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A NOTE ON PLURIPOLAR EXTENSIONS OF UNIVALENT

FUNCTIONS

by Józef Siciak

Abstract. In this note we present a detailed proof of a recent result due
to Edlund and Jöricke (see Corollary 2 in [1]) saying that there exists a
univalent function f in the unit disc D := {|z| < 1} smooth up to the
boundary such that f does not have analytic continuation across any point
of the unit circle while the pluripolar hull of its graph over D contains the

graph of the function fe(z) := 1/f(1/z̄) univalent in De := {|z| > 1}.

1. Introduction. Given a pluripolar subset of CN , its (global) pluripolar
hull E∗ is defined by the formula

(1) E∗ :=
⋂

U∈FE

{U(z) = −∞},

where FE := {U ∈ PSH(CN ); U(z) = −∞ on E}. A pluripolar set E
is called complete pluripolar if there exists U ∈ PSH(CN ) such that E =
{U(z) = −∞}.

We say that a function f2 ∈ O(D2) holomorphic in a domain D2 ⊂ CN is
a pluripolar continuation of a function f1 ∈ O(D1) holomorphic on a domain
D1 ⊂ CN , if Γ∗f1

(D1) ⊃ Γf2(D2), i.e. if for for every function U ∈ PSH(CN+1)
such that U(z, f1(z)) = −∞ on D1 we have U(z, f2(z)) = −∞ on D2.

If f ∈ O(D) is a holomorphic function in a domain D in CN then its graph
Γf (D) is a pluripolar subset of CN+1. Given f ∈ O(D), let f̃ be the complete
multivalued analytic function defined on a domain D̃ ⊃ D such that f is its
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holomorphic branch on D. One can easily check that the pluripolar hull of
Γf (D) contains

Γf̃ (D̃) := {(z, w) ∈ CN ×C; z ∈ D, w ∈ f̃(z)},

the graph of f̃ over D̃, i.e. Γ∗f (D) ⊃ Γf̃ (D̃).
The aim of this note is to prove the following slight improvement of Corol-

lary 2 in [1].

Theorem 1.1. Let E be a non-empty nowhere dense compact subset of the
unit circle. There exists a conformal C∞-diffeomorphism

f : D̄ 7→ Ḡ, f(0) = 0,

of the closure of the unit disk D onto the closure of a domain G ⊂ D, strictly
starlike with respect to 0, such that the following conditions are satisfied:

(a) f does not have analytic continuation across any point of the unit circle;
(b) the set E1 := Ḡ ∩ ∂D has positive Lebesgue measure, E ⊂ E1 and the

function fe(z) := 1/f(1/z̄), z ∈ De := {1
z̄ ; |z| < 1}, is a pseudo-continuation

of f across the set f−1(E1); 1

(c) Γ∗f (D) = Γ∗fe
(De \ {∞}) ⊃ Γf (f−1(E)), i.e. the functions f and fe

are pluripolar continuations of each other across the graph of f over the set
f−1(E). In other words: if P ∈ PSH(C2) and P (z, f(z)) = −∞ on D (resp.,
P (z, fe(z)) = −∞ on De\{∞}) then P (z, fe(z)) = −∞ on (De\{∞})∪f−1(E)
(resp., P (z, f(z)) = −∞ on D ∪ f−1(E)).

2. Proof of Theorem 1.1. First we shall prove the following

Lemma 2.1. Given a non-empty compact nowhere dense subset E of the
unit circle, one can find a domain G ⊂ D, strictly starlike with respect to 0,
such that the following conditions are satisfied:

(a) ∂G is a C∞-smooth Jordan curve which is real analytic at no of its
points;

(b) E ⊂ E1 := Ḡ ∩ ∂D, λ(E1) > 0 (λ – the Lebesgue measure on ∂D);
(c) There exists a positive constant m1 such that

VU (z) ≡ VŨ (z) ≥ m1, z ∈ E,

1It is clear that fe maps conformally the closure of De onto the closure of Ge :=
{ 1

w̄
; w ∈ G}, and f(z) = fe(z) for all z ∈ f−1(E1), which implies that f and fe are pseudo-

continuations of each other across f−1(E1). More information on pseudo-continuation may
be found in [3] .
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where U := C \ (Ḡ ∪ Ge), Ge := {1/z̄ ; z ∈ G}, VU is the global extremal
function of U (for the definition see [2] or [4]), and Ũ :=

⋃∞
j=1 Uj, where the

union is taken over all connected components of the open set U .2

Proof of Lemma 2.1. First we shall prove

Claim 1. Let E be a non-empty nowhere dense closed subset of the unit
circle. There exists a sequence of open arcs {Ij} of the unit circle with the
following properties:

(1) Īj ∩ Īk = ∅ (j 6= k);
(2) the set S :=

⋃∞
1 Ij is dense on the unit circle;

(3) the set S̃ :=
⋃∞

1 Īj does not intersect E, and there exists m1 > 0 such
that VS(z) = VS̃(z) ≥ m1, z ∈ E. In particular, the set S̃ is thin at each point
of E;

(4) λ(E1) > 0, where E1 := ∂D \ S.

Proof of Claim 1. Let W = {wn} be a countable dense subset of ∂D \
E. We shall choose arcs of the sequence {Ij} inductively.

Let I1 be an open arc with center w1 such that no of its endpoints belongs
to W , and Ī1 ∩ E = ∅. The number 2m1 := min{VI1(z); z ∈ E ∩ {0}} is
positive.3

Fix k ≥ 1. Suppose arcs I1, . . . , Ik with centers wn1 , . . . , wnk
(n1 = 1 <

n2 < · · · < nk) are already chosen in such a way that the following conditions
are satisfied: Īj ∩ Īl = ∅ (j 6= l, j, l ≤ k), no endpoint of Ij lies in W , wnj+1 is
the element of W \ (I1 ∪ · · · ∪ Ij) with the smallest index, and

VI1∪···∪Ij (z) ≥ m1(2− 1
2
− · · · − 1

2j
), z ∈ E ∩ {0}, j = 1, . . . , k.

Let wnk+1
be the element of W \ (I1∪· · ·∪ Ik) with the smallest index. Let

Ik+1 be an open arc with center wnk+1
whose endpoints do not belong to W

and which is so short that

VI1∪···∪Ik+1
(z) ≥ m1(2− 1

2
− · · · − 1

2k+1
), z ∈ E ∩ {0}.

It is clear that the sequence {Ik} satisfies (1) and (2).
To show (3) it is sufficient to observe that

VS(z) = VS̃(z) = lim
n→∞

VI1∪···∪In(z), z ∈ C,

is a subharmonic function with logarithmic pole at ∞, harmonic on C \ S̄,
continuous on D ∪ S̃, VS(z) = 0 on S̃, and VS(z) ≥ m1 for all z ∈ E.

2It is clear that for every j ≥ 1 the component Uj is a simple connected Jordan domain
symmetric with respect to the unit circle. One may assume that Ij ⊂ Uj .

3Recall that VI1 is identical with the Green function of Ĉ \ Ī1 with pole at ∞.
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To show (4) observe that

VS(z) =
1

2π

∫ 2π

0

1− |z|2

|eit − z|2
VS(eit)dt =

1
2π

∫
E1

1− |z|2

|eit − z|2
VS(eit)dt, z ∈ D,

which implies λ(E1) > 0.
The proof of our claim is completed.

Now we pass to the proof of Lemma 2.1.
Let {Ij} be a sequence of arcs satisfying the conditions of Claim 1. Let

p ∈ C∞(R) be a positive real-valued function of class C∞ on the real line
such that 0 < p(t) ≤ 1 on R, and p is nowhere R-analytic, e.g. we can take
p(t) = 1

1+|h(eit)|2 , t ∈ R, where

h(z) =
∞∑
1

2−2
√

n
z2n

, |z| ≤ 1.

Without loss of generality we may assume 1 ∈ E. Let eαj , eβj be endpoints
of Ij , where 0 < αj < βj < 2π. Put

rj(t) := p(t) exp

− 1

1− (2(t−αj)
βj−αj

− 1)2

 , αj ≤ t ≤ βj ,

rj(t) := 0, t ∈ [0 , 2π] \ (αj , βj).

One can check that rj ∈ C∞([0, 2π]) and r
(k)
j (t) = 0 for all k ≥ 1 and for all

t ∈ [0 , 2π] \ (αj , βj), i.e. the function rj is flat at every point of the last set.
Moreover, rj is positive at every point of the open interval (αj , , βj) and not
R-analytic at any point of the closed interval [αj , βj ]. It is clear that rj can
be extended to R as a C∞ periodic function with period 2π.

Put

(2) r(t) :=
∞∑
1

εjrj(t), t ∈ R,

where εj > 0 is chosen so small that

(3) εj |r(k)
j (t)| <

1
2j

, k = 0, · · · , j, j ≥ 1, t ∈ R.

It is clear that 0 ≤ r(t) < 1, t ∈ R, r ∈ C∞(R), r is periodic with period
2π, and nowhere R-analytic. Observe that if s is a boundary point of Ik then
r(s) = εrk(s) = 0. Each point t of E is a limit point of such points s. Hence
{r(t) = 0} = ∂D \ S =: E1.
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The domain G containing 0 in its interior and bounded by the curve γ with
the parametric representation

z = γ(t) ≡ (1− r(t)) eit, 0 ≤ t ≤ 2π,

is strictly starlike with respect to 0. Moreover, E ⊂ E1 := Ḡ∩ ∂D ≡ ∂D \S,
and ∂G is a C∞-smooth Jordan curve nowhere R-analytic.

We shall show that, given 0 < m < m1, the coefficients εj in the formula
(2) can be chosen so small that

VU (z) ≡ VC\(Ḡ∪Ḡe)(z) ≥ m, z ∈ E.

The function VS , given by Claim 1, is non-negative in C, continuous at each
point of S̃, and VS(z) = 0 on S̃. It follows that, given 0 < δ < m1, the set
Uδ := {z; VS(z) < δ} is an open neighborhood of S̃. In particular, Īj ⊂ Uδ for
every j ≥ 1.

Hence one can choose coefficients εj so small that both (3) and the following
condition (4) are satisfied

(4) {(1− εjrj(t))eit ,
eit

1− εjrj(t)
} ⊂ Uδ, αj ≤ t ≤ βj , j ≥ 1.

It is clear that Ũ = ∪∞1 Ūj ⊂ Uδ, where Uj is the connected component of U
such that Ij ⊂ Uj . Hence VU (z) ≥ VUδ

≡ VS−δ ≥ m := m1−δ > 0, z ∈ E.
This ends the proof of Lemma 2.1.

We shall need the following

Lemma 2.2. Given 0 < ρ < 1 < R and a closed subset E of the unit circle,
assume that U is an open subset of {ρ < |z| < R} such that VU (z) ≥ m =
const > 0 on E. Then for every 0 < θ < 1 there exists 0 < r0 < ρ such that

VD(0,r0)∪U (z) ≥ θm, z ∈ E.

Proof. Put M := sup{VU (z); |z| ≤ R}. Given 0 < ε < 1,

ϕε(z) := (1− ε) log
|z|
R

+ εVU (z)

is a subharmonic function of the class L such that

ϕε(z) ≤

{
0, z ∈ U,

(1− ε) log r
R + εM, |z| ≤ r,

where 0 < r < ρ. Hence, if (1 − ε) log r
R + εM ≤ 0 (i.e. if 0 < ε ≤ log R

r

M+log R
r

)

then ϕε(z) ≤ VD(0,r)∪U (z) on C. Fix 0 < θ < 1. Then ϕε(z) ≥ θm on E, if
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ε ≥ θm+log R
m+log R . Choose r0 = r with 0 < r < ρ so small that

θm + log R

m + log R
<

log R
r

M + log R
r

.

Then VD(0,r0)∪U (z) ≥ ϕε(z) ≥ θm on E for ε ∈
(

θm+log R
m+log R ,

log R
r

M+log R
r

)
which

ends the proof of Lemma 2.2

We shall also need the following Theorem due to Vitushkin [5].
Let K be a compact subset of C. Then C \ K is a (at most) countable

union of open sets {Uj}. The set ∂′K := ∪j∂Uj is called exterior boundary of
K. Remaining part of the boundary ∂K is denoted by ∂0K and called interior
boundary of K.

Theorem 2.1. (Vitushkin [5]). If the interior boundary of a compact set
K is located on a countable union of Lyapunov’s arcs then A(K) = R(K),
where A(K) := C(K) ∩ O(intK) and R(K) := {f ∈ C(K); f is a uniform
limit of a sequence of rational functions}.

Now we pass to the proof of Theorem 1.1. Let g : Ḡ 7→ D̄, g(0) = 0,
be the C∞-smooth conformal mapping of the closure of the domain G given
by Lemma 2.1 onto the closure of the unit disk. The function ge(z) =
1/g(1/z̄), z ∈ De, is C∞-smooth and maps Ḡe conformally onto D̄e, ge(∞) =
∞. Moreover, g(z) = ge(z) on E1.

The function F := g ∪ ge is continuous on Ḡ ∪ Ḡe and holomorphic in
G ∪Ge.

Fix R > 1 so large that {|z| = R} ⊂ Ge, and put U := C \ (Ḡ ∪
Ḡe). By Lemma 2.1, given m1 with 0 < m1 < m, there exists r0 > 0 such
that 1

r0
> R, D(0, r0) ⊂ G and VU∪D(0,r0)(z) ≥ m1 on E. It is clear that

VU∪D(0,r0)(z) ≤ log+ |z|
r0

on C. Since U = {1
z̄ ; z ∈ U}, the function v(z) :=

VU∪D(0,r0)(1
z̄ )/ log R

r0
is subharmonic on C \ {0}, v(z) = 0 on U ∪D(0, 1/r0),

v(z) ≤ 1 for |z| ≥ 1/R, v(z) ≥ m1

log R
r0

> 0 on E, and v(z) > 0 for all z ∈ Ge∪E

with |z| < 1/r0. Hence

v(z) ≤ h(z) ≡ h(z, U ∪D(∞,
1
r0

), D(∞,
1
R

)), |z| ≥ 1
R

,

where h denotes the (0-1)-extremal function for the domain D(∞, 1/R) and
its subset U ∪D(∞, 1/r0).4 Here D(∞, ρ) := {z ∈ Ĉ; |z| > ρ}, ρ > 0.

4Recall that if E is a subset of a domain D, we put h(z, E, D) := sup{u(z); u ∈
SH(D), u ≤ 0 on E, u ≤ 1 on D}, z ∈ D.
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Put K := (Ḡ ∪ Ḡe) ∩ {|z| ≤ 1
r0
}. By the Vitushkin Theorem there exists

a sequence of rational functions {Fn} with poles in U ∪ D(∞, 1
r0

) uniformly
convergent to F on K.

Fix a function P ∈ PSH(C2) such that P (z, g(z)) = −∞ on G. Let a be
a fixed point of Ge ∪E with |a| < 1/r0. It remains to show that P (a, ge(a)) =
−∞.

Observe that fn(z) := Fn(z) + F(a)−Fn(a) → g(z) uniformly on {|z| =
1
R}. The sequence {fn} is uniformly bounded on the set D(0, 1/r0)\U . There-
fore the sequence vn(z) := P (z, fn(z)) is uniformly upper bounded on this
set.

Put Ωn := ∪kn
j=1Uj , where kn is so large that all poles of the function fn,

lying in U , are located in Ωn. By the maximum principle

sup{|fn(z)|; z ∈ D(0, 1/r0) \ Ωn} = sup{|fn(z)|; ζ ∈ D(0, 1/r0) \ U}

for all n ≥ 1. The function vn is subharmonic on an open neighborhood of
the set D(0, 1/r0) \Ωn. Put C := supn≥1 sup{vn(z); z ∈ D(0, 1/r0) \U}, and
Mn := max{vn(z); |z| = 1

R}. Then C is finite and Mn → −∞ as n →∞.
The function h(z,D(∞, 1/r0)∪Ωn, D(∞, 1/R)) is harmonic in the domain

{ 1
R < |z| < 1

r0
} \ Ω̄n and continuous in its closure, vanishes on {|z| = 1/r0} ∪

∂Ωn, and is equal to 1 on {|z| = 1/R}. Hence, by two constant theorem

vn(z) ≤ C + (Mn − C)h(z,D(∞,
1
r0

) ∪ Ωn, D(∞,
1
R

))

for all z in { 1
R ≤ |z| ≤ 1

r0
} \ Ωn.

One can check that h(z, D(∞, 1/r0)∪Ωn, D(∞, 1/R)) ≥ h(z,D(∞, 1/r0)∪
U,D(∞, 1/R)) ≥ v(z), n ≥ 1 , |z| ≥ 1/R. Therefore

P (a, ge(a)) = P (a, fn(a)) ≤ C + (Mn − C)v(a), n ≥ n1(a),

where n1(a) is so large that Mn − C < 0 for n ≥ n1(a). It follows that
P (a, ge(a)) = −∞.

By the same method one can show that if P (z, ge(z)) = −∞ on Ge then
P (z, g(z)) = −∞ on G∪E. Namely, it is sufficient to observe that the function
v(z) = VU∪D(0,r0)(z)/ log R

r0
is subharmonic in C, harmonic on C\D(0, r0)∪Ū ,

v(z) = 0 on U ∪D(0, r0), v(z) ≤ 1 on {|z| ≤ R}, v(z) ≥ m1/ log R
r0

on E, and
v(z) > 0 for all z ∈ G ∪ E with |z| > r0. Hence

v(z) ≤ h(z, U ∩D(0, r0), D(0, R)), |z| ≤ R.

Put K := (Ḡ∪ Ḡe)∩{|z| ≤ R}. By Vitushkin Theorem there exists a sequence
of rational functions {Fn} with poles in U ∪D(∞, R) uniformly convergent to
F on K. Now, we can repeat the reasoning of the last part of the proof of the
former case.
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Corollary. Put f := g−1, fe := g−1
e . Then

f : D̄ 7→ Ḡ, fe : D̄ 7→ Ḡe

are conformal diffeomorphisms satisfying all the assertions of Theorem 1.1.
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