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ON THE ORDER OF HOLOMORPHIC AND

C-HOLOMORPHIC FUNCTIONS

by Maciej P. Denkowski

Abstract. In the first part of this paper we prove that the  Lojasiewicz ex-
ponent of a non-constant holomorphic germ f : (Cm, 0) → (C, 0) is a good
exponent for f coinciding with the order of vanishing of f at zero and the
degree at zero of its cycle of zeroes Zf . As an application of this result
we show that for any holomorphic curve germ γ : (C, 0) → (Cm, 0) one has
ord0(f ◦ γ) = ord0f · ord0γ if and only if γ is transversal to f−1(0) at zero.
In a recent paper we have introduced an order of flatness for c-holomorphic
functions which allowed us to give some bounds on the  Lojasiewicz ex-
ponent of c-holomorphic mappings. Answering a question of A. P loski
we show that both notions (the order of flatness and the  Lojasiewicz ex-
ponent) are intrinsic to the analytic set given (this allows to carry these
notions over to analytic spaces). We turn then to considerations about
possible  Lojasiewicz exponents of c-holomorphic mappings. The last part
deals with quotients of c-holomorphic functions. We investigate relations
between this newly introduced order of flatness and the possibility of di-
viding one c-holomorphic function by another.

1. Introduction. For the convenience of the reader we recall some basic
notions.

Definition 1.1. We say that a continuous mapping f : Ω → Cn, where
Ω ⊂ Cm is non-empty, satisfies the  Lojasiewicz inequality at the point a ∈
f−1(0), if there exist positive constants α,C > 0 such that the inequality

(#) |f(z)| ≥ Cdist(z, f−1(0))α,
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where the distance is computed in one of the usual norms in Cm, holds in a
neighbourhood of a. Note that it is clearly a condition on germs.

By [7], every holomorphic mapping f satisfies the  Lojasiewicz inequality
at each point of its zero set (it still holds true for c-holomorphic mappings by
[3], see section 4 for the definition). It is natural to consider the  Lojasiewicz
exponent of f at a ∈ f−1(0) defined to be

L(f ; 0) = inf{α > 0 | (#) is satisfied in a neighbourhood of a}.

By the generalized Mean Value Theorem, it is easy to see that L(f ; 0) ≥ 1 in
the holomorphic case (see e.g. [3]).

In the first part of this paper we shall consider the following situation:
Ω ⊂ Cm is an open neighbourhood of 0 and f : Ω → C is a non constant
holomorphic function such that f(0) = 0. Let Γf be the graph of f . The
intersection Γf ∩ (Ω × {0}) is proper, i.e., has the minimal possible (pure)
dimension, namely m − 1. Therefore, using Draper’s results from [6], we can
define the proper intersection cycle

Zf := Γf · (Ω× {0}) =
∑

ι

αιSι,

where Sι ⊂ f−1(0) are irreducible components, and αι = i(Γf · (Ω × {0});Sι)
are the intersection multiplicities along Sι ([6]).

We may assume that 0 ∈ Sι for each ι and ι ∈ {1, . . . , r}.

Definition 1.2. We call degree of the cycle Zf at a point a ∈ f−1(0), the
number

degaZf :=
r∑

j=1

αjdegaSj ,

where degaSj stands for the classical degree of the analytic set Sj at the point
a. (If a 6∈ Sj , then degaSj = 0 by definition.)

Finally, three more notations: let ordzf denote the order of vanishing of f
at z ∈ Ω i.e. ordzf = min{α1 + . . . + αm | ∂α1+...+αmf

∂α1z1···∂αmzm
(z) 6= 0}; if F : Ω →

Cm is a holomorphic proper mapping, then mz(F ) denotes its (geometric)
multiplicity at z ∈ Ω (i.e. the generic number of points in the fibre F−1(w) for
w close to F (z), see e.g. [2]); if Z ⊂ Ω is analytic and a ∈ Z, then Ca(Z) is
its tangent cone at a.



49

2. A remark on the degree of the cycle of zeroes.

Proposition 2.1. In the introduced setting, deg0Zf = ord0f.

Proof. Let us choose coordinates in Cm so that the degree is realized
in the following manner: deg0Zf = i(Zf · {z1 = . . . = zm−1 = 0}; 0). Then
there must be C0(f−1(0)) ∩ ({0}m × C) = {0}m+1 (transversality). But the
intersection multiplicity above coincides, by [2], p. 140 (the intersection multi-
plicity being associative in the proper intersection case), with the multiplicity
m0(f, z1, . . . , zm−1) and so by a Tsikh–Yuzhakov result (see [2], p. 112), in
view of the transversality of the intersection, we obtain m0(f, z1, . . . , zm−1) =
ord0f

∏m−1
j=1 ord0zj = ord0f, which is the result sought for.

Let kj := min{ordzf | z ∈ RegSj} for j = 1, . . . , r. Obviously kj ≥ 1.

Proposition 2.2. For each j ∈ {1, . . . , r}, ordzf = kj for z ∈ Sj apart
from a nowheredense analytic subset of Sj (i.e. for the generic z ∈ Sj). More-
over, kj = αj.

Proof. The set Zj := {z ∈ RegSj | Dαf(z) = 0, |α| ≤ kj} is clearly
analytic and nowheredense in RegSj . This gives the first part of the assertion.

So as to compute the intersection multiplicity αj = i(Γf · (Ω × {0});Sj)
along Sj , we take a generic point a ∈ RegSj and any affine complex line
L ⊂ Cm through a, transversal to Sj . Then we obtain i(Zf · L; a) = αji(Sj ·
L; a) as the isolated proper intersection multiplicity. Transversality means that
i(Sj · L; a) = degaSj and the latter is equal to 1 by the choice of a. Hence
αj = i(Zf · L; a) and the latter coincides with degaZf by the choice of L. We
may as well assume that a 6∈ Zj .

Take linear forms l1, . . . , lm−1 on Cm such that L − a =
⋂

j Kerlj . Then
the mapping ϕ(x) = (f(x), l1(x − a), . . . , lm−1(x − a)) = (ϕ1(x), . . . , ϕm(x))
has an isolated zero at a. After a linear change of coordinates y = x − a
we may apply the preceding proof. By assumptions, we have transversality⋂m

ι=1Ca(ϕ−1
ι (0)) = {0}m. Thus the result of Tsikh–Yuzhakov leads toma(ϕ) =∏m

ι=1 ordaϕι = ordaf , but ma(ϕ) = degaZf . Finally, the choice of a ensures
that ordaf = kj .

Now using the Weierstrass Preparation Theorem, we link the degree deg0Zf

with the  Lojasiewicz exponent of f .

Theorem 2.3. If f : (Cm, 0) → (C, 0) is a non-constant holomorphic germ,
then L(f ; 0) = ord0f = deg0Zf and (#) is satisfied with this exponent.

Proof. We may assume that f : Ω → C is holomorphic and coordinates
in Cm = Cm−1 × C are chosen in such a way that

C0(f−1(0)) ∩ ({0}m × C) = {0}m+1.
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Then applying the Weierstrass Preparation Theorem to f in a neighbourhood
U × V of 0 ∈ Cm−1 × C, we obtain a distinguished Weierstrass polynomial
P ∈ O(U)[t] and a holomorphic function h ∈ O(U × V ) with empty zero set
and such that f = hP in U × V . Then ord0f = ord0P and the latter is equal
to degP (x, ·) by the choice of the coordinates.

Indeed, C0(f−1(0)) = C0(P−1(0)) = inP−1(0), where inP denotes the ini-
tial form in the expansion of P into homogenous forms near zero. If P (x, t) =
td + a1(x)td−1 + . . . + ad(x) with aj holomorphic in U , then clearly ord0P =
min{d, ord0a1 +d−1, . . . , ord0ad}. The condition on the tangent cone is equiv-
alent to ord0aj ≥ j for j = 1, . . . , d and so in this case ord0P = d = degP (x, ·).

Shrinking U if necessary, we may assume that c := infU |h| > 0. Take
a point x ∈ U for which there are exactly d distinct roots t1(x), . . . , td(x)
of P . Then |f(x, t)| ≥ c

∏d
j=1 |t − tj(x)| and it is obvious that for each j,

|t − tj(x)| ≥ dist((x, t), f−1(0)). Therefore, |f(x, t)| ≥ cdist((x, t), f−1(0))d

and by continuity this holds for all (x, t) ∈ U ×V . Hence L(f ; 0) ≤ d = ord0f .
On the other hand, by [3], Lemma (4.8), we have L(f ; 0) ≥ ord0f . This,

together with Proposition 2.1, gives the result.

Note. To prove that L(f ; 0) ≤ ord0f one can also recall theorem (4.9) from
[3] making use of the main result of [1] by which there is L(f ; 0) ≤ deg0Zf ,
since L(f ; 0) coincides in the holomorphic case with the  Lojasiewicz regular
separation exponent of Γf and Ω × {0} (see e.g. [3] (2.5)). Proposition 2.1
then yields the result.

3. Application. As an example of application of our preceding result we
shall give here a useful formula for the order of vanishing of a holomorphic
function restricted to an analytic curve. It seems that such a theorem was not
written anywhere till now. Recall that for any non-constant holomorphic map
germ h : (Cm, 0) → (Cn, 0) one has ord0h = minn

j=1 ord0hj .

Theorem 3.1. Let f : (Cm, 0) → (C, 0) be a holomorphic germ and let
Γ ⊂ Cm be an analytic irreducible curve germ at zero. Then for any local
parametrization γ : (C, 0) → (Cm, 0) of Γ the following three statements are
equivalent:

(i) ord0(f ◦ γ) = ord0f · ord0γ;
(ii) The tangent cones at zero of f−1(0) and Γ intersect only at zero:

C0(f−1(0)) ∩ C0(Γ) = {0};

(iii) There exist positive constants ε, C > 0 such that

C|γ(t)| ≤ dist(γ(t), f−1(0)), |t| < ε.
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Proof. It is easy to see (see e.g. [3]) that for any non-constant holomor-
phic map germ h : (Cm, 0) → (Cn, 0) one has

ord0h = max{η > 0 | |h(x)| ≤ const.|x|η holds in a neighbourhood of 0}.
It follows thence that ord0(f ◦ γ) ≥ ord0f · ord0γ always holds.

The equivalence (ii)⇔(iii) follows directly from [10]. Let us start with
(ii)⇒(i): by [10], we know that the assumption on the tangent cones leads to

const.dist(x, f−1(0) ∩ Γ) ≤ dist(x, f−1(0)) + dist(x,Γ)

in a neighbourhood of zero. On the other hand, by the preceding result we
have

|f(x)| ≥ const.dist(x, f−1(0))ord0f

in a neighbourhood of zero. Now, since dist(x, f−1(0) ∩ Γ) = |x|, we obtain
taking x ∈ Γ,

const.|γ(t)| ≤ |f(γ(t))|1/ord0f , |t| < ε,

with some suitable ε > 0. It is known that L(γ, 0) = ord0γ since γ is a curve
(see e.g. [3] and Section 4) and so for some constants C,C ′ > 0,

C|t|ord0γ ≤ |f(γ(t))|1/ord0f ≤ C ′|t|ord0(f◦γ)/ord0f ,

for |t| < ε′ ≤ ε, whence

0 <
C

C ′ ≤ |t|(ord0(f◦γ)/ord0f)−ord0γ , |t| ≤ ε′.

Therefore, ord0(f ◦ γ) ≤ ord0f · ord0γ.
We turn now to proving (i)⇒(ii). Let d := ord0f and let f =

∑
ν≥d fν

be the expansion of f into a series of homogenous forms near zero (fν being
a form of degree ν). Let ord0γ = ord0γ1 where γ = (γ1, ζ), ζ = (γ2, . . . , γm).
Obviously, ord0ζ ≥ ord0γ1.

In a neighbourhood of zero we can write γ1(t) = tord0γ γ̃1(t) with γ̃1 holo-
morphic and such that γ̃1(0) 6= 0, as well as ζ(t) = tord0γ ζ̃(t) with ζ̃ holomor-
phic (possibly vanishing at zero). Thus for each ν ≥ d we have fν(γ1(t), ζ(t)) =
tdord0γt(ν−d)ord0γfν(γ̃1(t), ζ̃(t)) and so we may write in a neighbourhood of zero

f(γ1(t), ζ(t)) = tdord0γ(fd(γ̃1(t), ζ̃(t)) +R(t)),

where R is holomorphic and such that R(0) = 0. Now, by assumption,

(?) 0 6= lim
t→0

f(γ1(t), ζ(t))
tdord0γ

= fd(γ̃1(0), ζ̃(0)).

Note that C0(Γ) is a complex line, since Γ is irreducible at zero. On the other
hand, for any sequence tν → 0, if we put λν := 1

t
ord0γ
ν

, then

λνγ(tν) → (γ̃1(0), ζ̃(0)) ∈ C0(Γ) \ {0}.



52

Therefore, C0(Γ) = C · (γ̃1(0), ζ̃(0)) and since C0(f−1(0)) = f−1
d (0), we obtain

the result sought thanks to (?).

Note. As observed by A. P loski, the equivalence (i)⇔(ii) may also be
proved in the following, somewhat more direct, way:
Set ν0 := ord0γ = minj ord0γj . We may expand each γj(t) into a power series
starting with aj,ν0t

ν0 . Therefore, γ(t) = atν0 +η(t), where a = (a1,ν0 , . . . , am,ν0)
is non-zero and η is holomorphic such that ord0η > ν0. In particular, η(t)/tν0

has a removable singularity at zero. Then C0(Γ) = Ca, since for 0 6= tν → 0
and λν := 1/(tν)ν0 , λνγ(tν) = a + η(tν)/(tν)ν0 converges to a. Clearly, (ii)
is equivalent to inf(a) 6= 0 (here inf denotes the initial form of f). Now, if
n0 := ord0f and f =

∑
n≥n0

fn is the expansion of f into homogenous forms,
then fn(γ(t)) = tν0nfn(a+ η(t)/tν0). Hence

f(γ(t))
tν0n0

=
∑
n≥n0

tν0(n−n0)fn

(
a+

η(t)
tν0

)
.

Finally, letting t→ 0 we obtain limt→0 f(γ(t))/tν0n0 = fn0(a) and the equiva-
lence follows.

As a corollary to this we have the following completion of [3], part 3:

Corollary 3.2. If Γ ⊂ Cm is an irreducible curve germ at zero and the
function germ f : (Γ, 0) → (C, 0) is non-constant and strongly holomorphic,
then for any holomorphic extension F ⊃ f one has ord0f ≥ ord0F (where
ord0f is computed as for c-holomorphic functions – see below) and equality
holds iff C0(Γ) ∩ C0(F−1(0)) = {0}. In such a case L(f ; 0) = ord0F .

Proof. It follows from Theorem 3.1 together with [3], Theorem (3.2).

4. Basic facts about c-holomorphic functions. For the convenience
of the reader we recall the definition of a c-holomorphic mapping. Let A ⊂ Ω
be an analytic subset of an open set Ω ⊂ Cm.

Definition 4.1. ([7, 11]) A mapping f : A→ Cn is called c-holomorphic
if it is continuous and the restriction of f to the subset of regular points RegA
is holomorphic. We denote by Oc(A,Cn) the ring of c-holomorphic mappings,
and by Oc(A) the ring of c-holomorphic functions.

It is a way (due to R. Remmert) of generalizing the notion of holomor-
phic mapping onto sets having singularities and a more convenient one than
the usual notion of weakly holomorphic functions (i.e. functions defined and
holomorphic on RegA and locally bounded on A). Recall also that mappings
having locally a holomorphic extension to a neighbourhood of the ambient
space are called (strongly) holomorphic. The notion is obviously valid also on
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analytic spaces. The following theorem is fundamental for all what we shall
do (cf. [11], 4.5Q):

Theorem 4.2. A mapping f : A→ Cn is c-holomorphic iff it is continuous
and its graph Γf := {(x, f(x)) | x ∈ A} is an analytic subset of Ω× Cn.

We introduce also the following useful criterion of c-holomorphicity.

Theorem 4.3. Let A ⊂ Ω be an analytic subset of an open set Ω ⊂ Cm

and let f : A→ Cn be a mapping.
If there exist an analytic set A′ in an open set U ⊂ Cr and a proper c-
holomorphic surjection ϕ : A′ → A for which f ◦ ϕ ∈ Oc(A′,Cn), then f is
c-holomorphic.

Proof. Obviously, we may assume that n = 1, since a mapping is c-holo-
morphic if and only if its components are c-holomorphic.

First let us check that f is continuous. Let F ⊂ A be closed. Then
(f ◦ ϕ)−1(F ) is closed. Since ϕ is proper, ϕ((f ◦ ϕ)−1(F )) is a closed set too.
Since ϕ is a surjection, we have actually shown that f−1(F ) is closed. Hence
Γf is a closed set.

So as to check that the graph Γf is analytic we proceed as follows. Since f is
c-holomorphic iff its restriction to each irreducible component is c-holomorphic,
we may assume that A has pure dimension k as well as that k ≥ 1. Consider
the natural projection

π : U × Ω× C 3 (t, x, y) → (x, y) ∈ Ω× C

and the analytic set

Γ := {(t, x, y) | x = ϕ(t), y = f(ϕ(t)), t ∈ A′}.

It is easy to see that Γf = π(Γ). On the other hand, one can easily check that
the fibres of the restriction of π to Γ are of the form(

ϕ−1(ϕ(t)) ∩ {t̃ ∈ U | f(ϕ(t̃)) = f(ϕ(t))}
)
× {ϕ(t)} × {f(ϕ(t))},

where t is fixed. Since ϕ is proper, it is obvious that the restriction of π to Γ is
proper as well. Thanks to Remmert’s Proper Mapping Theorem, we conclude
that Γf is an analytic set.

Note. It is clear, by Remmert’s Theorem, that under the assumptions of
this theorem there is dimaA

′ = dimϕ(a)A.

For a more detailed list of basic properties of c-holomorphic mappings see
[11, 3]. In the latter we introduce the order of flatness for a non-constant
c-holomorphic germ f : (A, 0) → (Cn, 0) as follows.
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Definition 4.4. We call order of flatness of f at zero the number

ord0f := max{η > 0 | |f(x)| ≤ const · |x|η in a neighbourhood of 0}.

We put by definition ord00 := +∞.

It is proved in [3] that the definition is well-posed, ord0f ∈ Q and its de-
nominator is not greater than deg0A. It is clear that ord0f = minn

j=1 ord0fj

and for functions (i.e. n = 1) there is moreover ord0f
r = r · ord0f for inte-

gers r ≥ 1. By [3], Theorem (3.2), if A is an irreducible curve germ at zero
parametrized by γ : (C, 0) → (A, 0), then ord0γ = deg0A and

(∗) L(f ; 0) =
ord0(f ◦ γ)

ord0γ
= ord0f.

5. The  Lojasiewicz exponent and the order of flatness of a c-
holomorphic mapping are intrinsic. In this section we shall answer a
question posed by A. P loski. When defining the  Lojasiewicz exponent or the
order of flatness of a c-holomorphic mapping (see above and [3]) one uses, so to
say, the ambient space – the natural question then is: do these notions depend
on the imbedding of the analytic set given or are they intrinsic? Below we
prove that both notions are intrinsic. This allows us to carry them over to
analytic spaces. The main tool used in the proof is the fact that (strongly)
holomorphic functions are locally Lipschitz.

Theorem 5.1. Let f : A → A′ be a c-holomorphic mapping of analytic
spaces, mapping the point a ∈ A into a′ ∈ A′. If ϕ : (G, a) → (X, 0) and
ϕ′ : (G′, a′) → (Y, 0) are two analytic maps, then

L(f ; a) := L(ϕ′ ◦ f ◦ ϕ−1; 0), ordaf := ord0(ϕ′ ◦ f ◦ ϕ−1)

are well-defined as, respectively, the  Lojasiewicz exponent and the order of
flatness of f at a ∈ A.

Having analytic maps implies (see [7]) that G is a neighbourhood of a in
A, X ⊂ Cm a locally analytic set, and analogously G′ is a neighbourhood of a′

in A′, Y is locally analytic in Cr.

Proof of theorem 5.1. Take any two other imbedding analytic maps
ψ : A ⊃ (G̃, a) → (Y, 0) ⊂ Cn and ψ′ : A′ ⊃ (G̃′, a′) → (W, 0) ⊂ Cs. The
problem being local (actually we need to solve it for germs), we may suppose
that G̃ = G and G̃′ = G′. Observe that the strongly holomorphic mappings

h := ψ ◦ ϕ−1 : Cm ⊃ X → Y ⊂ Cn and h̃ := ψ′ ◦ ϕ′−1 : Cr ⊃ Z →W ⊂ Cs

are both biholomorphisms, mapping zero into zero.
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Put fX := ϕ′ ◦ f ◦ ϕ−1 and fY := ψ′ ◦ f ◦ ψ−1. These are c-holomorphic
mappings, respectively (X, 0) → (Z, 0) and (Y, 0) → (W, 0). There is fX =
h̃−1 ◦ fY ◦ h. Therefore, we need only to prove the following fact:
If f : Cm ⊃ (X, 0) → (Z, 0) ⊂ Cr is a c-holomorphic mapping and both h : Cn ⊃
(Y, 0) → (X, 0) and g : (Z, 0) → (W, 0) ⊂ Cs are (strong) biholomorphisms of
locally analytic sets X,Y, Z,W , then

L(f ; 0) = L(g ◦ f ◦ h; 0) and ord0f = ord0(g ◦ f ◦ h).

We shall prove both equalities at the same time. We assign to each of the
considered locally analytic sets neighbourhoods in which they are closed.

Take a neighbourhood U of 0 ∈ X, exponents α, η > 0 and constants
c, C > 0, such that

c dist(x, f−1(0))α ≤ |f(x)| ≤ C|x|η, when x ∈ U ∩X.

We may assume that U is a ball B(0, 2r) (with r > 0 arbitrarily small). Then,
for x ∈ B(0, r), the distance dist(x, f−1(0)) is realized by some point belonging
to B(0, 2r) ∩ f−1(0).

In view of the fact that g is one-to-one we have f−1(0) = f−1(g−1(0)), and
g−1 being strongly holomorphic it satisfies Lipschitz condition (simply by re-
striction to W of the Lipschitz condition satisfied by any holomorphic extension
H ⊃ g−1 in a neighbourhood of zero) in an arbitrarily small neighbourhood of
zero:

|g−1(w)− g−1(w′)| ≤ `|w − w′|, w, w′ ∈ V ∩W.
Taking a smaller radius r, we may assume that g(f(U∩X)) ⊂ V . Then, putting
w = g(f(x)), w′ = 0, we obtain |f(x)| ≤ `|g(f(x))|. The same argument with
g instead of g−1 leads (using the Lipschitz condition satisfied by g) to the
inequality |g(f(x))| ≤ `′|f(x)|. Finally, combining both inequalities obtained
we get for x ∈ U ∩X,

(c/`)dist(x, f−1(g−1(0)))α ≤ |g(f(x))| ≤ `′C|x|η.

In order to shorten notation put g̃ := g ◦ f . For any x ∈ B(0, r) ∩ X
there exists a point x̂ ∈ U ∩ g̃−1(0) such that dist(x, g̃−1(0)) = |x − x̂|. The
set h−1(U) is an open neighbourhood of zero containing uniquely determined
points y, ŷ such that h(y) = x, h(ŷ) = x̂ and ŷ ∈ h−1(g̃−1(0)). Besides, by the
Lipschitz condition (without loss of generality we assume it holds in the whole
of U) satisfied by h−1, we obtain |y − ŷ| ≤ L|h(y)− h(ŷ)|. Therefore,

dist(x, g̃−1(0)) = |x− x̂| ≥ (1/L)|y − ŷ| ≥ (1/L)dist(y, h−1(g̃−1(0)))

for all x ∈ B(0, r). On the other hand, h being strongly holomorphic, its order
of flatness is ≥ 1 (cf. [3]), and since to each x there is exactly one y such that
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h(y) = x, we obtain

|g̃(h(y))| ≤ `′C|h(y)|η ≤ `′CK|y|η

for y ∈ h−1(B(0, r)) =: V (taking at any event a smaller r). Thus, for any
y ∈ V ,

(c/`Lα)dist(y, h−1(g̃−1(0)))α ≤ |g̃(h(y))| ≤ `′CK|y|η,
whence L(f ; 0) ≥ L(g ◦ f ◦ h; 0) and ord0(g ◦ f ◦ h) ≥ ord0f .

We obtain the converse inequalities thanks to the same argument using
this time f̃ := g ◦ f ◦ h instead of f and the biholomorphisms g−1, h−1.

Note. By the theorem above the  Lojasiewicz exponent and the order of
flatness do not depend on the imbedding and moreover they are both biholo-
morphic invariant. It is worth noting that they are not c-biholomorphic invari-
ant. It is easy to see by considering the c-biholomorphism γ : C 3 t 7→ (t2, t3) ∈
{y2 = x3} =: A and the c-holomorphic function f(x, y) = y/x on A \ {(0, 0)},
f(0, 0) = 0. Then L(f ; 0) = 1/2 but L(f ◦ γ; 0) = 1.

Note also that the above f does not satisfy Lipschitz condition in any
neighbourhood of zero.

6. Possible  Lojasiewicz exponents. In the holomorphic case, if we con-
fine ourselves to non-constant holomorphic germs f : (Cm, 0) → (Cm, 0), with
m fixed, not all rational numbers can be  Lojasiewicz exponents of such maps
– see [8]. The gaps are filled by c-holomorphic mappings on analytic sets of
pure dimension m. To be precise let us introduce the set

Lm := {q> 0 |∃A a pure m-dimensional analytic germ at zero

∃f : (A, 0) → (Cm, 0) c-holomorphic, such that

f−1(0) = {0} and L(f ; 0) = q}.

Let Q>0 := {q ∈ Q | q > 0}. We already know that Lm ⊂ Q>0 ([3], Theorem
(2.6)). Actually, by [9], Corollary 3.1 and Theorem 1.5 this remains true if
we drop the assumption f−1(0) = {0} in the definition of Lm. To show the
converse inclusion we consider the following family of sets and functions:
for r, s ∈ N such that their greatest common denominator GCD(r, s) = 1
and r < s we put Γr,s := {(x, y) ∈ C2 | yr = xs}, fr,s(x, y) = y/x for
(x, y) ∈ Γr,s \ {0}, fr,s(0) = 0, and gr,s(x, y) = y for (x, y) ∈ Γr,s.

Then f−1
r,s (0) = g−1

r,s (0) = {0} and L(fr,s; 0) = (s− r)/r, L(gr,s; 0) = s/r
(cf. (∗)) and it is clear that both fractions are irreducible (indeed, if s−r = ka
and r = kb, then s = k(a+ b), whence GCD(r, s) ≥ k). Therefore, we obtain

Theorem 6.1. L1 = Q>0.
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Proof. Consider p/q ∈ Q>0 with GCD(p, q) = 1. Then we investigate
two cases:
(i) p/q > 1. Then obviously p/q = L(gp,q; 0).
(ii) p/q ≤ 1. The case p/q = 1 being obvious (h(x) = x on C), we may assume
that p/q < 1. Then we look for integers 1 ≤ r < s such that GCD(r, s) = 1
and (s− r)/r = p/q. Put r := q and s := p + q. Clearly, s > r and if
p + q = ka, q = kb, then p = k(a − b) which leads to GCD(p, q) ≥ k. Thus
p/q = L(fq,p+q; 0).

Corollary 6.2. Lm = Q>0 for m = 1, 2, . . .

To prove this corollary let us note the following lemma:

Lemma 6.3. Let X,Y be locally analytic sets in Ck,Cl, respectively and let
f ∈ Oc(X,Ck), g ∈ Oc(Y,Cl) be such that f−1(0) = {0} and g−1(0) = {0}.
Then for h := f × g ∈ Oc(X × Y,Ck+l) one has

L(h; 0) = max{L(f ; 0),L(g; 0)}.

Proof. It is a straightforward computation:

|h(x, y)| = |f(x)|+ |g(y)| ≥ const · (|x|lf + |y|lg) ≥ const · |(x, y)|max{lf ,lg},

in a neighbourhood of zero in X × Y , where lf := L(f ; 0), lg := L(g; 0) (by [3]
these are good exponents). Whence L(h; 0) ≤ max{lf , lg}.

On the other hand, |h(x, 0)| ≥ const · |(x, 0)|L(h;0) in a neighbourhood
0 ∈ U × V ⊂ X × Y yields |f(x)| ≥ const · |x|L(h;0) for x ∈ U , whence
lf ≤ L(h; 0). The same argument for g gives the result.

Proof of corollary 6.2. Whenever m is fixed it is clear that it suffices
to take A := (Γr,s)m and h = fr,s× . . .× fr,s or gr,s× . . .× gr,s (m times), with
an appropriate choice of r, s, to obtain L(h; 0) = q for any q ∈ Q>0.

What would also be interesting to investigate is the set of possible expo-
nents when the analytic set (germ) A is fixed. Suppose that 0 ∈ A and A is
pure k-dimensional in Cm. Put

L(A) := {q > 0 |∃f : (A, 0) → (Ck, 0) c-holomorphic,

non-constant and such that L(f ; 0) = q}.

We already have the following inclusions:

Theorem 6.4. In the introduced setting, if k > 0, then

N ⊂ L(A) ⊂ Q>0.
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Proof. The second inclusion is a consequence of [9], Corollary 3.1 and
Theorem 1.5.

The first inclusion follows from lemma (5.4) from [3] – since coordinates
may be chosen so that ord0(xj |A) = 1, then ord0(xn

j |A) = n for any posi-
tive integer n (xn

j denotes the n-th power of xj). Thus for any increasing
injection λ : {1, . . . , k} → {1, . . . ,m} we obtain L(fλ,n; 0) ≥ n for fλ,n(x) :=
(xn

λ(1), . . . , x
n
λ(k)) on A (due to [3], Theorem (5.5)). To see that in fact n is a

good exponent for fλ,n we proceed as follows. To simplify notation take λ = id.
Since coordinates are chosen by means of [3], Lemma (5.4), the natural pro-
jection onto the first k coordinates realizes deg0A. Then in particular

A ∩ U ⊂ {x ∈ Cm | |(xk+1, . . . , xm)| ≤ const · |(x1, . . . , xk)|},

where U is a neighbourhood of zero. We may take the norm `1 (sum of moduli).
Thus for x ∈ A∩U we have |x|n ≤ const·|fλ,n(x)| and the proof is complete.

As suggested by A. P loski, in the one-dimensional case we may say even
more. Suppose that Γ is an irreducible curve germ at 0 ∈ Cm. Then let
γ : (C, 0) → (Cm, 0) be its Puiseux parametrization. In particular, deg0Γ =
ord0γ = minj ord0γj . Let us choose neighbourhoods 0 ∈ U ⊂ C and 0 ∈ V ⊂
Cm such that γ : U → Γ ∩ V is a homeomorphism.

Then for any a ∈ Γ ∩ V there is a unique ta ∈ U such that γ(ta) = a.
We define a function f : Γ ∩ V → C setting f(a) := ta. Since f ◦ γ = idU , by
theorem 4.3 f is c-holomorphic on Γ ∩ V . Furthermore, by (∗) we obtain

L(f ; 0) =
ord0(f ◦ γ)

ord0γ
=

1
deg0Γ

and so ord0f
n = n/deg0Γ. We have thus proved

Proposition 6.5. If Γ ⊂ Cm is an irreducible analytic curve germ at zero,
then L(Γ) = {n/deg0Γ | n ∈ N}.

In connection to this we shall give here also a most interesting general
example, which we are indebted to A. P loski for:

Example 6.6. Let Γ := {F (x, y) = 0} ⊂ C2 be an irreducible curve germ
at zero parametrized by γ(t). Let d := deg0Γ = ord0F . By µ, we shall denote
the Milnor number of F , i.e., for JF = 〈∂F/∂x, ∂F/∂y〉,

µ = dimC(O2/JF ) = m0(gradF ).

Clearly, by Tsikh–Yuzhakov inequality, µ ≥ (d− 1)2.
Let ` := (µ − 1)/d. By the previous proposition, ` is the  Lojasiewicz

exponent of some c-holomorphic function f on Γ. However, such a function f
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cannot have a holomorphic extension onto any neighbourhood of zero in C2.
Indeed, it is a classical result that

S(Γ) := {ord0(G ◦ γ) | G ∈ O2 : G 6≡ 0 mod F}
is a subsemigroup of (N,+) whose threshold (or seuil) is equal to µ. That
means that any integer n ≥ µ belongs to S(Γ) while µ− 1 6∈ S(Γ). Therefore,
were f strongly holomorphic, we would have a holomorphic extension G ⊃ f
such that ` = ord0(G ◦ γ)/d, whence ord0(G ◦ γ) = µ− 1. This in turn implies
G ≡ 0 mod F and so G = 0 on Γ which is contrary to the assumptions (f 6≡ 0).

Note that if d ≥ 3 we obtain in this way an example of an exponent
` ≥ 1 which cannot be the  Lojasiewicz exponent of the restriction to Γ of some
holomorphic function.

7. Quotients of c-holomorphic functions on curves. Using the c-
holomorphicity criterion 4.3 and (∗), we prove

Theorem 7.1. Let Γ ⊂ Cm be an irreducible curve germ at zero and let
f, g ∈ Oc(Γ). Then f/g ∈ Oc(Γ) iff ord0f ≥ ord0g.

Proof. Let ϕ be the Puiseux parametrization of Γ. Then f ◦ ϕ and g ◦ ϕ
are holomorphic at 0 ∈ C. By (∗), ord0f = ord0(f ◦ ϕ)/deg0Γ and so for
ord0g = ord0(g ◦ ϕ)/deg0Γ.

Therefore, ord0f ≥ ord0g iff ord0(f ◦ ϕ) ≥ ord0(g ◦ ϕ). The latter is
equivalent to the holomorphicity of (f/g) ◦ ϕ. By 4.3, this completes the
proof.

A natural question arises here which is the following: could such a result
hold true in the general case? To be more precise, consider an analytic set
A in an open set Ω ⊂ Cm and two c-holomorphic functions f, g ∈ Oc(A).
Suppose that 0 ∈ A and the germ of A at zero is irreducible. If we want the
quotient germ (at zero) f/g to be c-holomorphic we must obviously start with
the assumption that g−1(0) ⊂ f−1(0). Note here that by [4], if both functions
are non-constant and k = dimA, then f−1(0) and g−1(0) are analytic sets of
pure dimension k − 1. We would like to obtain an analogue of Theorem 7.1.

Example 7.2. Suppose first that A = Ω, so f, g are holomorphic. Let Om

denote the ring of holomorphic germs at 0 ∈ Cm. Then f/g ∈ Om iff there is
a constant C > 0 such that |f | ≤ C|g| holds in a neighbourhood of zero (cf.
Riemann Extension Theorem). On the other hand, it is a classical result that
the latter is equivalent to ord0(f ◦ γ) ≥ ord0(g ◦ γ) for all holomorphic curve
germs γ : (C, 0) → (Cm, 0) (cf. the equivalent conditions for a function germ
f ∈ Om to be integral over an ideal I ⊂ Om).

Also it is well known that f/g is holomorphic iff ordzf ≥ ordzg for all
z ∈ Regg−1(0) (see e.g. [11]).
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The example above is quite optimistic. Consider, however, the following
one:

Example 7.3. Consider A := {(x, y, z) ∈ C3 | x2y = z2} and the functions
f(x, y, z) = z, g(x, y, z) = x restricted to A. Clearly, g−1(0) ⊂ f−1(0). We
will show that for all curve germ γ : (C, 0) → (A, 0) intersecting g−1(0) only at
zero the function (f/g) ◦ γ is holomorphic, but f/g cannot be c-holomorphic
in any neighbourhood of zero in A. This is mostly because A is reducible at
all points (0, y, 0) ∈ A \ {0}.
Indeed, any curve germ in A going through 0 has a Puiseux parametrization
γ(t) which can be written in one of the three following forms:

γ(t) = (t, 0, 0),

or γ(t) = (0, t, 0),

or γ(t) = (ξ(t), υ(t), ζ(t)) with ξ−1(0) = υ−1(0) = ζ−1(0) = {0}.

The first one gives (f/g) ◦ γ ≡ 0, the second one parametrizes g−1(0) and so
we do not take it into account. It is the third one which is of interest. Its
components satisfy the relation ξ(t)2υ(t) = ζ(t)2. This means that (ζ(t)/ξ(t))2

is holomorphic. Therefore, ord0ζ
2 ≥ ord0ξ

2, but that yields ord0ζ ≥ ord0ξ and
so ζ/ξ = (f/g) ◦ γ is holomorphic.
On the other hand, if we consider a line {(x, ε, 0) | x ∈ C} with a fixed
ε > 0 arbitrarily small, there are only two curves in A lying over it, namely
{(x, ε,

√
εx) | x ∈ C} and {(x, ε,−

√
εx) | x ∈ C}. Thus f/g restricted to the

first one of these curves is
√
ε, while its restriction to the second one is −

√
ε

and so the value (f/g)(0, ε, 0) is undefined (see also [11]).
Note that in this case the ‘simplest’ universal denominator for A is the

function Q(x, y, z) = z (cf. e.g. [11]). It is clearly a minimal one and if we
denote by F and G the holomorphic extensions of f and g, respectively, then
along G−1(0) ∩ A the order of vanishing of F is not smaller than the order of
G. Nonetheless f/g = F/G is not c-holomorphic, as we saw above.

It is thence clear that we shall restrict ourselves to locally irreducible sets.
As a matter of fact, reducibility is an obstacle even in the one-dimensional
case:

Example 7.4. Let Γ := Γ1∪Γ2 ⊂ E2, where Γ1 := {y2 = x3}, Γ2 := {y2 =
x5} and E is the unit disc in C. Consider the c-holomorphic functions

f(x, y) =

{
y, if (x, y) ∈ Γ1,
y
x , if (x, y) ∈ Γ2 \ {(0, 0)};

g(x, y) =

{
y
x , (x, y) ∈ Γ1 \ {(0, 0)},
y, if (x, y) ∈ Γ2.

Calculating the orders according to (∗), we see that

ord0g|Γ2 > ord0f |Γ2 = ord0f = ord0f |Γ1 > ord0g|Γ1 = ord0g.
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Therefore, by Theorem 7.1, f/g is c-holomorphic on Γ1 but not on Γ2, hence
not on the whole of Γ. However, ord0f > ord0g.

It remains an open question what kind of assumption involving the orders
of vanishing could make possible the division of two given c-holomorphic func-
tions. A first step towards an analytic solution through a duality theorem (not
yet established however) was made in [5].

Acknowledgments. I would like to thank the Referee for valuable re-
marks which resulted in a more concise presentation of several proofs.
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