

LEMMA 3.7. The set F, is dense in the space (F,d).

Proor. Fix (T,q) € F. Let € > 0 be such that
€- <]1[ + 1I§nia§DJ(VLipﬂ> < 2.
Fix z € X. Si/r\lce X is convex, for i € {1,...,N}, we can define a new
transformation T;: X — X by
Ti(z) =az+ (1 —a)Ti(z) forz € X,
where a = ¢(4N diam X)~!. Tt follows immediately that

(3.7) d((T.q),(T,q)) < /4

and Az . <1—a. Thus there exists ig € {1,...,N} such that L;, :=LipT}, <

1. Let zp € X be a fixed point of ﬁo. By [2, Lemma 3.5 |, we can find a
Lipschitz transformation S: X — X with a Lipschitz constant Lg and with
the following properties:

(3-8) Ls < Eio +n,
(3.9) e 15(0) — T @) < /4,
(3.10) S(x) =z for ||z —z| <,

where n,r > 0 and
min{l — AL~ L}
n< 5 .
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By [7, Lemma 2.3], there exists a probability vector (pi,...,pn)
satisfying (3.3)) and such that

(3.11) mea):éc]pi(x)—q,( x)| <& foic {1,...,N}.

N
2N
Cons1der now the learning system (S, p) = (51, .. SN,pl, .. .sDN)s Where S; =

T, for i € {1,...,N}\ {io} and Siy = S. From , and ( there

follows immedlately that

d((S,p), (T, q)) < e

Since
€ €n
15 max LipTi 4 50 630 (@) + 557) <1 = Az,
there is
N n-
LipT; + N - —— LipT; oON L
s D (nUipTi+ N - ma LT, sup i () 4y <

Thus the system (S, p) has property . It remains to verify that the sta-
tionary distribution fg ) satisfies condition .

Let P(g,) be the Markov operator corresponding to (S,p) and let p g, be
its stationary distribution. From and it follows that there exists
an integer n such that

Sip(X) = {0}
There is

sy ({o}) = P(gp) (s ({0})

Z / pu pz Sinfl o "'OSil)(x)

11 4eeeyin=1
X ]l{wo}(Sin o...0 Sil)(x)ﬂ(&p)(dx)

= (min i (2))" 1y(s,) (X) = (minpy, (2))" > 0.

The proof is complete. O

LEMMA 3.8. Assume that (S, p) is an asymptotically stable learning system
and j1 = pus,p) 18 the corresponding invariant distribution. Let oo > 0. If

. dogu(B(z
(3.12) p({r e X: llgl_}(l)lfT <a})=

then dimpg p < a.
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PROOF. (See also the proof of Proposition 2.4 in [5].) Let o > 0 be such
that (3.12]) holds. Define

1 B
Ko={z € X: limint BHB@) oy
r—0 log r

To complete the proof it is enough to show that dimy K, < «. Let s > «
be arbitrary. Fix § > 0. Since X is compact, we can choose a finite sequence
z1i,...,Tm € X such that

In p(B(zg, 1)) <
Inry -

(3.13) Ko C | B(zk,m) and
k=1
where rp < min{1,0/6} for k = 1,...m. Without loss of generality, we may

assume that r; > ro > ... > r,,. By an induction argument, we can find a
subset {ki,...,kq} of {1,...,m} such that

B(xkiarki) ﬂB(LL‘k;j,’I"kj) :(D for Za] € {177(]}72 7é.]

and
q

K, C U B(xki, 37‘]%).

=1

Consequently, using (3.13)) we obtain
q

S k)" < 3 n(Blaw, i) < p(X) <1
i=1

=1

and
q
H3(Ko) <> 6%(ry,)* < 6°
k=1

Since § > 0 was arbitrary, it follows that H*(K,) < 6° < co. In turn, since
s > « was arbitrary, it follows that dimg (K, ) < a. The proof is complete. []

4. Main theorem.

THEOREM 4.1. The set F, of all (T, q) € F such that its unique invariant
distribution pur q) satisfies dimpy pyp g = 0 is residual in F.

Proor. Fix n € IN and (S, p) € Fi. Let P(gy) be the Markov operator
corresponding to (S,p) and let p g, be its stationary distribution. From
Corollary [3.1] there follows that there exists a finite set Zg ), C X(g,) such
that

N(S,p)(Z(S,p),n) >1- 1/”'
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Choose 7(g)n € (0,1/n) such that

(41) (ép) < N(S,p) (B(SU, T(S,p),n)) fOI' T € Z(S,p),n

Further, by Lemma there exists [(g,) > 1 such that P(g ) is nonexpansive
in the norm || - {75, - By Lemma there exists k(g ), € IV such that

2

k ” T(Svp)an

(2) IR m = P el <

By Lemma 3.2 in [7], there exists (g, > 0 such that for all (7', q) € F,
d((s,p), (T7 Q)) < 5(S,p),n -

2
k »P),n k: p),n S7 5T
(4.3) swp U (o) — U fla)] < D
fE€F g ) wEX 5 8

Define

for M1, o € M.

ﬂUBf5P<>)

=1(S,p)eF.
where Bz ((S,p),0(sp)n) is the open ball in (F,d) with center at (S,p) and
radius 0(gy) - From Lemma it follows that F is the intersection of a
countably family of open dense sets. Consequently, F is residual. We are
going to show that F C F..
Fix (T,q) € F. By Theorem 3.1 in [4], (T, q) has an invariant distribution.
Let Pi7q) and (7 4) denote the corresponding Markov operator and stationary

distribution, respectively. Let ((S,p)n)nemw be a sequence of learning systems
of F. such that

(Ta q) € B}'((Sv p)na 6(S,P)n,n) for n € IN.
Assume that r(g,y » € (0,1/n), l(gp), > 1 and k(gp),» € IV are such that
({4.1), (4.2) hold for P(g,), and ji(gy),- We set more compact notation:
P, = (S,p)n> Mn = H(Sp)p> Zn = Z(S,p)n,nv
Tn = T(S,p)n,nv ln = l(S7p)n7 kn = k(svp)"“n‘
By (4.2) and (4.3)), for every n € IN, u € My and m > k,, there holds
1P gkt — gyl < 1P g 1 = 1T )l

< 1P o Py 1 = P P gy il

+ | Pan P = P g

+ Hpnnlu’(T,q) - P(’%q)U(T,q)Hln <

S |-
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Consequently, (T, q) is asymptotically stable. From (4.2) and (4.3]), we also
derive:

kn n
iz = pnlle, = 1P gy i) — Po i,

o o o Fon
<P gy = B gl + 127" gy — B bl

T2

< n
— 4 .
Moreover, for every y € B(Z,,ry), there exists x € Z,, such that
B(z,rn) C B(y,2ry,).

Consequently, by (4.1 and Lemma we obtain

H(T,q) (B(y, 3Tn)) > fin (B(y, 2Tn)) - % > fin (B(:L‘,’I“n)) - %
(4'4) 1/n 1/n
1/n _ Tn _ Tn
=T 2 2
Define

Y= U B(Znr)

m=1n=m

By the definition of Z,, and Lemma [3.1] we obtain
I(T,q) (B(Zn,rn)) > un(Zp)—rmpn>1—=1/n—1/n=1-2/n.

Consequently, pi(7,4)(Y) = 1. On the other hand, if y € Y, then y € B(Z,, )
for infinitely many n € IV and by , we can choose a sequence of integers
(Sn)nem such that
1/sn
1(r.g) (B(y, 3rs,)) > TS; for n € IN.

Hence
1/sn
lo B(y,3r log (X
lm g 2EAT0 (B3] losCHT)
n—00 log 3rs,, n—oo log3rg,
Since y € Y was arbitrarily chosen and p 14 (Y) = 1, by Lemma there is
dimg p(7,q) = 0. The proof is complete. O
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