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GENERIC PROPERTIES OF ITERATED FUNCTION

SYSTEMS WITH PLACE DEPENDENT PROBABILITIES

by Tomasz Bielaczyc

Abstract. It is shown that a learning system defined on a compact convex
subset of IRn such that the Hausdorff dimension of its invariant measure is
equal to zero is typical in the family of all systems satisfying the average
contractivity condition.

1. Introduction. Generic properties of Markov operators have been stud-
ied in [2, 6, 7, 10]. Szarek [10] has proved that a typical continuous Markov
operator acting on the space of Borel measures defined on a Polish space is
asymptotically stable and its stationary distribution has the Hausdorff dimen-
sion equal to zero.

In this paper we investigate iterated function systems with place depen-
dent probabilities defined on a compact convex subset of IRn, known as learning
systems. Generic properties of iterated function systems have been studied by
Lasota and Myjak [2], who have proved that a typical nonexpansive iterated
function system is asymptotically stable and its stationary distribution is sin-
gular. Szarek [7] has generalized this result to learning systems satisfying the
average contractivity condition: λ(S,p) = maxx∈X

∑N
i=1 pi(x)Li ≤ 1.

We prove a more general result. Namely, for most of learning systems
satisfying the average contractivity condition the Hausdorff dimension of the
stationary distribution is equal to zero. We use the method developed by
Lasota and Myjak [2], and Szarek [7].
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The organization of the paper is as follows. In Section 2 we introduce
definitions and notation. Section 3 contains auxiliary lemmas which are used in
proving the main result of the paper. The main theorem is proved in Section 4.

2. Preliminaries. Let X ⊂ IRk be a compact convex set. By B(x, r) we
denote the open ball with center at x ∈ X and radius r > 0. Given a set
A ⊂ X and a number r > 0, by diam A, we denote the diameter of the set A
and by B(A, r) the r-neighbourhood of the set A, i.e.

B(A, r) = {x ∈ X : ρ(x,A) < r},

where ρ(x,A) = inf{ρ(x, y) : y ∈ A}.
Let B(X) denote the σ-algebra of all Borel subsets of X and let M denote

the family of all finite Borel measures on X. By M1, we denote the set of all
µ ∈M such that µ(X) = 1. The elements of M1 will be called distributions.

Let Ms = {µ1 − µ2 : µ1, µ2 ∈ M} be the space of all finite signed Borel
measures on X. For every l ≥ 1 we introduce the Fortet–Mourier norm (see [1])

‖µ‖l = sup{|〈f, µ〉| : f ∈ Fl},

where 〈f, µ〉 =
∫
X f(x)µ(dx) and Fl is the space of all continuous functions

f : X → IR such that supx∈X |f(x)| ≤ 1 and |f(x)− f(y)| ≤ l‖x− y‖ (here ‖ · ‖
denotes a norm in IRk).

An operator P : M → M is called a Markov operator if it satisfies the
following two conditions:

(i) positive linearity:

P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2Pµ2

for λ1, λ2 ≥ 0 and µ1, µ2 ∈M,
(ii) preservation of the norm:

Pµ(X) = µ(X) for µ ∈M.

An operator P : M→M is called nonexpansive in the norm ‖·‖l, l ≥ 1, if

‖Pµ1 − Pµ2‖l ≤ ‖µ1 − µ2‖l for µ1, µ2 ∈M1.

A measure µ ∈ M is called stationary or invariant if Pµ = µ. A Markov
operator P is called asymptotically stable if there exists a stationary distribu-
tion µ? such that

lim
n→∞

〈f, Pnµ〉 = 〈f, µ?〉 for µ ∈M1, f ∈ C(X)

(here C(X) stands for the space of all continuous functions f : X → IR).
Clearly, the stationary distribution is unique provided P is asymptotically
stable.
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A Markov operator P is called a Feller operator if there is a linear operator
U : C(X) → C(X) (dual to P ) such that

〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ C(X), µ ∈M.

For A ⊂ X and s, δ > 0, define

Hs
δ(A) = inf

{ ∞∑
i=1

(diam Ui)s : A ⊂
∞⋃
i=1

Ui, diam Ui ≤ δ
}

and
Hs(A) = lim

δ→0
Hs

δ(A).

The restriction of Hs to the σ-algebra of Hs-measurable sets is called the
s-dimensional Hausdorff measure. Note that all Borel sets are Hs-measurable.
The value

dimH A = inf{s > 0: Hs(A) = 0}
is called the Hausdorff dimension of the set A. As usual, we admit inf ∅ = +∞.

The Hausdorff dimension of a measure µ ∈M1 is defined by the formula

dimH µ = inf{dimH A : A ∈ B(X), µ(A) = 1}.

Fix an integer N ≥ 1. By an iterated function system with place dependent
probabilities (or shorter, learning system)

(S, p) = (S1, . . . , SN , p1, . . . .pN )

we mean a finite sequence of continuous transformations Si : X → X and
continuous functions pi : X → [0, 1], i = 1, . . . , N , such that

∑N
i=1 pi(x) = 1. A

sequence (pi)N
i=1 as above is called a probability vector. We assume that Si is

lipschitzian with a Lipschitz constant Li for i = 1, . . . , N .
For a learning system (S, p), we define the value

λ(S,p) = max
x∈X

N∑
i=1

pi(x)Li.

We denote by F the set of all learning systems (S, p) such that λ(S,p) ≤ 1.
In F , we introduce a metric d defined by

d((S, p), (T, q)) =
N∑

i=1

max
x∈X

|pi(x)− qi(x)|+
N∑

i=1

max
x∈X

‖Si(x)− Ti(x)‖

for (S, p), (T, q) ∈ F . It is easy to prove that F endowed with the metric d is
a complete metric space.
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For a given learning system (S, p), we define the corresponding Markov
operator P(S,p) : M→M by

P(S,p)µ(A) =
N∑

i=1

∫
S−1

i (A)
pi(x)µ(dx) for µ ∈M, A ∈ B(X)

and its dual U(S,p) : C(X) → C(X) by

U(S,p)f(x) =
N∑

i=1

pi(x)f(Si(x)) for f ∈ C(X), x ∈ X.

We say that a learning system (S, p) has a stationary distribution (resp.
is asymptotically stable) if the corresponding Markov operator P(S,p) has a
stationary distribution (resp. is asymptotically stable).

Finally recall that a subset of a complete metric space X is called residual
if its complement is a set of first Baire category. A property is said to be
satisfied by most elements of the space X if it is satisfied on a residual subset.
Such a property is also called generic or typical.

3. Auxiliary results.

Lemma 3.1. Let µ1, µ2 ∈M1, l ≥ 1 and ε > 0. If ‖µ1 − µ2‖l ≤ ε2, then

µ1(B(A, ε)) ≥ µ2(A)− ε

for every A ∈ B(X).

The lemma follows from [11, Lemma 3.1].
Consider now an asymptotically stable learning system (S, p). Let P =

P(S,p) and µ = µ(S,p) denote the corresponding Markov operator and invariant
distribution, respectively. We define

X(S,p) = {x ∈ X : µ({x}) > 0}.

Lemma 3.2. For every x ∈ X(S,p) and i ∈ {1, . . . , N},

pi(x) > 0 =⇒ Si(x) ∈ X(S,p).(3.1)

Proof. Fix x ∈ X(S,p) and i ∈ {1, . . . , N}. Assume that pi(x) > 0. Using
the definition of the corresponding Markov operator and the fact that µ is
invariant, we obtain

µ(Si(x)) ≥ pi(x)µ(S−1
i (Si(x))) ≥ pi(x)µ({x}) > 0.

The proof is complete.

Lemma 3.3. If µ(X(S,p)) > 0, then µ(X(S,p)) = 1.
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The lemma follows from Theorem 2.1 in [3]. For the reader’s convienience we
shall give a proof of the lemma (see also the proof of Proposition 2.3 in [5]).

Proof. Consider the measure µ̂ : B(X) → IR given by

µ̂(A) =
µ(A ∩X(S,p))

µ(X(S,p))
for A ∈ B(X).

Then

Pµ̂(A) =
N∑

i=1

∫
S−1

i (A)
pi(x)µ̂(dx)

=
1

µ(X(S,p))

N∑
i=1

∫
S−1

i (A)∩X(S,p)

pi(x)µ(dx)

for A ∈ B(X). From Lemma 3.2 there follows that

{x ∈ X(S,p) : pi(x) > 0} ⊂ S−1
i (X(S,p)) for i ∈ {1, . . . , N}.

Using this inclusion, we obtain

Pµ̂(A) ≤ 1
µ(X(S,p))

N∑
i=1

∫
S−1

i (A∩X(S,p))
pi(x)µ(dx)

=
1

µ(X(S,p))
P(S,p)µ(A ∩X(S,p)) =

µ(A ∩X(S,p))
µ(X(S,p))

= µ̂(A)

for A ∈ B(X). Since Pµ̂(X) = µ̂(X) = 1, this implies that Pµ̂ = µ̂. From the
uniqueness of the invariant distribution it follows that µ̂ = µ. Consequently,
µ(X(S,p)) = 1.

Corollary 3.1. If µ(X(S,p)) > 0, then for every ε > 0 there exists a finite
set Zε ⊂ X(S,p) such that µ(Zε) > 1− ε.

Proof. Since µ({x}) > 0 for every x ∈ X(S,p), it is easy to see that the
set X(S,p) is countable. By Lemma 3.3, there is

1 = µ(X(S,p)) = µ
( ⋃

x∈X(S,p)

{x}
)

=
∑

x∈X(S,p)

µ({x})

and the statement of the corollary follows.

Lemma 3.4. Let (S, p) be a learning system from F with the following
properties:

λ(S,p) < 1,(3.2)

pi is lipschitzian and pi(x) > 0 for i ∈ {1, . . . , N} and x ∈ X.(3.3)
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Then there exists l ≥ 1 such that the corresponding Markov operator P(S,p) is
nonexpansive in the norm ‖ · ‖l.

Similarly as in the proof of Remark 3.1 in [7], a simple calculation shows that
the statement of the lemma holds for

l = max
{ Lp

1− λ(S,p)
, 1

}
,

where Lp = max1≤i≤N Lippi.

Lemma 3.5. Let P be a nonexpansive Markov operator. Assume that for
every ε > 0 there are a Borel set A with diamA ≤ ε, a real number α > 0 and
an integer n such that

Pnµ(A) ≥ α for µ ∈M1.(3.4)

Then P is asymptotically stable and

‖P k·n(µ1 − µ2)‖l ≤ ε + 2(1− α)k for µ1, µ2 ∈M1, k ∈ IN.(3.5)

For details, see the proof of Theorem 3.1 in [8]. In fact, Theorem 3.1 was
proved for l = 1, but the same argument works for every l ≥ 1.

The proof of the next lemma is based on the proof of Theorem 4.2 in [9].

Lemma 3.6. Assume that a learning system (S, p) satisfies conditions (3.2)
and (3.3). Then (S, p) is asymptotically stable and for every ε > 0 there exists
an integer n such that

‖Pn
(S,p)µ1 − Pn

(S,p)µ2‖l < ε for µ1, µ2 ∈M1,

where l is defined as in Lemma 3.4.

Proof. Fix ε > 0. From Lemma 3.4 there follows that P(S,p) is non-
expansive in the norm ‖ · ‖l. From (3.2) it follows that there exists i0 ∈
{1, . . . , N} such that Si0 is contractive. Thus there exists an integer n such
that diam Sn

i0
(X) < ε/2. By an induction argument, it is easy to verify that

Pn
(S,p)µ(Sn

i0(X)) = 〈1lSn
i0

(X), P
n
(S,p)µ〉 = 〈Un

(S,p)1lSn
i0

(X), µ〉

=
N∑

i1,...,in=1

∫
X

pi1(x) . . . (pin ◦ Sin−1 ◦ . . . ◦ Si1)(x)

× 1lSn
i0

(X)(Sin ◦ . . . ◦ Si1)(x)µ(dx)

≥ ( inf
x∈X

pi0(x))nµ(X) = ( inf
x∈X

pi0(x))n
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for every µ ∈M1. Consequently, by (3.3) we obtain

Pn
(S,p)µ(Sn

i0(X)) ≥ ( inf
x∈X

pi0(x))n > 0 for µ ∈M1.

Hence the assumptions of Lemma 3.5 are satisfied. Thus the system (S, p) is
asymptotically stable and inequality (3.5) holds. Let k ∈ IN be such that(

1− ( inf
x∈X

pi0(x))n
)k

<
ε

4
.

Using (3.5) with ε/2 instead of ε finishes the proof.

Let F∗ be the set of all (S, p) ∈ F satisfying (3.2) and (3.3) and such that

µ(S,p)(X(S,p)) > 0,(3.6)

where µ(S,p) is the stationary distribution corresponding to (S, p).
Since the set F∗ is contained in F0 defined in [7], the next lemma is more

general then Lemma 3.1 from [7].

Lemma 3.7. The set F∗ is dense in the space (F , d).

Proof. Fix (T, q) ∈ F . Let ε > 0 be such that

ε ·
(

1
N

+ max
1≤i≤N

LipTi

)
< 2.

Fix z ∈ X. Since X is convex, for i ∈ {1, . . . , N}, we can define a new
transformation T̂i : X → X by

T̂i(x) = αz + (1− α)Ti(x) for x ∈ X,

where α = ε(4N diam X)−1. It follows immediately that

(3.7) d((T̂ , q), (T, q)) ≤ ε/4

and λ
(T̂ ,q)

≤ 1−α. Thus there exists i0 ∈ {1, . . . , N} such that L̂i0 :=LipT̂i0 <

1. Let x0 ∈ X be a fixed point of T̂i0 . By [2, Lemma 3.5 ], we can find a
Lipschitz transformation Ŝ : X → X with a Lipschitz constant L

Ŝ
and with

the following properties:

(3.8) L
Ŝ

< L̂i0 + η,

(3.9) max
x∈X

‖Ŝ(x)− T̂i0(x)‖ < ε/4,

(3.10) Ŝ(x) = x0 for ‖x− x0‖ ≤ r,

where η, r > 0 and

η ≤
min{1− λ

(T̂ ,q)
, 1− L̂i0}

2
.
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By [7, Lemma 2.3], there exists a probability vector (p1, . . . , pN )
satisfying (3.3) and such that

(3.11) max
x∈X

|pi(x)− qi(x)| < ε · η
2N

for i ∈ {1, . . . , N}.

Consider now the learning system (S, p) = (S1, . . . , SN ; p1, . . . , pN ), where Si =
T̂i for i ∈ {1, . . . , N} \ {i0} and Si0 = Ŝ. From (3.7), (3.9) and (3.11) there
follows immediately that

d((S, p), (T, q)) < ε.

Since
η
( ε

2
max

1≤i≤N
LipTi + sup

x∈X
qi0(x) +

ε · η
2N

)
< 1− λ

(T̂ ,q)
,

there is

sup
x∈X

N∑
i=1

qi(x)LipT̂i + N · η · ε
2N

max
1≤i≤N

LipTi + sup
x∈X

qi0(x) · η +
η · ε
2N

· η < 1.

Thus the system (S, p) has property (3.2). It remains to verify that the sta-
tionary distribution µ(S,p) satisfies condition (3.6).

Let P(S,p) be the Markov operator corresponding to (S, p) and let µ(S,p) be
its stationary distribution. From (3.8) and (3.10) it follows that there exists
an integer n such that

Sn
i0(X) = {x0}.

There is

µ(S,p)({x0}) = Pn
(S,p)µ(S,p)({x0})

=
N∑

i1,...,in=1

∫
X

pi1(x) . . . (pin ◦ Sin−1 ◦ . . . ◦ Si1)(x)

× 1l{x0}(Sin ◦ . . . ◦ Si1)(x)µ(S,p)(dx)

≥ (min
x∈X

pi0(x))nµ(S,p)(X) = (min
x∈X

pi0(x))n > 0.

The proof is complete.

Lemma 3.8. Assume that (S, p) is an asymptotically stable learning system
and µ = µ(S,p) is the corresponding invariant distribution. Let α ≥ 0. If

µ
({

x ∈ X : lim inf
r→0

log µ(B(x, r))
log r

≤ α
})

= 1,(3.12)

then dimH µ ≤ α.
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Proof. (See also the proof of Proposition 2.4 in [5].) Let α ≥ 0 be such
that (3.12) holds. Define

Kα =
{
x ∈ X : lim inf

r→0

log µ(B(x, r))
log r

≤ α
}
.

To complete the proof it is enough to show that dimH Kα ≤ α. Let s > α
be arbitrary. Fix δ > 0. Since X is compact, we can choose a finite sequence
x1, . . . , xm ∈ X such that

Kα ⊂
m⋃

k=1

B(xk, rk) and
lnµ(B(xk, rk))

ln rk
≤ s,(3.13)

where rk < min{1, δ/6} for k = 1, . . . m. Without loss of generality, we may
assume that r1 ≥ r2 ≥ . . . ≥ rm. By an induction argument, we can find a
subset {k1, . . . , kq} of {1, . . . ,m} such that

B(xki
, rki

) ∩B(xkj
, rkj

) = ∅ for i, j ∈ {1, . . . , q}, i 6= j

and

Kα ⊂
q⋃

i=1

B(xki
, 3rki

).

Consequently, using (3.13) we obtain
q∑

i=1

(rki
)s ≤

q∑
i=1

µ(B(xki
, rki

)) ≤ µ(X) ≤ 1

and

Hs
δ(Kα) ≤

q∑
k=1

6s(rki
)s ≤ 6s.

Since δ > 0 was arbitrary, it follows that Hs(Kα) ≤ 6s < ∞. In turn, since
s > α was arbitrary, it follows that dimH(Kα) ≤ α. The proof is complete.

4. Main theorem.

Theorem 4.1. The set F̂∗ of all (T, q) ∈ F such that its unique invariant
distribution µ(T,q) satisfies dimH µ(T,q) = 0 is residual in F .

Proof. Fix n ∈ IN and (S, p) ∈ F∗. Let P(S,p) be the Markov operator
corresponding to (S, p) and let µ(S,p) be its stationary distribution. From
Corollary 3.1 there follows that there exists a finite set Z(S,p),n ⊂ X(S,p) such
that

µ(S,p)(Z(S,p),n) > 1− 1/n.
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Choose r(S,p),n ∈ (0, 1/n) such that

r
1/n
(S,p),n ≤ µ(S,p)

(
B(x, r(S,p),n)

)
for x ∈ Z(S,p),n.(4.1)

Further, by Lemma 3.4, there exists l(S,p) ≥ 1 such that P(S,p) is nonexpansive
in the norm ‖ · ‖l(S,p)

. By Lemma 3.6, there exists k(S,p),n ∈ IN such that

‖P k(S,p),n

(S,p) µ1 − P
k(S,p),n

(S,p) µ2‖l(S,p)
≤

r2
(S,p),n

8
for µ1, µ2 ∈M1.(4.2)

By Lemma 3.2 in [7], there exists δ(S,p),n > 0 such that for all (T, q) ∈ F ,

d
(
(S, p), (T, q)

)
< δ(S,p),n =⇒

sup
f∈Fl(S,p)

,x∈X
|Uk(S,p),n

(S,p) f(x)− U
k(S,p),n

(T,q) f(x)| <
r2
(S,p),n

8
.(4.3)

Define

F̂ =
∞⋂

n=1

⋃
(S,p)∈F∗

BF
(
(S, p), δ(S,p),n

)
,

where BF ((S, p), δ(S,p),n) is the open ball in (F , d) with center at (S, p) and
radius δ(S,p),n. From Lemma 3.7 it follows that F̂ is the intersection of a
countably family of open dense sets. Consequently, F̂ is residual. We are
going to show that F̂ ⊂ F̂∗.

Fix (T, q) ∈ F̂ . By Theorem 3.1 in [4], (T, q) has an invariant distribution.
Let P(T,q) and µ(T,q) denote the corresponding Markov operator and stationary
distribution, respectively. Let ((S, p)n)n∈IN be a sequence of learning systems
of F∗ such that

(T, q) ∈ BF
(
(S, p)n, δ(S,p)n,n

)
for n ∈ IN.

Assume that r(S,p)n,n ∈ (0, 1/n), l(S,p)n
> 1 and k(S,p)n,n ∈ IN are such that

(4.1), (4.2) hold for P(S,p)n
and µ(S,p)n

. We set more compact notation:

Pn = P(S,p)n
, µn = µ(S,p)n

, Zn = Z(S,p)n,n,

rn = r(S,p)n,n, ln = l(S,p)n
, kn = k(S,p)n,n.

By (4.2) and (4.3), for every n ∈ IN , µ ∈M1 and m ≥ kn there holds

‖Pm
(T,q)µ− µ(T,q)‖1 ≤ ‖Pm

(T,q)µ− µ(T,q)‖ln

≤ ‖P kn

(T,q)P
m−kn

(T,q) µ− P kn
n Pm−kn

(T,q) µ‖ln

+ ‖P kn
n Pm−kn

(T,q) µ− P kn
n µ(T,q)‖ln

+ ‖P kn
n µ(T,q) − P kn

(T,q)µ(T,q)‖ln ≤
1
n

.
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Consequently, (T, q) is asymptotically stable. From (4.2) and (4.3), we also
derive:

‖µ(T,q) − µn‖ln = ‖P kn

(T,q)µ(T,q) − P kn
n µn‖ln

≤ ‖P kn

(T,q)µ(T,q) − P kn
n µ(T,q)‖ln + ‖P kn

n µ(T,q) − P kn
n µn‖ln

≤ r2
n

4
.

Moreover, for every y ∈ B(Zn, rn), there exists x ∈ Zn such that

B(x, rn) ⊂ B(y, 2rn).

Consequently, by (4.1) and Lemma 3.1, we obtain

µ(T,q)

(
B(y, 3rn)

)
≥ µn

(
B(y, 2rn)

)
− rn

2
≥ µn

(
B(x, rn)

)
− rn

2

≥ r1/n
n − r

1/n
n

2
=

r
1/n
n

2
.

(4.4)

Define

Y =
∞⋂

m=1

∞⋃
n=m

B(Zn, rn).

By the definition of Zn and Lemma 3.1, we obtain

µ(T,q)

(
B(Zn, rn)

)
≥ µn(Zn)− rn ≥ 1− 1/n− 1/n = 1− 2/n.

Consequently, µ(T,q)(Y ) = 1. On the other hand, if y ∈ Y , then y ∈ B(Zn, rn)
for infinitely many n ∈ IN and by (4.4), we can choose a sequence of integers
(sn)n∈IN such that

µ(T,q)

(
B(y, 3rsn)

)
≥ r

1/sn
sn

2
for n ∈ IN.

Hence

lim inf
n→∞

log µ(T,q)

(
B(y, 3rsn)

)
log 3rsn

≤ lim
n→∞

log( r
1/sn
sn
2 )

log 3rsn

= 0.

Since y ∈ Y was arbitrarily chosen and µ(T,q)(Y ) = 1, by Lemma 3.8, there is
dimH µ(T,q) = 0. The proof is complete.
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