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Abstract We introduce the notion of a topological geodesic in a 3-manif-
old. Under suitable hypotheses on the fundamental group, for instance
word-hyperbolicity, topological geodesics are shown to have the useful prop-
erties of, and play the same role in several applications as, geodesics in
negatively curved spaces. This permits us to obtain virtual rigidity results
for 3-manifolds.
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Geodesics in Riemannian manifolds with metrics of negative sectional curva-
ture play an essential role in geometry. We show here that, in the case of
3-dimensional manifolds, many crucial properties of geodesics follow from a
purely topological characterization in terms of knotting. In particular, we prove
two results concerning the virtual rigidity of 3-manifolds following the methods
of Gabai [5].

We introduce the notion of a topological geodesic in a 3-manifold. We shall
prove basic existence and uniqueness results for topological geodesics under
suitable hypotheses on the fundamental group.

Suppose henceforth that M is a closed 3-manifold with word-hyperbolic (or
semi-hyperbolic) π1(M). We refer to the next section for the definition of the
semi-hyperbolicity, following Alonso and Bridson. We adopt the convention
here that finite groups are not semi-hyperbolic, hence all closed 3-manifolds
we consider have infinite fundamental group unless the opposite is explicitly
stated. In particular, the universal cover M̃ of M is homeomorphic to R3 (see
[2, 9]).

Definition 0.1 An embedded curve γ in M is a topological geodesic if a
component γ̃ of its inverse image in M̃ is unknotted.
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Remark This is equivalent to saying that every component of its inverse image
is unknotted. One observes that such a component is either a circle when γ is
torsion in π1(M) or a proper line in R3 .

Under the hypothesis that M is word-hyperbolic (or semi-hyperbolic) we have
the following existence theorem.

Theorem (See theorem 1.2 and corollary 1.4) Let M be an irreducible 3-
manifold with π1(M) word-hyperbolic (or semi-hyperbolic). Then every con-
jugacy class in π1(M) is represented by a topological geodesic.

If one further assumes that π1(M) is residually finite, we have an uniqueness
result.

Theorem (See theorem 4.3) Let M be an irreducible 3-manifold with π1(M)
word-hyperbolic and residually finite. Suppose c and c′ are homotopic topolog-
ical geodesics in M representing a primitive class in π1(M) (i.e., not a multiple
of any other class), then there exists a finite cover M ′ of M such that c and c′

lift to isotopic curves in M ′ .

In the case of a geodesic γ in a Riemannian manifold, the exponential map is a
surjection on a neighbourhood of γ , allowing one to construct a tubular neigh-
bourhood. In the case of negative sectional curvature one can do more. Namely,
a Hadamard-Cartan type argument allows one to construct thick tubular neigh-
bourhoods when the injectivity radius is large. Thus, on passing to covers, we
can ensure that we have thick tubes around a geodesic if the fundamental group
is residually finite.

Again, we have an analogue of this property in the case of topological geodesics.
This result is essentially present in the work of Gabai [5], who basically shows
that thick tubes are present when topological geodesics exist and π1(M) is
residually finite. Thus, the notion of topological geodesics, from the point of
view of thick tubes, is implicit in Gabai’s work.

Theorem (See theorem 2.1) Let γ ∈ π1(M) be a primitive element and let
k ∈ R. Then there is a geodesic c ⊂M and a finite cover M ′ of M such that
c lifts to M ′ and there is an embedded solid torus Q that contains c and so
that d(∂Q, c) is larger than k and Q− int(N(c)) = T 2 × [0, 1].
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Remark Topological geodesics arise naturally while studying elliptic 3-mani-
folds. For instance, whether homotopy lens spaces are lens spaces is equiva-
lent to the existence of (the analogue of) a topological geodesic. Further, lens
spaces can be distinguished by considering the homotopy classes of topological
geodesics in a given manifold.

We now turn to applications. A basic question in topology is to what extent
the homotopy type of a manifold determines the manifold. For aspherical man-
ifolds, in particular irreducible 3-manifolds with infinite fundamental group,
conjecturally, pairs of homotopy equivalent manifolds are always homeomor-
phic.

One of the fundamental theorems in 3-manifold topology, due to Waldhausen,
asserts that this is so for so-called Haken 3-manifolds. These include irreducible
manifolds with non-trivial boundary. Following Gabai [5], we prove rigidity re-
sults by deleting solid tori and reducing to the case of manifolds with boundary.
Partial results along these lines have also been obtained by Dubois [4] who sim-
plified the previous proof by Gabai.

Our next result is that a large class of 3-manifolds are virtually rigid, i.e., pairs
of homotopy equivalent manifolds have finite covers which are homeomorphic.
Gabai [5] has shown this assuming residual finiteness and essentially the exis-
tence of topological geodesics.

Theorem 0.1 Suppose M is a closed, irreducible 3-manifold with π1(M)
infinite, residually finite and word-hyperbolic (or semi-hyperbolic). Then if
f : M → N is a homotopy equivalence, there exist finite covers M ′ and N ′ of
M and N and a lift f ′ : M ′ → N ′ of f which is homotopic to a homeomor-
phism.

Remark We only use word-hyperbolicity to show the tameness of certain cov-
ers of M , which also follows under some weaker hypotheses.

Our proof (which is already present in Gabai’s paper) is a generalization of that
of Gabai asserting the same when N is hyperbolic. While this has subsequently
been strengthened to showing rigidity for such manifolds (see [6] and [7]), the
methods used are rather special to hyperbolic manifolds and are unlikely to
generalise.

We also prove, under the same hypothesis, another rigidity result of a comple-
mentary nature. This uses both the existence and uniqueness of topological
geodesics.
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Theorem (See theorem 5.1) Let M be irreducible and with word-hyperbolic
fundamental group. If f : M → M is a homeomorphism homotopic to the
identity then there is a finite cover M ′ of M and a lift f ′ : M ′ →M ′ of f such
that f ′ is isotopic to the identity.

Further applications of topological geodesics will be studied elsewhere.

Acknowledgements We would like to thank Yair Minsky, Darren Long and
David Gabai for helpful comments and conversations.

1 Definition and Existence

We assume henceforth that M is a closed, irreducible 3-manifold with π1(M)
word-hyperbolic, residually finite (and infinite). We shall generalize this to
the semi-hyperbolic case, but we begin with the word-hyperbolic case which is
easier. We make (as in the introduction) the following definition.

Definition 1.1 An embedded curve γ in M is a topological geodesic if a
component γ̃ of its inverse image in M̃ is unknotted.

The existence of geodesics is based on the following lemma.

Lemma 1.1 For γ ∈ π1(M), let Mγ = M̃/〈g〉 be the quotient of M̃ by the

the group of deck transformations generated by γ . Then M̃/〈g〉 = S1 × R2 .

Proof As π1(M) is word-hyperbolic, the universal cover M̃ has a compact-
ification to B3 , and the action by deck transformations extends to B3 . The
action of γ has two fixed points p and q , and γ acts properly discontinuously
on B3−{p, q} with quotient D2×S1 . The result follows as Mγ is the interior
of this manifold.

Theorem 1.2 Let M be an irreducible 3-manifold with word-hyperbolic
π1(M). Then given γ ∈ π1(M), there is a topological geodesic c that rep-
resents γ .

Proof We simply take the image in M of a curve c in Mγ that is a core
of the solid torus constructed above. It is easy to ensure that the image is
embedded.
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Remark The above theorem shows that there exists a topological geodesic
representing every element in the fundamental group, rather than each conju-
gacy class of elements, which is the case for geodesics in a Riemannian manifold
with negative sectional curvature. But given a geodesic representing an element,
there is an obvious construction of a geodesic representing any conjugate ele-
ment. So the real issue is that the topological geodesic representing a conjugacy
class should be unique.

Next, we weaken the hypothesis on π1(M). For the sake of completeness we
outline the definition of a semi-hyperbolic group below (see [1]).

Definition 1.2 For a metric space (X, d) set P (X) for the set of eventually
constant maps p : Z+ → X , thought as finite discrete paths in X . For p ∈
P (X) one denotes by Tp the smallest integer at which p becomes constant. A
bicombing of X consists of a choice of a (combing) path s(x,y) ∈ P (X) joining
the points x and y of X , for all x, y ∈ X .

• The bicombing s is quasi-geodesic if there exist constants λ, ε such that
s(x,y)|[0,Ts(x,y)

] is a (λ, ε)-quasi-geodesic, for all x, y ∈ X . This means that

d(s(x,y)(t), s(x,y)(t
′)) ≤ λ|t− t′|+ ε,

is fulfilled for all x, y ∈ X , t, t′ ∈ Z+ , thus the combing paths are uni-
formly closed to geodesics.

• The bicombing s is bounded if there exist constants k1 ≥ 1, k2 ≥ 0 such
that for all x, y, x′, y′ ∈ X, t ∈ Z+ one has

d(s(x,y)(t), s(x′,y′)(t)) ≤ k1max{d(x, x′), d(y, y′)}+ k2.

• The metric space X , acted upon isometrically by the discrete group Γ, is
said to be a semi-hyperbolic Γ-metric space if it admits a bounded quasi-
geodesic bicombing s which is Γ-equivariant i.e. γs(x,y)(t) = s(γx,γy)(t)
holds for all x, y ∈ X , γ ∈ Γ, t ∈ Z+ .

• The (finitely generated) group Γ is semi-hyperbolic if Γ with the word
metric (associated to some system of generators) is a semi-hyperbolic
Γ-metric space, with respect to the action by left multiplication.

The semi-hyperbolicity is independent on the system of generators. It is known
that hyperbolic groups and biautomatic groups are semi-hyperbolic.

Lemma 1.3 Assume γ is an element of infinite order and π1(M) is a CAT(0)
group (i.e. it acts properly discontinuously and co-compactly by isometries on
a geodesic CAT(0) metric space), or more generally a semi-hyperbolic group.
Then the conclusion of lemma 1.1 holds true.
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Proof Any infinite cyclic subgroup Z ⊂ π1(M) yields a geodesic line in X
by the Flat Torus Theorem (see [1, 13]) and so it is a quasi-convex subgroup
(see [1], Thm.9.11 for details). The main theorem of [9] implies that M̃/〈γ〉
is a missing boundary manifold, hence the interior of a solid torus. In the
semi-hyperbolic case an infinite cyclic group lies in the center of its centralizer
(which is a finite extension of the infinite cyclic group) and the latter is both
semi-hyperbolic and a quasi-convex subgroup of π1(M).

Corollary 1.4 In the hypotheses of theorem 1.2 we may replace word-hyper-
bolic by semi-hyperbolic.

Thus, we may henceforth weaken our hypothesis on π1(M) to require only
semi-hyperbolicity in place of word hyperbolicity.

Using some results of M.Bridson one can extend the previous lemma to nil
and sol 3-manifolds, thus holding true for all fundamental groups of geometric
3-manifolds. Notice that M.Kapovich has announced that atoroidal CAT(0)
3-manifold groups are word hyperbolic, which improves on a previous theorem
of L.Mosher.

2 Thick tubes

In this section, we show that a geodesic c corresponding to a primitive element
of π1(M) has a thick tube around it in a finite cover, i.e., a solid torus Q that
contains c and so that d(∂Q, c) is large and T − int(N(c)) = T 2 × [0, 1]. The
precise statement is below. Here, and henceforth, we fix a metric on M and
use the pull-back metric on all its covers

The construction is based on the fact due to Darren Long (see [8]) that in
word-hyperbolic, or more generally atoroidal, groups, maximal cyclic groups
are separable.

Theorem (D. Long) Let G be a residually finite group, γ ∈ G an element
that generates a maximal abelian subgroup, and S a finite set disjoint from
〈γ〉. Then there exists a subgroup H ⊂ G with finite index such that γ ∈ H
but S ∩H = ∅.

We construct a thick tube in the cover M̃/〈γ〉 = S1 × R2 . This embeds in a
cover where all other small elements are separated from such a group. In this
cover we have a short curve (geodesic) in one homotopy class, but all closed
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curves that are not homotopic to a power of this are long. The precise statement
and proof are below.

Theorem 2.1 Let γ ∈ π1(M) be a primitive element and let k ∈ R. Then
there is a geodesic c ⊂ M and a finite cover M ′ of M such that c lifts to M ′

and there is an embedded solid torus Q that contains c and so that d(∂Q, c) > k
and Q− int(N(c)) = T 2 × [0, 1].

Proof Consider the cover Mγ = M̃/〈g〉 of M and pick base-points p of M
and p′ of Mγ . As Mγ is homeomorphic to S1 × R2 , there is a curve c and a
solid torus Q embedded in Mγ , with c based at p′ , so that c and Q are as
required. We shall find a finite cover M ′ of M which is covered by Mγ so that
the image of Q embeds in M ′ .

As Q is compact, there is a finite collection X of inverse images of p in Mγ

such that if each of these map to distinct points in an intermediate cover M ′

between Mγ and M , then Q embeds in this cover. Choose paths joining p′ to
each point in X and let S′ be the set of elements in π1(M) that are represented
by the images of these paths. Let S = S′ ∪ {xy−1 : x, y ∈ S}.

By the above theorem, there exists a subgroup H separating γ from S . Let
M ′ be the corresponding cover. It is easy to see that the elements of X map
to different points in M ′ , and hence Q embeds in M ′ .

Definition 2.1 A thick tube around a geodesic c is an embedded solid torus
Q that contains c such that Q− int(N(c)) = T 2 × [0, 1].

Observe that the components of the inverse image of a thick tube around a
geodesic in M̃ are unknotted.

3 Virtual rigidity

Gabai’s proof of virtual rigidity (see [5]) now generalizes. Briefly, if there are
knots K and K ′ in M and N whose complements are irreducible and so that,
possibly after changing f by a homotopy, f(N(K)) ⊂ N(K ′) and f(M −
int(N(K))) ⊂ N − int(N(K ′)), then we can apply Waldhausen’s result to the
knot exteriors. Gabai’s proof proceeds by showing that given a geodesic γ in
M (which plays the role of K ) with a thick tube around it, the image of this
contains a solid torus W (which plays the role of N(K ′)), so that f can be
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deformed to a map that takes M − int(N(γ)) to N − int(W ). Waldhausen’s
theorem now shows rigidity.

As f is a homotopy equivalence between compact manifolds, there exists C such
that d(x, y) ≥ C =⇒ f(x) 6= f(y). By the methods of the previous section,
given C ∈ R there is a finite cover M ′ of M , a geodesic γ ⊂M ′ and solid tori
Vi ,1 ≤ i ≤ 4 such that d(γ, ∂V1) > C and d(∂Vi, ∂Vi+1) > C , 1 ≤ i ≤ 3. Let
Si = ∂Vi . Let V0 = γ . Replace M by M ′ and N by its cover with the same
fundamental group as M ′ (under the identification π1(M)

f∗= π1(N).

The rest of the proof is exactly the same as that of Gabai (hyperbolicity is not
used beyond this stage - only that the tori are far apart and topologically of a
standard form). We outline below the main steps.

Let g : N → M be the homotopy inverse of f . Let K = f(S2) and J =
N(K) ∪ (components of N −K disjoint from f(S1) ∪ f(S3)). Then ∂J has
two components, one of which bounds a region disjoint from J containing f(S1)
and the other bounds a region disjoint from J containing f(S3). Further, J is
irreducible and [K] generates H2(J) = Z. All this follows from the fact that
d(x, y) ≥ C =⇒ f(x) 6= f(y).

Next, J contains a homologically non-trivial torus which bounds in N a solid
torus W containing f(γ). This is constructed using the fact that the Thurston
norm equals the singular norm, and that we have a singular torus T . Further,
g : T → N − int(W ) and the inclusion T → N − int(W ) induce injections
between the fundamental groups.

Now we can deform f and g so that they restrict to give a homotopy equivalence
between M − V2 and N −W . Waldhausen’s theorem now gives the result.

4 Uniqueness

Lemma 4.1 (Engulfing lemma) Any curve d in M homotopic to a geodesic
c is contained in a tube around the geodesic c in some finite cover.

Proof As c and d are homotopic, there exists an annulus A with boundary
components c and d. On passing to a cover with a sufficiently thick tube Q
around c, the annulus A is contained in the tube Q. Hence d has a lift that is
contained in Q.

Lemma 4.2 (Core lemma) If c and c′ are homotopic geodesics and c′ is con-
tained in a thick tube Q around c, then c′ is isotopic to c.
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Proof Consider π1(Q − c′). The inverse image of the solid torus Q in M̃
contains an unknotted cylinder D that contains a unique component C ′ of the
inverse image of c′ . The group π1(D − C ′) = π1(M̃ − C ′) is the kernel of the
map π1(Q − c′) → Z that maps the longitude of the torus ∂Q (hence those
of c and c′ ), to 1 and the meridian to 0. As C ′ is an unknot (because c′ is
a geodesic) this kernel is Z, hence π1(Q − c′) = Z2 . This implies that c′ is
isotopic to c.

Theorem 4.3 Let M be an irreducible 3-manifold with π1(M) word-hyper-
bolic (or semi-hyperbolic) and residually finite. Suppose c and c′ are homotopic
topological geodesics in M representing a primitive class in π1(M). Then there
exists a finite cover M ′ of M such that c and c′ lift to isotopic curves in M ′ .

Proof As c and c′ are homotopic, there is an annulus A bounding c and c′ .
By passing to a cover M ′ with a sufficiently thick tube Q around c, we may
ensure that A is contained in Q. The Core lemma now implies that c and c′

are isotopic.

5 Homotopy versus isotopy

It is known that for an irreducible manifold homotopic self-homeomorphisms
are isotopic provided that the manifold is hyperbolic (a consequence of Gabai’s
rigidity [6]) or Seifert fibered (by the Scott theorem) or lens spaces.

Theorem 5.1 Let M be irreducible and with word-hyperbolic fundamental
group. If f : M → M is a homeomorphism homotopic to the identity then
there is a finite cover M ′ of M and a lift f ′ : M ′ → M ′ of f such that f ′ is
isotopic to the identity.

Proof Let γ be a topological geodesic corresponding to a primitive class in
π1(M). Then the geodesics f(γ) and γ are homotopic hence there exists a finite
cover M ′ such that f(γ) and γ lift to isotopic curves. Since f is homotopic
to identity there is no obstruction in lifting it to a homotopy equivalence f ′ of
the finite covering M ′ . One can further assume (by means of some isotopy on
M ′ ) that f(γ′) = γ′ (pointwise).

The proof of the core lemma shows that M ′ − γ′ is atoroidal hence hyper-
bolic (since Haken). Furthermore the restriction f ′|M ′−γ′ is a homeomorphism.
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Therefore f ′|M ′−γ′ is homotopic to an isometry of M ′−γ′ (by Mostow rigidity)
and hence isotopic to an isometry (by Waldhausen’s theorem).

Let j be this isometry. Since the isometry group of a hyperbolic manifold of
finite volume is finite it follows that j is of finite order. Further j has an
extension g (by identity) to all of M ′ , by asking g to keep pointwise γ′ . In
particular g is a periodic homeomorphism of M ′ .

Let consider the lift h of g to the universal covering M̃ = R3 (which is also
the universal covering of M ′ ). The action of h extends continuously to the
compactification (over the boundary sphere) to a homeomorphism of the ball
B3 . The action by deck transformations extends to one by homeomorphisms
of the compactification obtained by adding the boundary of the group π1(M),
because this is word-hyperbolic. In our case the boundary is the sphere at
infinity.

But f is homotopic to identity, hence the action induced on the boundary is
trivial. This shows that h is the identity on the boundary sphere.

Lemma 5.2 A periodic homeomorphism of B3 which restricts to identity on
the boundary is the identity.

Proof We will use a theorem of Newman ([10]) improved by Smith (see [12])
in its variant stated in ([3],Thm.9.5, p.157). It states that a compact Lie group
acting effectively on a connected topological manifold has a nowhere dense fixed
point set.

One considers the finite cyclic group action induced by our periodic homeomor-
phism on the ball B3 . This action extends to the sphere S3 by the identity
outside the upper hemisphere. Then the fixed point set contains a 3-ball and
the previous result shows that the action cannot be effective, and hence h must
be the identity map.

In particular f ′ is isotopic to the identity.

6 Concluding remarks

While we have assumed word-hyperbolicity (or semi-hyperbolicity) for the sake
of definiteness, we actually need much less. Assuming π1(M) is atoroidal, we
also need everywhere that M̃ = R3 , or equivalently that M̃3 is tame (i.e, is the
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interior of a compact manifold). Existence and uniqueness use the tameness of
Mγ . Finally, virtual rigidity needs tameness for some Mγ .

There are contractible 3-manifolds, namely Whitehead manifolds, different
from R3 . There are also 3-manifolds different from S1×R2 that have fundamen-
tal group Z and universal cover R3 (see, for example, [11]). Conjecturally these
manifolds do not admit free co-compact actions, but so far this is known only
under additional assumptions on the group (for example word-hyperbolicity).

One can generalize the notion of topological geodesics to include knots having a
lift in R3 whose fundamental group is free (or even residually nilpotent following
[4]). Although weak versions of the uniqueness could be proved in this context,
the obstruction in deriving rigidity results is the existence. The existence of
at least one topological geodesic (homotopically nontrivial) appears to be as
difficult in this more general framework as in the present case.

An even weaker notion of a topological geodesic is one whose lift to the universal
cover is not a satellite knot. In the presence of topological geodesics, the proof
of the Core lemma shows that any curve that is not a topological geodesic lifts
to a finite cover where it is a satellite knot, and hence is also not a topological
geodesic in this weaker sense.
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