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THE STRONG UNICITY CONSTANT FOR PROJECTIONS

BY AGNIESZKA LIPIETA

Abstract. Let Y C I%, be a linear subspace and let P(I%,,Y) denote the
set of linear projections. An estimation and calculation (in some particular
cases) of the strong unicity constant for a minimal or cominimal projection

P, € P(I%,,Y) will be presented.

1. Introduction. Let X be a normed space and let Y C X be a linear
subspace of X. The symbol £(X,Y) means the set of all linear continuous
mappings from X to Y. A bounded linear operator P is called a projection if
Py =y for any y € Y. Denote by P(X,Y) the set of all projections from X
onto Y.

DEFINITION 1.1. If P(X,Y) # 0 then a projection P, € P(X,Y) is called
minimal iff
(1.1) 1P|l = MY, X) = inf{[|P| : P € P(X,Y)}.
Let Id be an identity on X.

DEFINITION 1.2. If P(X,Y) # 0 then a projection P, € P(X,Y) is called

cominimal iff
(1.2) |Id — P,|| = \(Y, X) = inf{||Id — P|| : P € P(X,Y)}.

The significance of this notion can be illustrated by the following well
known inequality:

(1+ || P]])dist(z,Y) > ||[Id — P| dist(x,Y) > ||(Id — P)(x)|| > dist(z,Y)
for every x € X\Y and P € P(X,Y).
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This means that if ||P|| or |[Id — P|| is small then Pz is a “good” linear re-
placement of any x € X in Y. It is easily seen that

|[Id — P|| > 1 for every P € P(X,Y).
It is also clear that if P, is a cominimal projection then

|Id — P,|| = dist(Id, P(X,Y)).

For more information concerning minimal and cominimal projections the reader
is referred to | 36
A more exhaustive list of references can be found in [20].

LEMMA 1.3. (see, e.g., [5]). Assume that X is a normed space and let
Y C X be a subspace of codimension k, Y = ﬂle kerg', where ¢¢ € X*
are linearly independent. Let P € P(X,Y). Then there exist y',. .. e X
satisfying

(1.3) 9y) =05 Bi=1....k
such that
k . .
(1.4) Pz =z — Zgz(x)y’ for xe€X.
i=1

On the other hand, if y',...,y* € X satisfy then operator
k
P=Id-) g'()y
i=1
belongs to P(X,Y).

DEFINITION 1.4. It is said that a projection P € P(X,Y) is determined
by y',...,yF € X iff y', ... y* € X satisfy (1.3) and (1.4).

DEFINITION 1.5. Let Y7, Y5 be two linear subspaces of X. It is said that

Y7 is equivalent up to isometry to Y iff there is a linear, surjective isometry T
of X into itself such that T'(Y7) = Ys.

LEMMA 1.6. (see, e.g., ) Let Y1, Ys be two linear subspaces of X such
that Y1 is equivalent up to isometry to Ya. Then A(Y1,X) = A(Yz, X) and
Ar(Y1, X) = Ar(Ye, X).

Now we recall some information about the strongly unique best approxi-
mation (theory of strong unicity has its origin in )
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DEerINITION 1.7. It is said that v, € V is a strongly unique best approxi-
mation (SUBA) for z in V iff there exists a constant r > 0 such that for every
veV

(1.5) [z = vl = llz = vol| + rl[v — vo-
The largest constant r > 0 satisfying ([1.5)) is called the strong unicity constant.

The notion of strong unicity leads to a simple proof of the Freud Theorem
about the Lipschitz continuity of the best approximation mapping (see [8],
p. 82).
Another application of the strong unicity is the estimate of the error of the
algorithm for seeking for best approximation (see, e.g., [8], p. 98).
One can find further information of SUBA in [13410191341019134101913410191341019].

The aim of this paper is to estimate or calculate the strong unicity constant
for minimal and cominimal projections in [7,.
We now present some definitions and results which will be of use later.

Let P € P(X,Y) and
Ly(X,Y)={LeL(X,Y): Ly =0}
Then P(X,Y) =P+ Ly(X,Y) and
MY, X) = dist(P, Ly (X, Y)).

Additionaly, P, € P(X,Y) is a minimal projection iff the operator 0 is an
element of best approximation for P, in Ly (X,Y).
Analogously,

(1.6) A(Y, X) = dist(Id — P, Ly (X,Y)).

P, € P(X,Y) is a cominimal projection iff the operator 0 is is an element of
best approximation for Id — P, in Ly (X,Y).

DEFINITION 1.8. It is said that a minimal (cominimal) projection P, €
P(X,Y) is an element of best approximation iff the operator 0 is a strongly
unique best approximation for P, (Id — P,) in Ly (X,Y).

Notice that

REMARK 1.9. If a minimal projection P, € P(X,Y’) is the strongly unique

best approximation then there exists r > 0 such that for every projection
PeP(X,)Y)

(1.7) 1Pl = 1P = Poll + 7P = Fol-
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If a cominimal projection P, € P(X,Y) is the strongly unique best approxi-
mation then there exists r > 0 such that for every projection P € P(X,Y)

(1.8) [Hd = P|| > [[Id = Pol| + r[[P = F||.

The largest constant r > 0 satisfying (1.7]) or (1.8)) is called the strong unicity
constant for projections.

Let X be a normed space and let V' C X be a nonempty set. By ext(V)
we denote the set of its extreme points. For any x € X

(1.9) E(z) ={f e X" Ifl =1, f(z) = [l«[}
and if S(X) denotes the unit sphere in X,
(1.10) Ext(z) = {f € ext(S(X")) : f(z) = [|l=[|}.

DEFINITION 1.10. (|22]). Let X be a normed space and let V' C X be a
n-dimensional linear subspace. A set I = {¢',...,¢F} € ext(S(X™)) is called

I-set iff there exist positive numbers A!, ..., A\¥ such that
k . .
(1.11) > Xy =o.
i=1

If I C E(x), then I is called an I-set with respect to x. An I-set I is said to
be minimal if there is no proper subset of I which forms an I-set. A minimal
I-set is called regular iff k = n+ 1 (by the Carathéodory theorem, n + 1 is the
largest possible number).

The importance of regular I-sets is illustrated by

THEOREM 1.11. ([22]). Let X be a real normed space and let V' be an
n-dimensional linear subspace. Let x € X\V, v, € V. If there exists a regular
I-set for x — v,, then v, is the strongly unique best approximation for x in V.

THEOREM 1.12. (|21]). Let X be a finite dimensional normed space. Then
ext(S((L(X, X))")) = ext(S(X7)) @ ext(S(X)),

where (z* @ x)(L) = z*(Lx) forz € X, 2* € X* and L € L(X, X).

Let n, k € Nyn >3 andn > k. Let X =12,V = % kerg’, where
g es (lgn)) are linearly independent. Let P € P(X,Y). By Lemma there
exist y' € X, i € {1,...,k} such that P = Id — Zle g'(-)y". Then

LeMMA 1.13. ([16]).
(1.12) |Id — P|| = max (Z ) .

s=1

je{l,...,n}

k
> 9
=1
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THEOREM 1.14. ([16]). Let gt g% ...,g" € S(X*) k > n be linearly inde-
pendent functionals such that g; > 0 for everyie {1,2,...,k}, je{1,2,...,n},
g; >0, g; =0 for every i,j € {1,2,...,k}, i # j. Let P, € P(X,Y) and
y e X (i € {1,2,...,k}) determine P, (see Def. . Then || Id — Pl = 1
iff supp(g") Nsupp(g’?) = 0 for every i # j, where

supp(g') = {k : gj, # 0}.
Moreover, if gj- # 0, then for every t € {1,2,...,k}

a i-{0 0 i

2. The strong unicity constant. Let X be a real normed space and let
V C X be a N-dimensional linear subspace. Suppose that x € X, v, € V.
Let

1) = {6, 6"} € cat(S(X"),
with positive constants !, ..., AVt satisfying

N+1 ‘
(2.2) YooM=l

j=1

be a regular I-set with respect to x — v, (see Def. .
LEMMA 2.1. Letv € V. If for everyie€ {1,...,N+1}

(2.3) 6'(v) = 0

then v = 0.

PROOF. By the regularity of I-sets, every N elements of the [-set I are
linearly independent in restriction to V. This proves the Lemma. ]

LEMMA 2.2. Let 0 € Pn41 be a permutation of the set {1,...,N + 1}.

For every subset of an I-set I of the form ¢°MV, ... ¢° W) there exists a basis
vl ..., vV of the subspace V' such that
(2.4) o* D) =64, i,j=1,...,N,

and ||vt|| > 1 for everyi € {1,...,N}.

PRrROOF. Without loss of generality we assume that o(i) = i for every i €
{1,...,N}.
By the regularity of the I-set I, the functionals ¢'|y,...,¢" |y are linearly
independent and form the basis of the subspace V*. By the regularity of the
I-set I, this implies the existence of vectors v!,...,v" satisfying . Now
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we show that for every i € {1,...,N}, |vt]| > 1. Suppose that there exists a
vector v € V satisfying (2.4) and ||| < 1.
Then v* # 0 and ¢*(%1) = 7 > 1, which contradicts assumption 1) O

[[o*]] [[o*]]

Now we calculate the strong unicity constant r (see Def. using func-
tionals ¢’ by (2.1)). Since ¢'(z — v,) = ||z — v,]| for every v € V, v # v, we

get
. Vo — UV (Vo —T+T—V
Hemn) = omer )
[vo — [ — v

G =) a—v)

[0 =l o= v

—llz = voll + [l — v]|

[ = wol|
So for every i € {1,...,N + 1}

- Vo — U
¢<O>nv—mm+ux—mmsux—my

[ = voll
Put
(2.5) r:min{max{qﬁi(HZZ:ZH) cie{l,...,n+1}}:veV}
Notice that for every v € V
(2.6) [ = vl| = [l = vol| 4 7{lv — vol.

By the regularity of I-set (2.1)) and Lemmal[2.1] r > 0. It is easy to see that the

constant r given by ([2.5]) is the strong unicity constant for x — v, (see Def. .
For Al ..., A" satisfying (2.2)), let

(2.7) Amin i=min{ N : j € {1,...,N +1}}.

Let k € {1,..., N+1}. Now for functionals ¢ (ie{l,....k—1,k+1,..., N+
1}) we find vectors v'(k) by Lemma Let

(2.8) l@ﬁ:mm{WHzg%)Je{Luwk—Lk+L“wN+1H,
(2.9) l:=max{l(k):ke{l,...,N+1}}.
Now we may state
THEOREM 2.3.
>\min
r>1

o 2_>\mzn
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PRrROOF. FixveSy. Without loss of generality we assume that [=[(N + 1).
First assume that

(2.10) M) = max  {¢'(v)}.

ie{l,...,.N+1}

By Lemma we find vectors v’ € V satisfying (2.4)) for functionals ¢!, ..., ¢".
Notice that ﬁ form a basis of the subspace V. So there exist numbers
a;(v) € R such that

(2.11) v=Y (v

24 ]

Moreover, for every i € {1,..., N}, d)z( v

i

) > 0. Notice that

(2.12) 1= o] < Z ai(v)
Since ¢'(v7) = §; , then for i € {1,... ]\;}1
(213) ) 2 60 = ait) o (57
By (L.11))

AMHGNH () = i N (=¢'(v)

) =
- 3 Neaond ()

By (2.2), -

M) ZAZ (6410 - auto)o' )

The coordinates a;(v) may be posmve negative or equal to 0, but by (| ,
the number (¢! (v) — a;(v)d’ T l\l) is not negative for every i € {1,..., N}.
Taking everything into consideration, we get

N "

i N
)\i’az( ‘(251 - A\ ‘al |¢z —) - (Z)NJrl(U) + )\Z‘(ﬁNJrl(’U)
> E ||>Z< ) )2

=1

+ (1= AN (v)
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)

N
_ Z)\z‘ <¢N+1(v) _ ai(v)¢i(HZi”)> +(1— >\N+1)¢N+1(U)
i=1

= (2= A" (0) < (2= Ain) o™ (v).

By (2.8), .
U’l

“wwlw“)l
forie {1,...,n}. By

Ao
(2.14) N w) > (N 4 1).

2 — )\mzn
Taking the infimum on the left side in (2.14)), by (2.9), we get the result.
Now suppose that

N+1 7
¢ (v) < ie{l?%ﬂ}{@ﬁ (v)}.

Without loss of generality we may assume that

¢'(v) = max {¢'(v)}.

ie{l,...,N+1}
N+1

)\1(1) Z )\Z ¢l
Analogously, by (1.11)) and ,

N+1

Z N (o' (v) = ¢'(v).
¢'(v) = ¢'(v) so

N
(2.15) ¢ (v) =D N(o'(v) — ¢ (v))

=2

By Lemma we take the same vectors v' € V as above for functionals
o', ..., ", so (2.11)) is satisfied. Analogously the numbers

. /Ui
(2.16) (6'(v) = ai(v)fﬁlm), (6" (v) = "1 (v))
are not negative for every i € {2,..., N}.
By (2.15)), (2.2)), (2.16)), reasoning in the same way as in the previous situation,
we get

(2 2\ mzn >Z)\Z|az |¢Z ’ zH)
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Hence
ot

(2 mm (bl > ZAZ‘GZ ’¢Z | 7’”

) + Amind' (v),
where

¢! (v) = ar(v)¢ (H IH) > a1 (0)[I(N +1).
Hence by (2.12),

Taking the infimum and applying (2.9)), we get the result. ]

3. The strong unicity constant for minimal and cominimal pro-
jections.

DEFINITION 3.1. Let X be a normed space, Y C X a linear subspace and
P, € P(X,Y) a cominimal projection. It is said that P, is determined by
I-set iff there exists a regular I-set with respect to Id — P, (see Def. and

Theorem [1.11]).

Letn, ke N, n>3,n>k.
Let X =17 and Y = ﬂle ker g*, where g* € S(X*) are linearly independent.
Let P,, Pe P(X,Y), P=1d— Zle gy, P=1d— Zle ¢'(")y", where 7',
v eX,ie{l,....k}.

Then
LEMMA 3.2.
n k
(3.1) ||PO—PH: max {Zy gy — 7)) }
s=1 j=1

Proor. Put z € Sx. Then

k n k
Ea@I = max {15 g -a) < max {3715 dl-l )
) = i )
Setting x = (z1,z2,...,xy,) such that
sgn Zlgé(yi—ﬂf-) if Zlgé(yi—ﬂf)#O
j= j=

0 if > gy —5) =0

for s ={1,2,...,n}, we get (3.1)).

Ts =
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Now, unless stated otherwise, we assume that k = 2. Let g', g% € S(X*)
be linearly independent functionals such that

(3.2) 9" = (91,0,95,...,95)

(3.3) 9> = (0,635,935, 9n),

(3.4) gt. g5 >0, gjl», g?ZOandg}+gJ2~>O for je{l,...,n}.
Suppose that

11
(3.5) det [ % 9y ] £0
9i 9;
for every 7,5 € {1,2,...,n}, i # j. Moreover, we assume that
1 1 1
(3.6) g—§<g—‘§<...<g—g.
93 9% 9n

Hence Y = ker g' Nker g2 is a subspace of codimension 2 in R™.
Let ', 9% € R™ satisfy (1.3)), P, € P(X,Y) be projection determined by y', y?
(see Def. [1.4)), which means that
(Id = Py)(z) = g' (x)y" + *(2)y”.

First assume that n = 3.

LEMMA 3.3. Let P € P(X,Y) and let P, € P(X,Y) be a cominimal pro-
jection determined by an I-set
(37) (Z)l =€ (17 _17 1)7 ¢2 =e® (_17 11 1)7 ¢3 =e3 (17 17 1)
Then
(3.8)

1 2
1P, - P|| < max{|¢"(P,—P)|,|$*(P,—P)], \¢3<PO—P>|}-max{§, % 1}
3 3

PROOF. Notice that by Theorem 2.5 in [16], if g*, ¢g° satisfy (3.2))—(3.4)),
then the functionals ¢!, ¢, ¢3 by (3.7) form a regular I-set. By Theorem 3.2
and Theorem 3.9 in [16], P, determined by I-set (3.7]) is cominimal.

For every projection P € P(X,Y), P, — P € Ly(X,Y) and dim Ly(X,Y)
—2(3-2) =2,
12
Moreover, the operators {g!(-)w?, ¢?(-)w?®}, where w3 = (%,%,1) e X,
1 2
form a basis of the space Ly (X,Y’). Hence

(Po = P)(x) = ag'(z) + Bg*(x),
for some «, § € R. By Lemma (3.2
1P = Pl = |g" (x)a + g*(2) ] [,
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where x = +(1,—-1,1) or x = +(—1,1,1) or z = £(1,1,1). Hence

1 2
1Py — P = max{%l(zﬂo D)), 262(P, — ) |6%(P, — P))stu}.
g3 g3
Finally

1 2
91 9

1P, — P|| < max{[¢" (Po—P)|,|6*(P,—P)|,|¢° (P~ P)|} maX{g%, 9%7 1}{|w?]].
3 I3

O

Keeping the assumption of Lemma we get

THEOREM 3.4. Let A1, A2, A3 > 0 be the constants (see Def. for

I-set . Put
Amin = min{\" 1 i =1,2,3},

Anae = maz{\' i =1,2,3},

w3 = ( 93,_93 1)
91 92
Then
(39) RPN )
. r .
~ Amaz ||w3||

ProOF. By (2.5)), it immediately follows that for every v € S(Ly(X,Y))
it is sufficient to estimate from the number

max{¢’(v) : i € {1,2,3}}
from below. Since v = P — P, for some P € P(X,Y), (P # P,) by Lemma
B3] we get
min g%,g—% 1}
(3.10) max {[¢'(v)], [¢*(0)] [6° (0)|} = —— 2o

lw?]]

Without loss of generality we may assume that

¢! (v) = max{' (v), 6*(v), 6°(v)}.
Since ¢!, ¢2, ¢ form a regular I-set, there is ¢'(v) > 0.
If ¢'(v) < max{|¢'(v)],[¢*(v)], |¢*(v)[}, then by
Aol (v) = =N¢%(v) = X’¢°(v).
Hence

)\3

2
. L),

#'(0) = S(—02(0)) +
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It is easily seen that for i =2 or i =3

—¢'(v) = max {[¢' (v)], [¢*(v)], |¢* ()|} > 0.

Hence
N
0'(v) 2~ (0)
maxr
. (g3 93 1
Armin mln{g,g, ¥
~ Aaz Hw3H ’

and by (2.5)), we get the result.
If ¢'(v) = maz{|¢*(v)|,|0*(v)|, |#>(v)|}, then the theorem immediately follows
from Lemma 3.3l O

REMARK 3.5. The previous estimate is satisfied for n = 3 only because of
the form of vectors x building functionals ¢!, ¢2, ¢3.

Now estimate a strong unicity constant for projections (see Remark |1.9))
in the case of n > 3.

Let s€{3,....,n},pe{1,2,s} and k € {3,...,n}, k # s. Let
(3.11) P =e, @2, $f=e, @2 o =e,2"
ei(z) =a¢ forz € R" and t € {1,...,n}.

REMARK 3.6. Let I be I-set of form (3.11)). Suppose that this I-set deter-
mines Id — P, (see Def. [1.10)) with A}, A2, A5, AF ME (k€ {3,...,n}, k # 5)
such that

(3.12) MEX+X+ Y (AM+A) =1
k=3,k#s

Recall that the functional 0 € V' = Ly (X,Y) is the strongly unique best ap-
proximation for Id—P,, dim Ly (X,Y) = 2(n—2) and a basis of Ly (X,Y) is the

12
set {g'()w* g?(Hw*}, k€ {3,...,n} (wF = (g—g}k,g—gg,o,...,o,l,o,...,o) S

R™, 1 is equal to k-th coordinate).

To estimate a strong unicity constant, we calculate or estimate from above the
norm of v by Lemma

Any operator v € Ly (X,Y) is of the form

(3.13) v()= > g (wt + BrgP (Yt
k=3



Hence

n

(3.14) ol < > (Ja®] + |8¥]) wk]l.

k=3

If v satisfies (2.4)), then from (3.13]) we calculate the numbers {a*, 3*}.
REMARK 3.7. Notice that for I-set (3.11])

n

510 = 30 (- 56y (kg () + Bre?(a)),

k=3 91

n

2
P =3 (= 5 (0" @) + 8@,

k=3 2
(3.15) ¢*(v) = a’g' (z°) + 5°¢°(°),
$1(v) = afg'(a*) + BFg*(a"),

#5(v) = afg' (") + 679 ().
By (2.4), (3.15) is a Cramer system of equations.
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Now we will show how to estimate the strong unicity constant r satisfying
(1.8) in case of a cominimal projection determined by I-set. The main technical
problem is in calculating or estimating the number [(k) (see (2.8)) for some k

or, which gives better accuracy, the number [ (see (2.9)).

THEOREM 3.8. Let n = 4 and Y = kerg! Nkerg? C X, where g', g°

S(X*) are linearly independent fuctionals satisfying f and (@
Let P, € P(X,Y) be a cominimal projection determined by an I-set (see The-

orem 2.5 and Theorem 3.2 in [16]):
¢1 :€1®(1a_17171)7 ¢2:62®(_1717171)7

(3.16) ¢ =e3 @ (1,1,1,1),

Pl =es®(1,1,1,1), ¢3=es®(1,-1,1,1).
Then

!
minlzlvg{gll}min {1, ‘Z—’; =12,k = 3,4}

)\min
(3.17) r> k
2 — Amin maxy—3 41 ||wk[|}
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PRrOOF. Using the form of the I-set determining the cominimal projection
P, we will estimate the number [(2) (see (2.8)).
First we will calculate vectors v € Ly (X,Y) using Lemma
Recall that if v € Ly (X,Y) then v satisfies (3.13). Then

0'0) = 3 (- $)atg' @) + 5)
(3.18) ¢ (v) = gt (a®) + B3g*(2?)

d)zll(v) — a4gl(:L‘4) + ﬁ492(x4)

¢421(v) — Oz4gl 24) +ﬂ4g2(24),

where 2! = 24 = (1,-1,1,1), 22 = (—1,1,1,1), 2 = 2* = (1,1,1,1).
By the fact that (3.16)) forms an I-set (see Theorem 2.5 in [16]), (3.18) is a

Cramer system of equations.
Let v? = v%(2) € Ly (X,Y) satisfy (see Lemat [2.2)):

¢'(v) =0
3 -1
(3.19) ¢4(“)
$1(v) =0
¢3(v) =0
Then . )
a3 =1~ VR 53 - PR
295 295
at=0, g'=0,
and
1
(3.20) [V < (Jo®] +[8°])||ws|| = max {? — 1, 1}[fws]].
2
Analogously, for vt = v1(2) € Ly (X,Y) satisfying
¢H(v) =1
3() —
(3.21) ¢4(”) =0
¢1(v) =0
¢%(U) =0,
3 _ g1 3% = 91
29395’ 29395
ot =0, f'=0,
1 91
(3.22) o7 < =5 [Jws-
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For v® = v3(2) € Ly (X,Y), which is given by

¢'(v) =0
(3.23) Pv) =0
$1(v) =1
¢%(v) =0,
there is
1
(3.24) [v?] < max {— — 1,1} |w4,
92
and for v* = v*(2) € Ly (X,Y) being the solution of
¢'(v) =0
(3.25) ?v) =0
$1(v) =0
¢%(U) =1,
we get
1
g
(3.26) I < 75 llws].
9493

Hence if v € Ly (X,Y) is given by Lemma then v meets to one of the
equalities: (3.19), (3.21)), (3.23) or (3.25)). Hence

max—s.4{[w*]}

(3:27) I < {1 % 1=12k=34
ngln{vg'_aa _,}

and consequently (see (2.8]))

l

2 .1 I .7 _ —
ngln{l,g—’lf.l—l,Q,k—B,ll}

maxp= 4{[|w"}

(3.28) l
minlzlyg{gf} min {17 Z—’lf =1,2k = 3,4}
- maxg—3,4{[|w" |}
The result easily follows from Theorem [2.3 O

Now the estimate of the strong unicity constant r satisfying (1.7)) for mini-
mal projections will be presented. It concerns a minimal projection determined
by the I-set from [14].
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THEOREM 3.9. Let n = 4 and Y = kerg'! Nkerg?> C X, where ¢g', g% €

S(X™*) are linearly independent functionals satisfying f.
Let P, € P(X,Y) be a minimal projection determined by the I-set (see [14])

d)l = (17 17 _]-7 _1)>
gbil)’ =e® (_17 _17 1a _1)a ¢% =e3R (_17 17 17 _1)7
pl=es®(—=1,-1,-1,1) ¢3=es®(—1,1,-1,1).

Then
)\min 1
3.29 P LU L ——
( ) r= 2_)\min @,
where
1 1—2¢g .
@:max{i( | gl;‘) cod,j=1,2 k‘,l:3,4}max{||w3||,||w4||}.
2g; 1-2g

PrOOF. Notice that in [14] one can find the proof of the fact that the above
I-set determines a minimal projection. Hence, by Theorem it is sufficient
to calculate or estimate the number ©. For convience, the constant (1) (see
(2.8)) will be estimated. The idea of the proof is the same as in Theorem
Let vl = v1(1) € Ly (X,Y) satisfy the system of equations (see Lemma,

z(v) =
(3.30) i(”) =0
1) =0
¢3(v) =0
Hence
s 2981 38— —1
295(1 — 2g3)’ 293
at=0, gt=0
Thus
(3.31) o'l < (Je®] + 18] lws]| < ©.
For v? = v?(1) € Ly(X,Y), which is the solution of
¢1(v) =0
(3.32) ‘%(”) =1
¢1(v) =0
$3(v) =0,
we get
3 (1 —2g3) 33— 1
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at=0, gt=o0.
For v3 = v3(1) and v* = v*(1), we proceed in the same way. O

REMARK 3.10. Notice that all the above estimates of the strong unicity
constant r satisfying ([1.7)) or (1.8) depend on the number A;;,. By assumption

2.2,

1
Amin < N1
where N is the dimension of the space V = Ly (X,Y), so N =2n — 4.

Let n € N,n >3 and X =1[2. Let g', 9> € S(X*) be linearly independent
functionals satifying (3.2)—(3.4)), ; put Y = ker ¢! N ker ¢.

EXAMPLE 3.11. 1. Fixn =3, ¢! :& 0,2),¢°=(0,2,1). A cominimal
projection P, is determined by I-set (3.7), (see Theorem 2.5 and Theorem
3.9 in [16]) By Theorem r > 0,012346, where Apin = AL~ 0,05556,
Amaz = A? 4

2. Putn=4, g = (303,3), ¢* = (0, 152, 4,+5). By Theorem 2.5 and
Theorem 3.2 in [16], a cominimal prOJectlon is determined by I-set from the
thesis of Theorem Using the estimate from Theorem we get r >
0,004839 .

5. Letn =5, g' = (3,0, 4.2, 8), ¢ — (0.1, 10.£.18). Analogously as
in Theorem 2.5 in [16], one can check that the system

P=e1®(1,-1,-1,1,1), ¢*=e2®(-1,1,1,1,-1),
P =e3®(-1,1,1,1,1), ¢5=e3®(—1,1,1,1,—1),
¢t =es®(1,1,1,1,1),
) =es®(1,1,1,1,1), ¢5=e5® (1,—1,1,1,1)
form a regular I-set (Def. -, which determines a cominimal projection (see
Def. and Theorem . By Theorem [2.3] ﬂ and by the simple calculation,

we get [ > (1) =~ 0, 024897 (see . - ) and r > 0,00045.

23 1 1 1 43 2
4. Letn =71, g' (70»@%7@@%’9 (Oa%@ﬁ’mvﬁvm)

Reasoning in the same way as in Theorem 2.5 in [16], we can check that
¢1 =e1® (17 _17 1> 17 17 17 1)7 ¢2 =e® (_17 17 17 17 17 17 _1)7
3263@ 17171)1,171713 3263@ *15151717171717
1 2
¢%=e4®x4, ¢§:€4®Z4,
¢‘;’:e5®x5, ¢g:e5®251
¢6 =es® (17 17 1a 17 17 17 1)7
l=er®(1,1,1,1,1,1,1), ¢j=er®(1,-1,1,1,1,1,1),
1 2
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where 22 = 2% = 25, 23 = 22 = 2% form a regular I-set which determines a co-

minimal projection. By Theorem [2.3] (by estimate of I(1)), we get r > 0,00023.

EXAMPLE 3.12. Let n =4, g' = (%,O7 %, %), g = (O, %, %, %) Function-
als ¢', ¢g° satisfy the assumptions of Theorem so there exists a minimal
projection P, € P(X,Y), where Y = ker g' Nker g> C X. Additionaly one can
check (see [14]) that the I-set which determines the minimal projections P, is

of the form
d)l =e® (17 17 _17 _1)>

¢:1‘) =e3® (_17 _17 17 _1)7 (ZS% =e3 (_1’ 17 1’ _1)’

pl=es®(—-1,—-1,-1,1), ¢53=es®(—1,1,—1,1).

By Theorem [3.9, we get r > %, where © = %, Amin, = %

Letn, keN,n>3,n>k.
Let X =12 and Y = ﬂle ker g', where g° € S(X*) satisfy the following
conditions:
g§ > 0 for every i € {1,2,...,k}, 5 € {1,2,...,n}, g >0, g§ =0 fori €
{1,2,...,k}, i # j supp(g’) Nsupp(g’) = 0, for every i # j, where

supp(g') = {k : gj. # 0}.

Let P, € P(X,Y) be a cominimal projection. Then by Theorem
|Id — P,|| = 1 and P, is determined by 3/ € X satisfying such that
if g;'- # 0 then for every t € {1,...,k}, (see Lemma the assumption (1.13))
is satisfied. Then the following is true.

THEOREM 3.13. If

k
(3.33) U supp(g’) = {1,...,n}

then
PR ) .
r :mln{l e tg5€(0,1),i€{1,2,...,k},j €{1,2,...,n}}.
J
PRrROOF. We will work with inequality (2.6). Let P € P(X,Y) be a projec-
tion determined by vectors y', 7% € R™ (see Def. . By Lemma and by

the form of functionals g', g%, we get

k
3.34 Id— P| = 7
(3.34) | | jeglﬁffn}{;lyjl},
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k
3.35 P_P| = 7 — i),
(3.35) [ [ je?ff‘.’fn}{;’yf yil}

Without loss of generality (see Lemma , combining (|1.13]) and (3.33)), we

can assume that
k

(3.36) 1P — Pl = {Igt — 11+ ) _13il}-
i=2

Suppose that y1 < 1.
By (1.3) and by the fact that for i € {1,...,n}

n
lg'll =" g;=1,
j=1

we get
n
g%_l_ 1 Z ggl(l_g]l)
L j=k+41
Since 91 < 1,
n
1=wl=— > 9@ -1
1 j=k+1
For i € {2,...,n},
~i 1 - 1~
Yi=-7 9;Y;
91 ;55
Hence
k ' 1 n k ' ‘
-+ Y= Y o (@ -0+ ) <ol
i=2 91 j=k+1 i=2
Moreover,
g1
P—-P)+1
2P
1 n k '
e X (@0 m )
91 ;5 =2

1 n S k '
— 2 X A (B ) <
=2

L j=k+1
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. n
(Since ||Id — P,|| =1 and ||g’|| =1 fori € {2,...,n} then 1 —gi = gjl)

j=k+1
1 n k
S Y g I < P,
Lj=k4+1  i=1
Notice that if the coordinates 37; are all positive or all negative fori € {2,...,k},
1 i .
je{k+1,...,n} and 4y = min{-%; : gt € (0,1),i € {1,2,...,k},j €
1-gy l—gj J
{1,2,... ,n}}, then the above inequalities change into equalities which gives
the results.
If g1 > 1 we get that |P — P,| = 1+ ||Id — P,]|. O

If (3.33)) is not satisfied, then a cominimal projection P, need not be strongly
unique.

EXAMPLE 3.14. Let n,k € N, n > 1, k = 1 and X = [%F!. Assume that
g € S(X7™) is of the form

g = (07927 s 1gn+1)7

where go > 0. Let Y =kerg C X and P, € P(X,Y) be a cominimal projection.
By Theorem we get [[Id — Py = 1.

Let P € P(X,Y) be a projection determined by a vector y = (y1,1,...,1) €
R™1, where y; > 1 (see Def. [L.4). Notice that by Lemma[3.2] |P — P,|| = 1.
Hence the projection P, is not strongly unique.

REMARK 3.15. In the case of a subspace Y of X =[2 for which ||Id — P,|| =
1, the constant r could be larger then in the case of a subspace for which
||Id — P,|| > 1, but r also depends on n. It follows from the equality

) 1)

r:min{ii ;g} €(0,1),ie{1,2,....k},je{1,2,...,n}} = 9 -,
l—gj 1—gj
where
g;-:min{gé €(0,1)} < —
Hence




67

EXAMPLE 3.16. 1. Let n = 3, g! =

—
W=
=
ol
SN—
NS
[
Il
—
=
=
=
H
=
¢]
=
lon
<

2. Let n=4, g' =(3,0,%,0), 9> =(0,4,0,%). Then r = 1.
3. Letn >3and ¢' = (-15,0,-1,...,-15), ¢> = (0,1,0...,0). Then
= ﬁ
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