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Presentations for the punctured mapping
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Abstract Consider an oriented compact surface F of positive genus, pos-
sibly with boundary, and a finite set P of punctures in the interior of F ,
and define the punctured mapping class group of F relatively to P to
be the group of isotopy classes of orientation-preserving homeomorphisms
h : F → F which pointwise fix the boundary of F and such that h(P) = P .
In this paper, we calculate presentations for all punctured mapping class
groups. More precisely, we show that these groups are isomorphic with quo-
tients of Artin groups by some relations involving fundamental elements of
parabolic subgroups.
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1 Introduction

Throughout the paper F = Fg,r will denote a compact oriented surface of
genus g with r boundary components, and P = Pn = {P1, . . . , Pn} a finite
set of points in the interior of F , called punctures. We denote by H(F,P) the
group of orientation-preserving homeomorphisms h : F → F that pointwise
fix the boundary of F and such that h(P) = P . The punctured mapping
class group M(F,P) of F relatively to P is defined to be the group of isotopy
classes of elements of H(F,P). Note that the group M(F,P) only depends up
to isomorphism on the genus g , on the number r of boundary components, and
on the cardinality n of P . If P is empty, then we write M(F ) =M(F, ∅), and
call M(F ) the mapping class group of F .

The pure mapping class group of F relatively to P is defined to be the subgroup
PM(F,P) of isotopy classes of elements of H(F,P) that pointwise fix P . Let
Σn denote the symmetric group of {1, . . . , n}. Then the punctured mapping
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class group and the pure mapping class group are related by the following exact
sequence.

1→ PM(F,Pn)→M(F,Pn)→ Σn → 1 .

A Coxeter matrix is a matrix M = (mi,j)i,j=1,...,l satisfying:

• mi,i = 1 for all i = 1, . . . , l ;

• mi,j = mj,i ∈ {2, 3, 4, . . . ,∞}, for i 6= j .

A Coxeter matrix M = (mi,j) is usually represented by its Coxeter graph Γ.
This is defined by the following data:

• Γ has l vertices: x1, . . . , xl ;

• two vertices xi and xj are joined by an edge if mi,j ≥ 3;

• the edge joining two vertices xi and xj is labelled by mi,j if mi,j ≥ 4.

For i, j ∈ {1, . . . , l}, we write:

prod(xi, xj ,mi,j) =
{

(xixj)mi,j/2 if mi,j is even,
(xixj)(mi,j−1)/2xi if mi,j is odd.

The Artin group A(Γ) associated with Γ (or with M ) is the group given by the
presentation:

A(Γ) = 〈x1, . . . , xl |prod(xi, xj ,mi,j)=prod(xj , xi,mi,j) if i 6= j and mi,j <∞〉.
The Coxeter group W (Γ) associated with Γ is the quotient of A(Γ) by the
relations x2

i = 1, i = 1, . . . , l . We say that Γ or A(Γ) is of finite type if W (Γ)
is finite.

For a subset X of the set {x1, . . . , xl} of vertices of Γ, we denote by ΓX
the Coxeter subgraph of Γ generated by X , by WX the subgroup of W (Γ)
generated by X , and by AX the subgroup of A(Γ) generated by X . It is
a non-trivial but well known fact that WX is the Coxeter group associated
with ΓX (see [3]), and AX is the Artin group associated with ΓX (see [16],
[19]). Both WX and AX are called parabolic subgroups of W (Γ) and of A(Γ),
respectively.

Define the quasi-center of an Artin group A(Γ) to be the subgroup of elements α
in A(Γ) satisfying αXα−1 = X , where X is the natural generating set of A(Γ).
If Γ is of finite type and connected, then the quasi-center is an infinite cyclic
group generated by a special element of A(Γ), called fundamental element, and
denoted by ∆(Γ) (see [8], [4]).
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The most significant work on presentations for mapping class groups is certainly
the paper [10] of Hatcher and Thurston. In this paper, the authors introduced
a simply connected complex on which the mapping class group M(Fg,0) acts,
and, using this action and following a method due to Brown [5], they obtained
a presentation for M(Fg,0). However, as pointed out by Wajnryb [25], this
presentation is rather complicated and requires many generators and relations.
Wajnryb [25] used this presentation of Hatcher and Thurston to calculate new
presentations for M(Fg,1) and for M(Fg,0). He actually presented M(Fg,1)
as the quotient of an Artin group by two relations, and presented M(Fg,0) as
the quotient of the same Artin group by the same two relations plus another
one. In [18], Matsumoto showed that these three relations are nothing else
than equalities among powers of fundamental elements of parabolic subgroups.
Moreover, he showed how to interpret these powers of fundamental elements
inside the mapping class group. Once this interpretation is known, the relations
in Matsumoto’s presentations become trivial. At this point, one has “good”
presentations for M(Fg,1) and for M(Fg,0), in the sence that one can remember
them. Of course, the definition of a “good” presentation depends on the memory
of the reader and on the time he spends working on the presentation.

One can find in [17] another presentation for M(Fg,1) as the quotient of an
Artin group by relations involving fundamental elements of parabolic subgroups.
Recently, Gervais [9] found another “good” presentation forM(Fg,r) with many
generators but simple relations.

In the present paper, starting from Matsumoto’s presentations, we calculate pre-
sentations for all punctured mapping class groups M(Fg,r,Pn) as quotients of
Artin groups by some relations which involve fundamental elements of parabolic
subgroups. In particular, M(Fg,0,Pn) is presented as the quotient of an Artin
group by five relations, all of them being equalities among powers of fundamen-
tal elements of parabolic subgroups.

The generators in our presentations are Dehn twists and braid twists. We define
them in Subsection 2.1, and we show that they verify some “braid” relations that
allow us to define homomorphisms from Artin groups to punctured mapping
class groups. The main algebraic tool we use is Lemma 2.5, stated in Subsection
2.2, which says how to find a presentation for a group G from an exact sequence
1 → K → G → H → 1 and from presentations of K and H . We also state in
Subsection 2.2 some exact sequences involving punctured mapping class groups
on which Lemma 2.5 will be applied. In order to find our presentations, we
first need to investigate some homomorphisms from finite type Artin groups
to punctured mapping class groups, and to calculate the images under these
homomorphisms of some powers of fundamental elements. This is the object
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of Subsection 2.3. Once these images are known, one can easily verify that the
relations in our presentations hold. Of course, it remains to prove that no other
relation is needed. We state our presentation for M(Fg,r+1,Pn) (where g ≥ 1,
and r, n ≥ 0) in Theorem 3.1, and we state our presentation for M(Fg,0,Pn)
(where g, n ≥ 1) in Theorem 3.2. Then, Subsection 3.1 is dedicated to the
proof of Theorem 3.1, and Subsection 3.2 is dedicated to the proof of Theorem
3.2.

2 Preliminaries

2.1 Dehn twists and braid twists

We introduce in this subsection some elements of the punctured mapping class
group, the Dehn twists and the braid twists, which will play a prominent rôle
throughout the paper. In particular, the generators for the punctured mapping
class group will be chosen among them.

By an essential circle in F \ P we mean an embedding s : S1 → F \ P of the
circle whose image is in the interior of F \P and does not bound a disk in F \P .
Two essential circles s, s′ are called isotopic if there exists h ∈ H(F,P) which
represents the identity in M(F,P) and such that h ◦ s = s′ . Isotopy of circles
is an equivalence relation which we denote by s ' s′ . Let s : S1 → F \P be an
essential circle. We choose an embedding A : [0, 1]×S1 → F \P of the annulus
such that A(1

2 , z) = s(z) for all z ∈ S1 , and we consider the homeomorphism
T ∈ H(F,P) defined by

(T ◦ A)(t, z) = A(t, e2iπtz), t ∈ [0, 1], z ∈ S1,

and T is the identity on the exterior of the image of A (see Figure 1). The
Dehn twist along s is defined to be the element σ ∈ M(F,P) represented by
T . Note that:

• the definition of σ does not depend on the choice of A;

• the element σ does not depend on the orientation of s;

• if s and s′ are isotopic, then their corresponding Dehn twists are equal;

• if s bounds a disk in F which contains exactly one puncture,then σ = 1;
otherwise, σ is of infinite order;

• if ξ ∈ M(F,P) is represented by f ∈ H(F,P), then ξσξ−1 is the Dehn
twist along f(s).
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s

Figure 1: Dehn twist along s

By an arc we mean an embedding a : [0, 1]→ F of the segment whose image is
in the interior of F , such that a((0, 1)) ∩ P = ∅, and such that both a(0) and
a(1) are punctures. Two arcs a, a′ are called isotopic if there exists h ∈ H(F,P)
which represents the identity in M(F,P) and such that h ◦ a = a′ . Note that
a(0) = a′(0) and a(1) = a′(1) if a and a′ are isotopic. Isotopy of arcs is an
equivalence relation which we denote by a ' a′ . Let a be an arc. We choose
an embedding A : D2 → F of the unit disk satisfying:

• a(t) = A(t− 1
2) for all t ∈ [0, 1],

• A(D2) ∩ P = {a(0), a(1)},

and we consider the homeomorphism T ∈ H(F,P) defined by

(T ◦ A)(z) = A(e2iπ|z|z), z ∈ D2,

and T is the identity on the exterior of the image of A (see Figure 2). The
braid twist along a is defined to be the element τ ∈ M(F,P) represented by
T . Note that:

• the definition of τ does not depend on the choice of A;

• if a and a′ are isotopic, then their corresponding braid twists are equal;

• if ξ ∈M(F,P) is represented by f ∈ H(F,P), then ξτξ−1 is the braid twist
along f(a);

• if s : S1 → F \ P is the essential circle defined by s(z) = A(z) (see Figure
2), then τ2 is the Dehn twist along s.

We turn now to describe some relations among Dehn twists and braid twists
which will be essential to define homomorphisms from Artin groups to punc-
tured mapping class groups.

The first family of relations are known as “braid relations” for Dehn twists (see
[2]).
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s

a

Figure 2: Braid twist along a

Lemma 2.1 Let s and s′ be two essential circles which intersect transversely,
and let σ and σ′ be the Dehn twists along s and s′ , respectively. Then:

σσ′ = σ′σ if s ∩ s′ = ∅,
σσ′σ = σ′σσ′ if |s ∩ s′| = 1.

The next family of relations are simply the usual braid relations viewed inside
the punctured mapping class group.

Lemma 2.2 Let a and a′ be two arcs, and let τ and τ ′ be be the braid twists
along a and a′ , respectively. Then:

ττ ′ = τ ′τ if a ∩ a′ = ∅,
ττ ′τ = τ ′ττ ′ if a(0) = a′(1) and a ∩ a′ = {a(0)}.

To our knowledge, the last family of relations does not appear in the literature.
However, their proofs are easy and are left to the reader.

Lemma 2.3 Let s be an essential circle, and let a be an arc which intersects
s transversely. Let σ be the Dehn twist along s, and let τ be the braid twist
along a. Then:

στ = τσ if s ∩ a = ∅,
στστ = τστσ if |s ∩ a| = 1.

We finish this subsection by recalling another relation called lantern relation
(see [13]) which is not used to define homomorphisms between Artin groups and
punctured mapping class groups, but which will be useful in the remainder.

We point out first that we use the convention in figures that a letter which
appears over a circle or an arc denotes the corresponding Dehn twist or braid
twist, and not the circle or the arc itself.
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Lemma 2.4 Consider an embedding of F0,4 in F \ P and the Dehn twists
e1, e2, e3, e4, a, b, c represented in Figure 3. Then

e1e2e3e4 = abc.

e4

e1 b

e2

e3

c

a

Figure 3: Lantern relation

2.2 Exact sequences

Now, we introduce in Lemma 2.5 our main tool to obtain presentations for
the punctured mapping class groups. Briefly, this lemma says how to find a
presentation for a group G from an exact sequence 1 → K → G → H → 1
and from presentations of H and K . This lemma will be applied to the exact
sequences (2.1), (2.2), and (2.3) given after Lemma 2.5.

Consider an exact sequence

1→ K → G
ρ−→ H → 1

and presentations H = 〈SH |RH〉, K = 〈SK |RK〉 for H and K , respectively.
For all x ∈ SH , we fix some x̃ ∈ G such that ρ(x̃) = x, and we write

S̃H = {x̃ ; x ∈ SH}.

Let r = xε11 . . . xεll in RH . Write r̃ = x̃ε11 . . . x̃εll ∈ G. Since r is a relator of
H , we have ρ(r̃) = 1. Thus, SK being a generating set of the kernel of ρ, one
may choose a word wr over SK such that both r̃ and wr represent the same
element of G. Set

R1 = {r̃w−1
r ; r ∈ RH}.
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Let x̃ ∈ S̃H and y ∈ SK . Since K is a normal subgroup of G, x̃yx̃−1 is also
an element of K , thus one may choose a word v(x, y) over SK such that both
x̃yx̃−1 and v(x, y) represent the same element of G. Set

R2 = {x̃yx̃−1v(x, y)−1 ; x̃ ∈ S̃H and y ∈ SK}.

The proof of the following lemma is left to the reader.

Lemma 2.5 G admits the presentation

G = 〈S̃H ∪ SK | R1 ∪R2 ∪RK〉.

The first exact sequence on which we will apply Lemma 2.5 is the one given in
the introduction:

(2.1) 1→ PM(F,Pn)→M(F,Pn)→ Σn → 1,

where Σn denotes the symmetric group of {1, . . . , n}.

The inclusion Pn−1 ⊂ Pn gives rise to a homomorphism ϕn : PM(F,Pn) →
PM(F,Pn−1). By [1], if (g, r, n) 6= (1, 0, 1), then we have the following exact
sequence:

(2.2) 1→ π1(F \ Pn−1, Pn) ιn−−→ PM(F,Pn) ϕn−−→ PM(F,Pn−1)→ 1.

We will need later a more precise description of the images by ιn of certain
elements of π1(F \ Pn−1, Pn). Consider an essential circle α : S1 → F \ Pn−1

such that α(1) = Pn . Here, we assume that α is oriented. Let ξ be the element
of π1(F \Pn−1, Pn) represented by α. We choose an embedding A : [0, 1]×S1 →
F \Pn−1 of the annulus such that A(1

2 , z) = α(z) for all z ∈ S1 (see Figure 4).
Let s0, s1 : S1 → F \ Pn be the essential circles defined by

s0(z) = A(0, z), s1(z) = A(1, z), z ∈ S1,

and let σ0, σ1 be the Dehn twists along s0 and s1 , respectively. Then the
following holds.

Lemma 2.6 We have ιn(ξ) = σ−1
0 σ1 .

Now, consider a surface Fg,r+m of genus g with r + m boundary components,
and a set Pn = {P1, . . . , Pn} of n punctures in the interior of Fg,r+m . Choose
m boundary curves c1, . . . , cm : S1 → ∂Fg,r+m . Let Fg,r be the surface of
genus g with r boundary components obtained from Fg,r+m by gluing a disk
D2
i along ci , for all i = 1, . . . ,m, and let Pn+m = {P1, . . . , Pn, Q1, . . . , Qm}
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Pn

α

σ0 σ1

Figure 4: Image of a simple circle by ιn

be a set of punctures in the interior of Fg,r , where Qi is chosen in the interior
of D2

i , for all i = 1, . . . ,m. The proof of the following exact sequence can be
found in [21].

Lemma 2.7 Assume that (g, r,m) 6∈ {(0, 0, 1), (0, 0, 2)}. Then we have the
exact sequence:

(2.3) 1→ Zm → PM(Fg,r+m,Pn)→ PM(Fg,r,Pn+m)→ 1 ,

where Zm stands for the free abelian group of rank m generated by the Dehn
twists along the ci ’s.

2.3 Geometric representations of Artin groups

Define a geometric representation of an Artin group A(Γ) to be a homomor-
phism from A(Γ) to some punctured mapping class group. In this subpara-
graph, we describe some geometric representations of Artin groups whose prop-
erties will be used later in the paper.

The first family of geometric representations has been introduced by Perron
and Vannier for studying geometric monodromies of simple singularities [22].
A chord diagram in the disk D2 is a family S1, . . . , Sl : [0, 1]→ D2 of segments
satisfying:

• Si : [0, 1]→ D2 is an embedding for all i = 1, . . . , l ;

• Si(0), Si(1) ∈ ∂D2 , and Si((0, 1)) ∩ ∂D2 = ∅, for all i = 1, . . . , l ;

• either Si and Sj are disjoint, or they intersect transversely in a unique point
in the interior of D2 , for i 6= j .

From this data, one can first define a Coxeter matrix M = (mi,j)i,j=1,...,l by
seting mi,j = 2 if Si and Sj are disjoint, and mi,j = 3 if Si and Sj intersect

Algebraic & Geometric Topology, Volume 1 (2001)



82 Catherine Labruère and Luis Paris

transversely in a point. The Coxeter graph Γ associated with M is called
intersection diagram of the chord diagram. It is an “ordinary” graph in the
sence that none of the edges has a label. From the chord diagram we can also
define a surface F by attaching to D2 a handle Hi which joins both extremities
of Si , for all i = 1, . . . , l (see Figure 5). Let σi be the Dehn twist along the circle
made up with the segment Si together with the central curve of Hi . By Lemma
2.1, one has a geometric representation A(Γ) → M(F ) which sends xi on σi
for all i = 1, . . . , l . This geometric representation will be called Perron-Vannier
representation.

σ1

S1

S2

S3

σ2

σ3

Figure 5: Chord diagram and associated surface and Dehn twists

If Γ is connected, then the Perron-Vannier representation is injective if and
only if Γ is of type Al or Dl [15], [26]. In the case where Γ is of type Al , Dl ,
E6 , or E7 , the vertices of Γ will be numbered according to Figure 6, and the
Dehn twists σ1, . . . , σl are those represented in Figures 7, 8, 9.

x7

Al
x2 xlx1

Bl
xlx3x2x1

Dl

x1

x2

E6

4

xlx4x3

x2x1
E7

x5x4x3 x2x1

x6

x6x5x4x3

Figure 6: Some finite type Coxeter graphs
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b1

Type A2p
σ1

σ2 σ4

Type A2p+1

σ1
σ2 σ4

σ3
σ2p

σ3 σ2p+1

b2

b1

Figure 7: Perron-Vannier representations of type Al

The Perron-Vannier representation of the Artin group of type Al−1 can be
extended to a geometric representation of the Artin group of type Bl as follows.
First, we number the vertices of Bl according to Figure 6. Then Al−1 is the
subgraph of Bl generated by the vertices x2, . . . , xl . We start from a chord
diagram S2, . . . , Sl whose intersection diagram is Al−1 , and we denote by F
the associated surface. For i = 2, . . . , l , we denote by si the essential circle of
F made up with Si and the central curve of the handle Hi . We can choose two
points P1, P2 in the interior of F and an arc a1 from P1 to P2 satisfying:

• {P1, P2} ∩ si = ∅ for all i = 2, . . . , l ;

• a1 ∩ si = ∅ for all i = 3, . . . , l , and a1 and s2 intersect transversely in a
unique point (see Figure 10).

Let τ1 be the braid twist along a1 , and let σi be the Dehn twist along si , for
i = 2, . . . , l . By Lemma 2.3, there is a well defined homomorphism A(Bl) →
M(F, {P1, P2}) which sends x1 on τ1 , and xi on σi for i = 2, . . . , l . It is shown
in [14] that this geometric representation is injective.

Now, consider a graph G embedded in a surface F . Here, we assume that G has
no loop and no multiple-edge. Let P = {P1, . . . , Pn} be the set of vertices of G,
and let a1, . . . , al be the edges. Define the Coxeter matrix M = (mi,j)i,j=1,...,l

by mi,j = 3 if ai and aj have a common vertex, and mi,j = 2 otherwise.
Denote by Γ the Coxeter graph associated with M . By Lemma 2.2, one has
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σ3

Type D2p

Type D2p+1

σ2

σ4
σ5

σ2p

b2

b3

σ1

σ3

σ2p−1

b1

σ1

σ5σ4
σ2p+1

b1b2
σ2

Figure 8: Perron-Vannier representations of type Dl

a homomorphism A(Γ) → M(F,P) which associates with xi the braid twist
τi along ai , for all i = 1, . . . , l . This homomorphism will be called graph
representation of A(Γ). Its image clearly belongs to the surface braid group
of F based at P . The particular case where F is a disk has been studied
by Sergiescu [23] to find new presentations for the Artin braid groups. Graph
representations have been also used by Humphries [12] to solve some Tits’
conjecture.

Assume now that G is a line in a cylinder F = S1 × I . Let a2, . . . , al be the
edges of G, and let Pl = {P1, . . . , Pl} be the set of vertices. Choose an essential
circle s1 : S1 → F \ P such that:

• s1 does not bound a disk in F ;

• s1 ∩ ai = ∅ for all i = 3, . . . , l , and s1 and a2 intersect transversely in a
unique point (see Figure 11).

Let σ1 be the Dehn twist along s1 , and let τi be the braid twist along ai for
i = 2, . . . , l . By Lemma 2.3, there is a well defined homomorphism A(Bl) →
M(S1 × I,Pl) which sends x1 on σ1 , and xi on τi for i = 2, . . . , l . This
homomorphism is clearly an extension of the graph representation of A(Al−1)
in M(S1 × I,Pl).

Let Γ be a finite type connected graph. Recall that the quasi-center of A(Γ)
is the subgroup of elements α in A(Γ) satisfying αXα−1 = X , where X is
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Type E7

σ1 σ2 σ4

σ4

σ3 σ5

σ6
b1

σ1

σ2

σ3

b2

σ5
σ6

σ7
b1

Type E6

Figure 9: Perron-Vannier representations of type E6 and E7

the natural generating set of A(Γ), and that this subgroup is an infinite cyclic
group generated by some special element of A(Γ), called fundamental element,
and denoted by ∆(Γ). (see [4] and [8]). The center of A(Γ) is an infinite
cyclic group generated by ∆(Γ) if Γ is Bl , Dl (l even), E7 , E8 , F4 , H3 , H4 ,
and I2(p) (p even), and by ∆2(Γ) if Γ is Al , Dl (l odd), E6 , and I2(p) (p
odd). Explicit expressions of ∆(Γ) and of ∆2(Γ) can be found in [4]. In the
remainder, we will need the following ones.

Proposition 2.8 (Brieskorn, Saito [4]) We number the vertices of Al , Bl ,
Dl , E6 , and E7 according to Figure 6.

∆2(Al) = (x1x2 . . . xl)l+1 ,

∆(Bl) = (x1x2 . . . xl)l ,
∆(D2p) = (x1x2 . . . x2p)2p−1 ,

∆2(D2p+1) = (x1x2 . . . x2p+1)4p ,

∆2(E6) = (x1x2 . . . x6)12 ,

∆(E7) = (x1x2 . . . x7)15 .

We will also need the following well known equalities (see [20]).

Proposition 2.9 We number the vertices of Al , Bl , and Dl according to
Figure 6. Then:

∆(Al) = x1 . . . xl ·∆(Al−1),
∆(Bl) = xl . . . x2x1x2 . . . xl ·∆(Bl−1),
∆(Dl) = xl . . . x3x1x2x3 . . . xl ·∆(Dl−1).

Our goal now is to determine the images under Perron-Vannier representa-
tions and under graph representations of some powers of fundamental elements
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b1

Type B2p τ1

σ2

σ3

σ4

σ5 σ2p−1

σ2p

b1

b2

a1

a2

Type B2p+1

σ2

σ3

a3

γ

τ1

σ4
σ5 σ2p+1

Figure 10: Perron-Vannier representation of type Bl

b2b1

σ1

τ2 τ3 τl

Figure 11: Graph representation of type Bl

(Proposition 2.12). To do so, we first need to know generating sets for the
punctured mapping class groups. So, we prove the following.

Proposition 2.10 Let g ≥ 1 and r, n ≥ 0.

(i) PM(Fg,r+1,Pn) is generated by the Dehn twists a0, . . . , an+r, b1, . . . , b2g−1 ,
c, d1, . . . , dr represented in Figure 12.

(ii) M(Fg,r+1,Pn) is generated by the Dehn twists a0, . . . , ar, ar+1 , b1, .., b2g−1 ,
c, d1, . . . , dr , and the braid twists τ1, . . . , τn−1 represented in Figure 12.

Corollary 2.11 Let g ≥ 1 and n ≥ 0.

(i) PM(Fg,0,Pn) is generated by the Dehn twists a0, . . . , an , b1, . . . , b2g−1 , c
represented in Figure 13.

(ii) M(Fg,0,Pn) is generated by the Dehn twists a0, a1 , b1, . . . , b2g−1 , c, and
the braid twists τ1, . . . , τn−1 represented in Figure 13.
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ar−1 ar+2

b1

d1

a0

a2

ar

ar+1 ar+n−1

ar+n

b2

b3 b4
b5 b2g−1

c

dr

τ1 τ2
d2

τn−1

a1

Figure 12: Generators for PM(Fg,r+1,Pn) and M(Fg,r+1,Pn)

τ1

a0

b1

b3

a1
a2 an−1

an

b2 b5 b2g−1

c

τ2 τn−1
b4

Figure 13: Generators for PM(Fg,0,Pn) and M(Fg,0,Pn)

Proof The key argument of the proof of Proposition 2.10 is the following
remark stated as Assertion 1, and which we apply to the exact sequences (2.1),
(2.2), and (2.3) of Subsection 2.2.

Assertion 1 Let

1→ K → G
ρ−→ H → 1

be an exact sequence, and let SH , SK be generating sets of H and K , respec-
tively. For each x ∈ SH we choose x̃ ∈ G such that ρ(x̃) = x, and we write
S̃H = {x̃;x ∈ SH}. Then SK ∪ S̃H generates G.

First, we prove by induction on n that PM(Fg,1,Pn) is generated by a0, . . . , an ,
b1, . . . , b2g−1 , c. The case n = 0 is proved in [11]. So, we assume that n > 0.
By the inductive hypothesis, PM(Fg,1,Pn−1) is generated by a0, . . . , an−1 ,
b1, . . . , b2g−1 , c. On the other hand, π1(Fg,1 \Pn−1, Pn) is the free group gener-
ated by the loops α1, . . . , αn, β1, . . . , β2g−1 represented in Figure 14. Applying
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Assertion 1 to the exact sequence (2.2), one has that PM(Fg,1,Pn) is generated
by a0, . . . , an−1 , b1, . . . , b2g−1 , c, α1, . . . , αn , β1, . . . , β2g−1 . One can directly
verify the following equalities:

αi = (b1anai−1b1an−1)−1α−1
n (b1anai−1b1an−1), i = 1, . . . , n− 1,

β1 = (b1an−1)−1αn(b1an−1),
βj = (bjbj−1)−1βj−1(bjbj−1), j = 2, . . . , 2g − 1.

and, from Proposition 2.6, one has:

αn = a−1
n−1an,

thus PM(Fg,1,Pn) is generated by a0, . . . , an , b1, . . . , b2g−1 , c.

p+ 1

i− 1 ni

αi

p

β2p−1

p

β2p

Figure 14: Generators for π1(Fg,1 \ Pn−1, Pn)

Now, applying Assertion 1 to (2.3), one has that PM(Fg,r+1,Pn) is generated
by a0, . . . , an+r , b1, . . . , b2g−1 , c, d1, . . . , dr .

Assertion 2 Let a0, a1, a2 be the Dehn twists and τ the braid twist inM(S1×
I, {P1, P2}) represented in Figure 15. Then

τa1τa1 = a0a2 .
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a2a0 a1

τ

P1 P2

Figure 15: A relation in M(S1 × I, {P1, P2})

Proof of Assertion 2 We consider the Dehn twist a3 along a circle which
bounds a small disk in S1× I which contains P1 , and the Dehn twist a4 along
a circle which bounds a small disk in S1 × I which contains P2 . As pointed
out in Subsection 2.1, we have a3 = a4 = 1. The lantern relation of Lemma 2.4
says:

τ2 · a1 · τa1τ
−1 = a0a2a3a4 .

Thus, since τ commutes with a0 and a2 , we have:

τa1τa1 = a0a2 .

Now, we prove (ii). Applying Assertion 1 to (2.1), one has that M(Fg,r+1,Pn)
is generated by a0, . . . , an+r, b1, . . . , b2g−1, c, d1, . . . , dr, τ1, . . . , τn−1 . But, As-
sertion 2 implies

ar+i = τi−1ar+i−1τi−1ar+i−1a
−1
r+i−2

for i = 2, . . . , r , thus M(Fg,r+1,Pn) is generated by a0, . . . , ar+1 , b1, . . . , b2g−1 ,
c, d1, . . . , dr , τ1, . . . , τn−1 .

Proposition 2.12 (i) For Γ equal to Al , Dl , E6 , or E7 , we denote by
ρPV : A(Γ)→M(F ) the Perron-Vannier representation of A(Γ). In each case,
bi denotes the Dehn twist represented in the corresponding figure (Figure 7, 8,
or 9), for i = 1, 2, 3. Then:

ρPV (∆2(A2p+1)) = b1b2,

ρPV (∆4(A2p)) = b1,

ρPV (∆2(D2p+1)) = b1b
2p−1
2 ,

ρPV (∆(D2p)) = b1b2b
p−1
3 ,

ρPV (∆2(E6)) = b1,

ρPV (∆(E7)) = b1b
2
2.
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(ii) We denote by ρPV : A(Bl) → M(F, {P1, P2}) the Perron-Vannier rep-
resentation of A(Bl). In each case, bi denotes the Dehn twist represented in
Figure 10, for i = 1, 2. Then:

ρPV (∆(B2p)) = b1b2,

ρPV (∆2(B2p+1)) = b1.

(iii) We denote by ρG : A(Bl) → M(S1 × I,Pl) the graph representation of
A(Bl) in the punctured mapping class group of the cylinder. Let b1, b2 denote
the Dehn twists represented in Figure 11. Then:

ρG(∆(Bl)) = bl−1
1 b2 .

Part (i) of Proposition 2.12 is proved in [18] with different techniques from the
ones used in this paper. Matsumoto’s proof is based on the study of geometric
monodromies of simple singularities. Our proof consists first on showing that
the image of the considered element lies in the center of the punctured mapping
class group, and, afterwards, on identifying this image using the action of the
center on some curves.

Proof We only prove the equality

ρ(∆(B2p)) = b1b2

of Part (ii): the other equalities can be proved in the same way.

By Proposition 2.10, M(F, {P1, P2}) is generated by the Dehn twists a1, a2, a3 ,
b1 , σ2, . . . , σ2p−1 and the braid twist τ1 represented in Figure 10. Since ∆(B2p)
is in the center of A(B2p), ρPV (∆(B2p)) commutes with τ1, σ2, . . . , σ2p−1 . The
Dehn twist b1 belongs to the center of M(F, {P1, P2}), thus ρPV (∆(B2p)) also
commutes with b1 . Let si be the defining circle of ai , for i = 1, 2, 3. Using the
expression of ∆(B2p) given in Proposition 2.8, we verify that ρPV (∆(B2p))(si)
is isotopic to si , thus ρPV (∆(B2p)) commutes with ai .

So, ρPV (∆(B2p)) is an element of the center of M(F, {P1, P2}). By [21],
this center is a free abelian group of rank 2 generated by b1 and b2 . Thus
ρPV (∆(B2p)) = bq11 b

q2
2 for some q1, q2 ∈ Z.

Now, consider the curve γ of Figure 10. Clearly, the only element of the center of
M(F, {P1, P2}) which fixes γ up to isotopy is the identity. Using the expression
of ∆(B2p) given in Proposition 2.8, we verify that ρPV (∆(B2p))b−1

1 b−1
2 fixes γ

up to isotopy, thus q1 = q2 = 1 and ρPV (∆(B2p)) = b1b2 .
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2.4 Matsumoto’s presentation for M(Fg,1) and M(Fg,0)

This subparagraph is dedicated to the statement of Matsumoto’s presentations
for M(Fg,1) and M(Fg,0).

We first introduce some notation. Let Γ be a Coxeter graph, and let X be
a subset of the set {x1, . . . , xl} of vertices of Γ. Recall that ΓX denotes the
Coxeter subgraph generated by X , and AX denotes the parabolic subgroup of
A(Γ) generated by X . If ΓX is a finite type connected Coxeter graph, then
we denote by ∆(X) the fundamental element of AX , viewed as an element of
A(Γ).

Theorem 2.13 (Matsumoto [18]). Let g ≥ 1, and let Γg be the Coxeter graph
drawn in Figure 16.

(i) M(Fg,1) is isomorphic with the quotient of A(Γg) by the following relations:

(1) ∆4(y1, y2, y3, z) = ∆2(x0, y1, y2, y3, z) if g ≥ 2,
(2) ∆2(y1, y2, y3, y4, y5, z) = ∆(x0, y1, y2, y3, y4, y5, z) if g ≥ 3.

(ii) M(Fg,0) is isomorphic with the quotient of A(Γg) by the relations (1) and
(2) above plus the following relation:

(3)
(x0y1)6 = 1 if g = 1,
x2g−2

0 = ∆2(y2, y3, z, y4, . . . , y2g−1) if g ≥ 2.

z

x0 y1 y2 y3 y4 y2g−1

Γg

Figure 16: Coxeter graph associated with M(Fg,1) and with M(Fg,0)

Set r = n = 0, and consider the Dehn twists a0 , b1, . . . , b2g−1 , c of Figure 12.
By Lemma 2.1, there is a well defined homomorphism ρ : A(Γg) → M(Fg,1)
which sends x0 on a0 , yi on bi for i = 1, . . . , 2g − 1, and z on c. By [11] (see
Proposition 2.10), this homomorphism is surjective. By Proposition 2.12, both
ρ(∆4(y1, y2, y3, z)) and ρ(∆2(x0, y1, y2, y3, z)) are equal to the Dehn twist σ1 of
Figure 17. Similarly, both ρ(∆2(y1, . . . , y5, z)) and ρ(∆(x0, y1, . . . , y5, z)) are
equal to the Dehn twist σ2 of Figure 17. Let Gg denote the quotient of A(Γg)
by the relations (1) and (2). So, the homomorphism ρ : A(Γg) → M(Fg,1)
induces a surjective homomorphism ρ̄ : Gg → M(Fg,1). In order to prove
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that this homomorphism is in fact an isomorphism, Matsumoto [18] showed
that the presentation of Gg as a quotient of A(Γg) is equivalent to Wajnryb’s
presentation of M(Fg,1) [25].

Similar remarks can be made for the presentation of M(Fg,0).

σ2σ1

Figure 17: Relations in M(Fg,1)

3 The presentation

Recall that, if Γ is a finite type connected Coxeter graph, then ∆(Γ) denotes
the fundamental element of A(Γ). If Γ is any Coxeter graph and X is a subset
of the set {x1, . . . , xl} of vertices of Γ such that ΓX is finite type and connected,
then we denote by ∆(X) the fundamental element of AX = A(ΓX) viewed as
an element of A(Γ).

Theorem 3.1 Let g ≥ 1, let r, n ≥ 0, and let Γg,r,n be the Coxeter graph
drawn in Figure 18. Then M(Fg,r+1,Pn) is isomorphic with the quotient of
A(Γg,r,n) by the following relations.

• Relations from M(Fg,1):

(R1) ∆4(y1, y2, y3, z) = ∆2(x0, y1, y2, y3, z) if g ≥ 2,
(R2) ∆2(y1, y2, y3, y4, y5, z) = ∆(x0, y1, y2, y3, y4, y5, z) if g ≥ 3.

• Relations of commutation:

(R3) xk∆−1(xi+1, xj , y1)xi∆(xi+1, xj , y1)
= ∆−1(xi+1, xj , y1)xi∆(xi+1, xj, y1)xk if 0 ≤ k < j < i ≤ r,

(R4) y2∆−1(xi+1, xj , y1)xi∆(xi+1, xj, y1)
= ∆−1(xi+1, xj , y1)xi∆(xi+1, xj, y1)y2 if 0 ≤ j < i ≤ r and g ≥ 2,
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• Expressions of the ui ’s:

(R5) u1 = ∆(x0, x1, y1, y2, y3, z)∆−2(x1, y1, y2, y3, z) if g ≥ 2,
(R6)ui+1 = ∆(xi, xi+1, y1, y2, y3, z)∆−2(xi+1, y1, y2, y3, z)

∆2(x0, xi+1, y1)∆−1(x0, xi, xi+1, y1) if 1 ≤ i ≤ r − 1 , g ≥ 2.

• Other relations:

(R7) ∆(xr, xr+1, y1, v1) = ∆2(xr+1, y1, v1) if n ≥ 2,
(R8a) ∆(x0, x1, y1, y2, y3, z) = ∆2(x1, y1, y2, y3, z) if n ≥ 1, g ≥ 2, r = 0,
(R8b) ∆(xr, xr+1, y1, y2, y3, z)∆−2(xr+1, y1, y2, y3, z)

= ∆(x0, xr, xr+1, y1)∆−2(x0, xr+1, y1) if n ≥ 1, g ≥ 2, r ≥ 1.

v1

x0

x1

Γg,r,n u1 u2 ur y1 y2 y3 y2g−1

z

v2 vn−1

xr

y4

4

xr+1

Figure 18: Coxeter graph associated with M(Fg,r+1,Pn)

Notice that only the relations (R1), (R2), (R7), and (R8a) remain in the pre-
sentation of M(Fg,1,Pn), and (R8a) has to be replaced by (R8b) if r ≥ 1.

Assume that g ≥ 2. From the relations (R5) and (R6) we see that we can
remove u1, . . . , ur from the generating set. However, to do so, one has to add
relations comming from the ones in the Artin group A(Γg,r,n). For example,
one has that ∆(x0, x1, y1, y2, y3, z)∆−2(x1, y1, y2, y3, z) commutes with y4 in the
quotient, since u1 commutes with y4 in A(Γg,r,n).

Consider the Dehn twists a0, . . . , ar+1 , b1, . . . , b2g−1 , c, d1, . . . , dr and the braid
twists τ1, . . . , τn−1 represented in Figure 12. From Subsection 2.1 follows that
there is a well defined homomorphism ρ : A(Γg,r,n) → M(Fg,r+1,Pn) which
sends xi on ai for i = 0, . . . , r+ 1, yi on bi for i = 1, . . . , 2g− 1, z on c, ui on
di for i = 1, . . . , r , and vi on τi for i = 1, . . . , n − 1. This homomorphism is
surjective by Proposition 2.10. If w1 = w2 is one of the relations (R1),. . . ,(R7),
(R8a), (R8b), then we have ρ(w1) = ρ(w2). This fact can be easily proved using
Proposition 2.12 in the case of the relations (R1), (R2), (R5), (R6), (R7), (R8a),
and (R8b), and comes from the following reason in the case of the relations (R3)
and (R4). We have the equality

∆−1(xi+1, xj , y1)xi∆(xi+1, xj , y1) = y−1
1 x−1

i+1x
−1
j y−1

1 xiy1xjxi+1y1,
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and the image by b−1
1 a−1

i+1a
−1
j b−1

1 of the defining circle of ai is disjoint from the
defining circle of ak , up to isotopy, if k < j , and is disjoint from the defining
circle of b2 , up to isotopy.

Let G(g, r, n) denote the quotient of A(Γg,r,n) by the relations (R1),..,(R7),
(R8a), (R8b). By the above considerations, the homomorphism :

ρ : A(Γg,r,n)→M(Fg,r+1,Pn)

induces a surjective homomorphism ρ̄ : G(g, r, n) → M(Fg,r+1,Pn). In order
to prove Theorem 3.1, it remains to show that this homomorphism is in fact an
isomorphism. This will be the object of Subsection 3.1.

Theorem 3.2 Let g ≥ 1, let n ≥ 1, and let Γg,0,n be the Coxeter graph drawn
in Figure 18. Then M(Fg,0,Pn) is isomorphic with the quotient of A(Γg,0,n)
by the following relations.

• Relations from M(Fg,1,Pn):

(R1) ∆4(y1, y2, y3, z) = ∆2(x0, y1, y2, y3, z) if g ≥ 2,
(R2) ∆2(y1, y2, y3, y4, y5, z) = ∆(x0, y1, y2, y3, y4, y5, z) if g ≥ 3,
(R7) ∆(x0, x1, y1, v1) = ∆2(x1, y1, v1) if n ≥ 2,
(R8a) ∆(x0, x1, y1, y2, y3, z) = ∆2(x1, y1, y2, y3, z) if n ≥ 1 and g ≥ 2.

• Other relations:

(R9a) x2g−n−2
0 ∆(x1, v1, . . . , vn−1) = ∆2(z, y2, . . . , y2g−1) if g ≥ 2,

(R9b) xn0 = ∆(x1, v1, . . . , vn−1) if g = 1,
(R9c) ∆4(x0, y1) = ∆2(v1, . . . , vn−1) if g = 1.

Note that, in the above presentation, the relation (R9a), which holds if g ≥ 2,
has to be replaced by the relations (R9b) and (R9c) when g = 1.

Consider the Dehn twists a0, a1 , b1, . . . , b2g−1 , c and the braid twists τ1, .., τn−1

represented in Figure 13. From Subsection 2.1 follows that there is a well
defined homomorphism ρ0 : A(Γg,0,n) → M(Fg,0,Pn) which sends xi on ai
for i = 0, 1, yi on bi for i = 1, . . . , 2g − 1, z on c, and vi on τi for i =
1, . . . , n− 1. This homomorphism is surjective by Corollary 2.11. Let G0(g, n)
denote the quotient of A(Γg,0,n) by the relations (R1), (R2), (R7), (R8), (R9a),
(R9b), and (R9c). As before, using Proposition 2.12, one can easily prove
that the homomorphism ρ0 : A(Γg,0,n) → M(Fg,0,Pn) induces a surjective
homomorphism ρ̄0 : G0(g, n) → M(Fg,0,Pn). In order to prove Theorem 3.2,
it remains to show that this homomorphism is in fact an isomorphism. This
will be the object of Subsection 3.2.
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3.1 Proof of Theorem 3.1

The proof of Theorem 3.1 is organized as follows. In the first step, starting from
Matsumoto’s presentation of M(Fg,1) [18] (see Theorem 2.13), we determine
by induction on n a presentation of PM(Fg,1,Pn) (Proposition 3.3), applying
Lemma 2.5 to the exact sequence (2.2) of Subsection 2.2. In the second step,
we determine a presentation of PM(Fg,r+1,Pn) (Proposition 3.7), applying
Lemma 2.5 to the exact sequence (2.3). Finally, we prove Theorem 3.1 applying
Lemma 2.5 to the exact sequence (2.1).

Proposition 3.3 Let g ≥ 1, let n ≥ 0, and let PΓg,0,n be the Coxeter graph
drawn in Figure 19. Then PM(Fg,1,Pn) is isomorphic with the quotient of
A(PΓg,0,n) by the following relations.

• Relations from M(Fg,1):

(PR1) ∆4(y1, y2, y3, z) = ∆2(x0, y1, y2, y3, z) if g ≥ 2,
(PR2) ∆2(y1, y2, y3, y4, y5, z) = ∆(x0, y1, y2, y3, y4, y5, z) if g ≥ 3.

• Relations of commutation:

(PR3) xk∆−1(xi+1, xj , y1)xi∆(xi+1, xj , y1)
= ∆−1(xi+1, xj , y1)xi∆(xi+1, xj, y1)xk if 0 ≤ k < j < i ≤ n− 1,

(PR4) y2∆−1(xi+1, xj , y1)xi∆(xi+1, xj, y1)
= ∆−1(xi+1, xj , y1)xi∆(xi+1, xj, y1)y2 if 0 ≤ j < i ≤ n− 1, g ≥ 2.

• Relations between fundamental elements:

(PR5) ∆(x0, x1, y1, y2, y3, z) = ∆2(x1, y1, y2, y3, z) if g ≥ 2,
(PR6) ∆(xi, xi+1, y1, y2, y3, z)∆−2(xi+1, y1, y2, y3, z)

= ∆(x0, xi, xi+1, y1)∆−2(x0, xi+1, y1) if 1 ≤ i ≤ n− 1, g ≥ 2.

xn

x0

x1

y1 y2 y3 y2g−1

z

y4

xn−1

PΓg,0,n

Figure 19: Coxeter graph associated with PM(Fg,1,Pn)

The following lemmas 3.4, 3.5, and 3.6 are preliminary results to the proof of
Proposition 3.3.
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Lemma 3.4 Let Γ be the Coxeter graph drawn in Figure 20, and let G be
the quotient of A(Γ) by the following relation:

x4∆−1(x1, x3, y)x2∆(x1, x3, y) = ∆−1(x1, x3, y)x2∆(x1, x3, y)x4 .

Then the following equalities hold in G.

x3∆−1(x2, x4, y)x1∆(x2, x4, y) = ∆−1(x2, x4, y)x1∆(x2, x4, y)x3,
x2∆−1(x1, x3, y)x4∆(x1, x3, y) = ∆−1(x1, x3, y)x4∆(x1, x3, y)x2,
x1∆−1(x2, x4, y)x3∆(x2, x4, y) = ∆−1(x2, x4, y)x3∆(x2, x4, y)x1.

x4

x1

x3

x2 y

Figure 20

Proof It clearly suffices to prove the first equality.

x3∆−1(x2, x4, y)x1∆(x2, x4, y)x−1
3 ∆−1(x2, x4, y)x−1

1 ∆(x2, x4, y)
= x3y

−1x−1
2 x−1

4 y−1x1yx2x4yx
−1
3 y−1x−1

2 x−1
4 y−1x−1

1 yx2x4y
= y−1 · x−1

3 yx3x
−1
2 x−1

4 x1yx
−1
1 x2x4x

−1
3 y−1x3x

−1
2 x−1

4 x1y
−1x−1

1 x2x4 · y
= y−1x−1

2 x−1
3 · x2yx

−1
2 x1x3x

−1
4 yx4x

−1
1 x−1

3 x2y
−1x−1

2 x1x3x
−1
4 y−1x4x

−1
1 x−1

3

·x3x2y
= y−1x−1

2 x−1
3 · y−1x2yx1x3yx4y

−1x−1
1 x−1

3 y−1x−1
2 yx1x3yx

−1
4 y−1x−1

1 x−1
3 · x3x2y

= y−1x−1
2 x−1

3 y−1 · x2∆(x1, x3, y)x4∆−1(x1, x3, y)x−1
2 ∆(x1, x3, y)x−1

4

∆−1(x1, x3, y) · yx3x2y
= 1.

Lemma 3.5 We number the vertices of the Coxeter graph Dl according to
Figure 6. Then the following equalities hold in A(Dl).

∆−1(x2, . . . , xl−1)x−1
1 x2∆(x2, . . . , xl−1)∆−1(x2, . . . , xl)x−1

2 x1∆(x2, . . . , xl)
= xl∆−1(x2, . . . , xl−1)x−1

1 x2∆(x2, . . . , xl−1)x−1
l ,

∆−1(x2, . . . , xl)x−1
2 x1∆(x2, . . . , xl)∆−1(x2, . . . , xl−1)x−1

2 x1∆(x2, . . . , xl−1)
= xl−1∆−1(x2, . . . , xl)x−1

2 x1∆(x2, . . . , xl)x−1
l−1.

Proof

x−1
l ∆−1(x2, . . . , xl−1)x−1

1 x2∆(x2, . . . , xl−1)∆−1(x2, . . . , xl)x−1
2 x1

∆(x2, . . . , xl)xl ∆−1(x2, . . . , xl−1)x−1
2 x1∆(x2, . . . , xl−1)
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= x−1
l ∆−1(x2, . . . , xl−2)(x−1

l−1 . . . x
−1
2 )x2x

−1
1 (x−1

l . . . x−1
2 )x−1

2 x1x2∆(x2, . . . , xl)
∆−1(x2, . . . , xl−1)x1x

−1
2 (x2 . . . xl−1)∆(x2, . . . , xl−2)

= ∆−1(x2, . . . , xl−2)x−1
l (x−1

l−1 . . . x
−1
3 )x−1

1 (x−1
l . . . x−1

2 )x1(x2 . . . xl)x1

(x3 . . . xl−1)∆(x2, . . . , xl−2)
= ∆−1(x2, . . . , xl−2)(x−1

l . . . x−1
3 )x−1

1 (x−1
l . . . x−1

3 )(x3 . . . xl)x1(x3 . . . xl)
∆(x2, . . . , xl−2)

= 1.

∆−1(x2, . . . , xl)x−1
2 x1∆(x2, . . . , xl)∆−1(x2, . . . , xl−1)x−1

2 x1∆(x2, . . . , xl−1)
xl−1∆−1(x2, . . . , xl)x−1

1 x2∆(x2, . . . , xl)x−1
l−1

= ∆−1(x2, . . . , xl)x−1
2 x1(x2 . . . xl)x−1

2 x1x2∆(x2, . . . , xl−1)∆−1(x2, . . . , xl)x−1
1

x2x
−1
3 ∆(x2, . . . , xl)

= ∆−1(x2, . . . , xl)x1(x3 . . . xl)x1(x−1
l . . . x−1

2 )x−1
1 x2x

−1
3 ∆(x2, . . . , xl)

= ∆−1(x2, . . . , xl)x3x1(x3 . . . xl)(x−1
l . . . x−1

3 )x−1
1 x−1

3 ∆(x2, . . . , xl)
= 1.

Several algorithms to solve the word problem in finite type Artin groups are
known (see [4], [8], [6], [7]). We use the one of [7] implemented in a Maple
program to prove the following.

Lemma 3.6 (i) We number the vertices of D6 according to Figure 6. Let

w1 = ∆−1(x1, x3)x−1
1 x2∆(x1, x3)

w2 = ∆−1(x1, x3, x4)x−1
1 x2∆(x1, x3, x4)

w3 = ∆−1(x1, x3, x4, x5)x−1
1 x2∆(x1, x3, x4, x5)

Then the following equality holds in A(D6).

x−1
2 x1w

−1
1 w−1

2 w−1
3 x6w3x

−1
6 w1 = ∆−2(x2, x3, . . . , x6)∆(x1, x2, x3, . . . , x6).

(ii) We number the vertices of D4 according to Figure 6. Let

w = x−1
2 ∆−1(x1, x3, x4)x−1

1 x2∆(x1, x3, x4)x2.

Then the following equality holds in A(D4).

x−1
1 x2w = ∆−2(x1, x3, x4)∆(x1, x2, x3, x4).

Proof of Proposition 3.3 We set r = 0 and we consider the Dehn twists
a0, . . . , an b1, . . . , b2g−1 , c represented in Figure 12. From Subsection 2.1 fol-
lows that there is a well defined homomorphism ρ : A(PΓg,0,n)→ PM(Fg,1,Pn)
which sends xi on ai for i = 0, . . . , n, yi on bi for i = 1, . . . , 2g − 1, and z
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on c. This homomorphism is surjective by Proposition 2.10. Let PG(g, 0, n)
denote the quotient of A(PΓg,0,n) by the relations (PR1),. . . ,(PR6). One
can easily prove using Proposition 2.12 that: if w1 = w2 is one of the re-
lations (PR1),. . . ,(PR6), then ρ(w1) = ρ(w2). So, the homomorphism ρ :
A(PΓg,0,n)→ PM(Fg,1,Pn) induces a surjective homomorphism :

ρ̄ : PG(g, 0, n) → PM(Fg,1,Pn).

Now, we prove by induction on n that ρ̄ is an isomorphism. The case n = 0
is proved in [18] (see Theorem 2.13). So, we assume that n > 0. By the
inductive hypothesis, PM(Fg,1,Pn−1) is isomorphic with PG(g, 0, n − 1). On
the other hand, π1(Fg,1\Pn−1, Pn) is the free group F (α1, . . . , αn, β1, . . . , β2g−1)
freely generated by the loops α1, . . . , αn , β1, . . . , β2g−1 represented in Figure
14. Applying Lemma 2.5 to the exact sequence (2.2) of Subsection 2.2, one
has that PM(Fg,1,Pn) is isomorphic with the quotient of the free product
PG(g, 0, n − 1) ∗ F (α1, . . . , αn, β1, . . . , β2g−1) by the following relations.

• Relations involving the αi ’s:

(PT1) xjαix
−1
j = αi for 0 ≤ j < i ≤ n,

(PT2) xjαix
−1
j = α−1

j+1αiαj+1 for 1 ≤ i ≤ j ≤ n− 1,
(PT3) y1αiy

−1
1 = β−1

1 αi for 1 ≤ i ≤ n,
(PT4) yjαiy

−1
j = αi for 1 ≤ i ≤ n and 2 ≤ j ≤ 2g − 1,

(PT5) zαiz
−1 = αi for 1 ≤ i ≤ n.

• Relations involving the βi ’s:

(PT6) xjβ1x
−1
j = β1αj+1 for 0 ≤ j ≤ n− 1,

(PT7) xjβix
−1
j = βi for 0 ≤ j ≤ n− 1 and 2 ≤ i ≤ 2g − 1,

(PT8) yjβiy
−1
j = βi for j 6= i− 1 and j 6= i+ 1,

(PT9) yi−1βiy
−1
i−1 = βiβi−1 for 2 ≤ i ≤ 2g − 1,

(PT10) yi+1βiy
−1
i+1 = β−1

i+1βi for 1 ≤ i ≤ 2g − 2,
(PT11) zβ3z

−1 = β3β2β1α1β
−1
1 ,

(PT12) zβiz
−1 = βi for i 6= 3.

Consider the homomorphism f : PG(g, 0, n−1)∗F (α1, . . . , αn, β1, . . . , β2g−1)→
PG(g, 0, n) defined by:
f(xi) = xi for 0 ≤ i ≤ n− 1,
f(yi) = yi for 1 ≤ i ≤ 2g − 1,
f(z) = z,
f(αi) =x−1

n−1∆−1(xn, xi−1, y1)x−1
n xn−1∆(xn, xi−1, y1)xn−1 for 1 ≤ i ≤ n− 1,

f(αn) = x−1
n−1xn,

f(βi) = ∆−1(xn−1, y1, . . . , yi)x−1
n−1xn∆(xn−1, y1, . . . , yi) for 1 ≤ i ≤ 2g − 1.
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Assertion 1 f induces a homomorphism f̄ : PM(Fg,1,Pn)→ PG(g, 0, n).

One can easily verify on the generators of PG(g, 0, n) that f̄ ◦ ρ̄ is the identity
of PG(g, 0, n). So, Assertion 1 shows that ρ̄ is injective and, therefore, finishes
the proof of Proposition 3.3.

Proof of Assertion 1 We have to show that: if w1 = w2 is one of the
relations (PT1),. . . ,(PT12), then f(w1) = f(w2).

By an easy case we mean a relation w1 = w2 such that the equality f(w1) =
f(w2) in PG(g, 0, n) is a direct consequence of the braid relations in A(PΓg,0,n).
For instance, (PT5), (PT6), and (PT8) are easy cases.

• Relation (PT1): (PT1) is an easy case if either j = i− 1 or i = n. So, we
assume that 0 ≤ j < i− 1 < n− 1. Then:

f(xjαix−1
j )f(αi)−1

= xjx
−1
n−1∆−1(xn, xi−1, y1)x−1

n xn−1∆(xn, xi−1, y1)xn−1x
−1
j x−1

n−1

∆−1(xn, xi−1, y1)x−1
n−1xn∆(xn, xi−1, y1)xn−1

= x−1
n−1x

−1
i−1 · xj∆−1(xn, xi−1, y1)xn−1∆(xn, xi−1, y1)x−1

j ∆−1(xn, xi−1, y1)x−1
n−1

∆(xn, xi−1, y1) · xi−1xn−1

= 1 (by (PR3)).

• Relation (PT2): (PT2) is an easy case if j = n − 1. So, we assume that
j < n− 1. Then:

f(xjαix−1
j )f(α−1

j+1αiαj+1)−1

= xjx
−1
n−1∆−1(xn, xi−1, y1)x−1

n xn−1∆(xn, xi−1, y1)xn−1x
−1
j x−1

n−1∆−1(xn, xj , y1)
x−1
n−1xn∆(xn, xj , y1)xn−1x

−1
n−1∆−1(xn, xi−1, y1)x−1

n−1xn∆(xn, xi−1, y1)xn−1

x−1
n−1∆−1(xn, xj , y1)x−1

n xn−1∆(xn, xj , y1)xn−1

= xjx
−1
n−1x

−1
i−1∆−1(xn, xi−1, y1)xn−1∆(xn, xi−1, y1)∆−1(xn, xj , y1)x−1

n−1

∆(xn, xj , y1)∆−1(xn, xi−1, y1)x−1
n−1∆(xn, xi−1, y1)xi−1∆−1(xn, xj, y1)xn−1

∆(xn, xj , y1)xn−1x
−1
j

= xjx
−1
n−1x

−1
i−1∆−1(xn, xi−1, y1)xn−1∆(xn, xi−1, y1)∆−1(xn, xj , y1)x−1

n−1

∆(xn, xj , y1)∆−1(xn, xi−1, y1)x−1
n−1∆(xn, xi−1, y1)∆−1(xn, xj , y1)xn−1

∆(xn, xj , y1)xi−1xn−1x
−1
j (by (PR3))

= xjx
−1
n−1x

−1
i−1y

−1
1 x−1

n x−1
i−1y

−1
1 xn−1y1xnxi−1y1y

−1
1 x−1

n x−1
j y−1

1 x−1
n−1y1xnxj

y1y
−1
1 x−1

n x−1
i−1y

−1
1 x−1

n−1y1xnxi−1y1y
−1
1 x−1

n x−1
j y−1

1 xn−1y1xnxjy1xi−1xn−1x
−1
j

= xjx
−1
n−1x

−1
i−1y

−1
1 x−1

n x−1
i−1xn−1y1x

−1
n−1xi−1x

−1
j xn−1y

−1
1 x−1

n−1xjx
−1
i−1xn−1

y−1
1 x−1

n−1xi−1x
−1
j xn−1y1x

−1
n−1xjxny1xi−1xn−1x

−1
j

Algebraic & Geometric Topology, Volume 1 (2001)



100 Catherine Labruère and Luis Paris

= xjx
−1
n−1x

−1
i−1y

−1
1 x−1

n xn−1y1xi−1y
−1
1 y1x

−1
j y−1

1 y1x
−1
i−1y

−1
1 y1xjy

−1
1 x−1

n−1xny1xi−1

xn−1x
−1
j

= 1.

• Relation (PT3): (PT3) is an easy case if i = n. So, we assume that i < n.
Then:

f(y1αiy
−1
1 )f(β−1

1 αi)−1

= y1x
−1
n−1∆−1(xn, xi−1, y1)x−1

n xn−1∆(xn, xi−1, y1)xn−1y
−1
1 x−1

n−1

∆−1(xn, xi−1, y1)x−1
n−1xn∆(xn, xi−1, y1)xn−1∆−1(xn−1, y1)x−1

n−1xn∆(xn−1, y1)
= y1x

−1
n−1y

−1
1 x−1

n x−1
i−1y

−1
1 x−1

n xn−1y1xnxi−1y1xn−1y
−1
1 x−1

n−1y
−1
1 x−1

n x−1
i−1y

−1
1 x−1

n−1

xny1xnxi−1y1xn−1x
−1
n−1y

−1
1 x−1

n−1xny1xn−1

= x−1
n−1y

−1
1 xn−1x

−1
n x−1

i−1y
−1
1 x−1

n xn−1y1xnxi−1y1xn−1x
−1
n−1y

−1
1 x−1

n−1x
−1
n x−1

i−1y
−1
1

x−1
n−1xny1xnxi−1x

−1
n−1xny1xn−1

= x−1
n−1y

−1
1 xn−1x

−1
n x−1

i−1y
−1
1 x−1

n xn−1y1y
−1
1 x−1

n−1y
−1
1 y1xny1xi−1xnx

−1
n−1y1xn−1

= 1.

• Relation (PT4): (PT4) is an easy case if either i = n or j ≥ 3. So, we
assume that j = 2 and i ≤ n− 1. Then:

y2f(αi)y−1
2

= y2x
−1
n−1∆−1(xn, xi−1, y1)x−1

n xn−1∆(xn, xi−1, y1)xn−1y
−1
2

= x−1
n−1x

−1
i−1y2∆−1(xn, xi−1, y1)xn−1∆(xn, xi−1, y1)y−1

2 xn−1

= x−1
n−1x

−1
i−1∆−1(xn, xi−1, y1)xn−1∆(xn, xi−1, y1)xn−1 (by (PR4))

= f(αi).

• Relation (PT7): (PT7) is an easy case if j = n − 1. So, we assume that
j ≤ n − 2. We prove by induction on i ≥ 2 that xj and f(βi) commute.
Assume first that i = 2. (PR4) and Lemma 3.4 imply:

xj∆−1(xn−1, y1, y2)xn∆(xn−1, y1, y2) = ∆−1(xn−1, y1, y2)xn∆(xn−1, y1, y2)xj ,

and this last equality implies:

xjf(β2)x−1
j = f(β2).

Now, we assume that i > 2. The first equality of Lemma 3.5 implies:

f(βi) = f(βi−1)yif(βi−1)−1y−1
i .

Thus, since xj commutes with yi and with f(βi−1) (inductive hypothesis), xj
also commutes with f(βi).

• Relation (PT9): The equality

yi−1f(βi)y−1
i−1 = f(βi)f(βi−1)
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is a straightforward consequence of the second equality of Lemma 3.5.

• Relation (PT10): The equality

yi+1f(βi)y−1
i+1 = f(βi+1)−1f(βi)

is a straightforward consequence of the first equality of Lemma 3.5.

• Relation (PT11): Assume first that n = 1. Then:

f(α1)−1f(β1)−1f(β2)−1f(β3)−1zf(β3)z−1f(β1)
= ∆−2(x1, y1, y2, y3, z)∆(x0, x1, y1, y2, y3, z) (by Lemma 3.6.(i))
= 1 (by (PR5)).

Now, assume that n ≥ 2. Lemma 3.6.(i) implies:

x−1
n xn−1f(β1)−1f(β2)−1f(β3)−1zf(β3)z−1f(β1)

= ∆−2(xn, y1, y2, y3, z)∆(xn−1, xn, y1, y2, y3, z),

and Lemma 3.6.(ii) implies:

x−1
n xn−1f(α1) = ∆−2(x0, xn, y1)∆(x0, xn−1, xn, y1).

Thus:

f(α1)−1f(β1)−1f(β2)−1f(β3)−1zf(β3)z−1f(β1)
= ∆−1(x0, xn−1, xn, y1)∆2(x0, xn, y1)∆−2(xn, y1, y2, y3, z)∆(xn−1, xn, y1, y2, y3, z)
= 1 (by (PR6)).

• Relation (PT12): (PT12) is an easy case if i = 1, 2. We prove by induction
on i ≥ 4 that z and f(βi) commute. Recall first that the first equality of
Lemma 3.5 implies:

f(βi) = f(βi−1)yif(βi−1)−1y−1
i .

Assume that i = 4. Then:

zf(β4)z−1

= zf(β3)y4f(β3)−1y−1
4 z−1

= f(β3)f(β2)f(β1)f(α1)f(β1)−1y4f(β1)f(α1)−1f(β1)−1f(β2)−1f(β3)−1y−1
4

by (PT11)
= f(β3)y4f(β3)−1y−1

4 (by (PT4) and (PT8))
= f(β4).

Now, we assume that i > 4. Then z commutes with f(βi), since it commutes
with yi and with f(βi−1) (inductive hypothesis).
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Now, in view of Proposition 3.3, and applying Lemma 2.5 to the exact se-
quences (2.3) of Subsection 2.2, one has immediately the following presentation
for PM(Fg,r+1,Pn).

Proposition 3.7 Let g, r ≥ 1, let n ≥ 0, and let PΓg,r,n be the Coxeter graph
drawn in Figure 21. Then PM(Fg,r+1,Pn) is isomorphic with the quotient of
A(PΓg,r,n) by the following relations.

• Relations from M(Fg,1):

(PR1) ∆4(y1, y2, y3, z) = ∆2(x0, y1, y2, y3, z) if g ≥ 2,
(PR2) ∆2(y1, y2, y3, y4, y5, z) = ∆(x0, y1, y2, y3, y4, y5, z) if g ≥ 3.

• Relations of commutation:

(PR3) xk∆−1(xi+1, xj , y1)xi∆(xi+1, xj , y1)
= ∆−1(xi+1, xj , y1)xi∆(xi+1, xj , y1)xk if 0 ≤ k < j < i ≤ r + n− 1,

(PR4) y2∆−1(xi+1, xj , y1)xi∆(xi+1, xj , y1)
= ∆−1(xi+1, xj , y1)xi∆(xi+1, xj , y1)y2 if 0 ≤ j < i ≤ r + n− 1,

• Relations between fundamental elements:

(PR5a) u1 = ∆(x0, x1, y1, y2, y3, z)∆−2(x1, y1, y2, y3, z),
(PR6a) ui+1 = ∆(xi, xi+1, y1, y2, y3, z)∆−2(xi+1, y1, y2, y3, z)

∆2(x0, xi+1, y1)∆−1(x0, xi, xi+1, y1) if 1 ≤ i ≤ r − 1,
(PR6b) ∆(xi, xi+1, y1, y2, y3, z)∆−2(xi+1, y1, y2, y3, z)

= ∆(x0, xi, xi+1, y1)∆−2(x0, xi+1, y1) if r ≤ i ≤ n+ r − 1.

z
x0

x1

u1 u2 ur y1 y2 y2g−1y4PΓg,r,n

xn+r

y3

Figure 21: Coxeter graph associated with PM(Fg,r+1,Pn)

Let PG(g, r, n) denote the quotient of A(PΓg,r,n) by the relations (PR1),(PR2),
(PR3),(PR4),(PR5a), (PR6a), (PR6b). Consider the Dehn twists a0, . . . , an+r ,
b1, . . . , b2g−1 , c, d1, . . . , dr represented in Figure 12. Then an isomorphism
ρ̄ : PG(g, r, n) → PM(Fg,r+1,Pn) between PG(g, r, n) and PM(Fg,r+1,Pn)
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is given by ρ̄(xi) = ai for i = 0, . . . , n + r , ρ̄(yi) = bi for i = 1, . . . , 2g − 1,
ρ̄(z) = c, and ρ̄(ui) = di for i = 1, . . . , r .

As in Lemma 3.6, we use the algorithm of [7] to prove the following.

Lemma 3.8 (i) We number the vertices of the Coxeter graph D6 according
to Figure 6. Then the following equality holds in A(D6).

∆2(x1, x3, . . . , x6)∆−1(x1, x2, x3, . . . , x6) = x6x5x4x3x1x
−1
2 x−1

3 x−1
4 x−1

5 x−1
6 x5x4

x3x2x
−1
1 x−1

3 x−1
4 x−1

5 x4x3x1x
−1
2 x−1

3 x−1
4 x2x3x2x

−1
1 x−1

3 x−1
2 .

(ii) We number the vertices of the Coxeter graph D4 according to Figure 6.
Then the following equality holds in A(D4).

∆(x1, x2, x3, x4)∆−2(x1, x3, x4) = x2x3x
−1
2 x1x

−1
3 x−1

2 x4x3x2x
−1
1 x−1

3 x−1
4 .

Proof of Theorem 3.1 Recall that Γg,r,n denotes the Coxeter graph drawn in
Figure 18, and that G(g, r, n) denotes the quotient of A(Γg,r,n) by the relations
(R1),. . . ,(R7), (R8a), (R8b). Recall also that there is a well defined epimor-
phism ρ̄ : G(g, r, n) →M(Fg,r+1,Pn) which sends xi on ai for i = 0, . . . , r+ 1,
yi on bi for i = 1, . . . , 2g − 1, z on c, ui on di for i = 1, . . . , r , and vi
on τi for i = 1, . . . , n − 1. Our aim now is to construct a homomorphism
f̄ :M(Fg,r+1,Pn)→ G(g, r, n) such that f̄ ◦ ρ̄ is the identity of G(g, r, n). The
existence of such a homomorphism clearly proves that ρ̄ is an isomorphism.

We set A0 = xr , A1 = xr+1 , and

Ai = x1−i
r ∆(xr+1, v1, . . . , vi−1) for i = 2, . . . , n.

These expressions are viewed as elements of G(g, r, n). Note that, by Proposi-
tion 2.12, we have ρ̄(Ai) = ar+i for all i = 0, 1, . . . , n.

Assertion 1 (i) The following relations hold in G(g, r, n):

(T1) Ai−1Ai+1 = viAiviAi
= AiviAivi for 1 ≤ i ≤ n− 1,

(T2) AiAj = AjAi for 0 ≤ i < j ≤ n,
(T3) Aivj = vjAi for i 6= j,
(T4) y1Aiy1 = Aiy1Ai for 0 ≤ i ≤ n.

(ii) The relations (T1),. . . ,(T4) imply that there is a well defined homomor-
phism hi : A(B4)→ G(g, r, n) which sends x1 on vi , x2 on Ai , x3 on y1 , and
x4 on Ai−1 . Then the following relation holds in G(g, r, n):

(T5) hi(∆(x1, x2, x3, x4)) = hi(∆2(x1, x2, x3)) for 1 ≤ i ≤ n.
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Proof of Assertion 1 • Relation (T1):

Ai+1 = x−ir ∆(xr+1, v1, . . . , vi)
= x−ir vivi−1 . . . v1xr+1v1 . . . vi−1vi∆(xr+1, v1, . . . , vi−1) (by 2.9)
= x−ir vi∆(xr+1, v1, . . . , vi−1)∆−1(xr+1, v1, . . . , vi−2)vi

∆(xr+1, v1, . . . , vi−1)
= xi−2

r ∆−1(xr+1, v1, . . . , vi−2)vix1−i
r ∆(xr+1, v1, . . . , vi−1)vix1−i

r

∆(xr+1, v1, . . . , vi−1)
= A−1

i−1viAiviAi.

Similarly:
Ai+1 = A−1

i−1AiviAivi.

• The relations (T2) and (T3) are direct consequences of the “braid” relations
in A(Γg,r,n).

• Now, we prove (T4) and (T5) by induction on i. First, assume i = 1. Then
(T4) follows from the “braid” relation y1xr+1y1 = xr+1y1xr+1 in A(Γg,r,n), and
(T5) follows from the relation (R7) in the definition of G(g, r, n).

Now, assume i > 1. Then the relation (T4) follows from the following sequence
of equalities.

Aiy1Aiy
−1
1 A−1

i y−1
1

= A−1
i−2vi−1Ai−1vi−1Ai−1y1Ai−1vi−1Ai−1vi−1A

−1
i−2y

−1
1 Ai−2v

−1
i−1A

−1
i−1v

−1
i−1A

−1
i−1y

−1
1

(by (T1))
= A−1

i−2 · vi−1Ai−1vi−1Ai−1y1Ai−1vi−1Ai−1y1A
−1
i−2y

−1
1 A−1

i−1v
−1
i−1A

−1
i−1y

−1
1 A−1

i−2

·Ai−2 (by (T2), (T3), induction)
= A−1

i−2 · hi−1(∆2(x1, x2, x3)∆−1(x1, x2, x3, x4)) · Ai−2 (by Proposition 2.9)
= 1 (by induction).

The Relation (T5) follows from the following sequence of equalities.

hi(∆−1(x1, x2, x3, x4)∆2(x1, x2, x3))
= A−1

i−1y
−1
1 A−1

i v−1
i A−1

i y−1
1 A−1

i−1y1Aiviy1Aiviy1Aivi (by Propositions 2.8 , 2.9)
= A−1

i−1y
−1
1 Ai−2v

−1
i−1A

−1
i−1v

−1
i−1A

−1
i−1v

−1
i v−1

i−1A
−1
i−1v

−1
i−1A

−1
i−1Ai−2y

−1
1 A−1

i−1y1A
−1
i−2Ai−1

vi−1Ai−1vi−1viy1A
−1
i−2Ai−1vi−1Ai−1vi−1viy1vi−1Ai−1vi−1Ai−1A

−1
i−2vi ( T1 )

= Ai−2 · A−1
i−1A

−1
i−2y

−1
1 Ai−2v

−1
i−1A

−1
i−1v

−1
i−1A

−1
i−1v

−1
i v−1

i−1A
−1
i−1v

−1
i−1A

−1
i−1Ai−2Ai−1y

−1
1

A−1
i−1A

−1
i−2Ai−1vi−1Ai−1vi−1viy1A

−1
i−2Ai−1vi−1Ai−1vi−1viy1vi−1Ai−1vi−1Ai−1vi

·A−1
i−2(by (T2), (T3), induction)

= Ai−2A
−1
i−1v

−1
i−1 · y1A

−1
i−2y

−1
1 A−1

i−1v
−1
i−1v

−1
i A−1

i−1v
−1
i−1A

−1
i−1y

−1
1 A−1

i−2y1Ai−1vi−1viy1

A−1
i−2Ai−1vi−1Ai−1vi−1viy1vi−1Ai−1vi−1viv

−1
i−1 · vi−1Ai−1A

−1
i−2
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(by (T2), (T3), induction)
= Ai−2A

−1
i−1v

−1
i−1y1 · A−1

i−2y
−1
1 A−1

i−1v
−1
i−1v

−1
i y1Ai−2 · hi−1(∆−1(x1, x2, x3, x4)

∆(x1, x2, x3)) · y1Ai−1vi−1viy1A
−1
i−2Ai−1vi−1Ai−1vi−1vivi−1y1Ai−1v

−1
i vi−1viy1

·y−1
1 vi−1Ai−1A

−1
i−2(by Proposition 2.9)

= Ai−2A
−1
i−1v

−1
i−1y1 · A−1

i−2y
−1
1 A−1

i−1v
−1
i−1v

−1
i y1Ai−2v

−1
i−1A

−1
i−1y

−1
1 v−1

i−1A
−1
i−1y

−1
1 v−1

i−1

A−1
i−1y

−1
1 y1Ai−1vi−1viy1A

−1
i−2Ai−1vi−1Ai−1vi−1vivi−1y1Ai−1v

−1
i vi−1viy1

y−1
1 vi−1Ai−1A

−1
i−2 (by induction)

= Ai−2A
−1
i−1v

−1
i−1y1 · A−1

i−2y
−1
1 A−1

i−1y1v
−1
i−1v

−1
i v−1

i−1A
−1
i−1Ai−2y

−1
1 A−1

i−2v
−1
i−1vivi−1

Ai−1vivi−1viy1Ai−1v
−1
i y1vi−1vi · y−1

1 vi−1Ai−1A
−1
i−2( (T2), (T3), induction)

= Ai−2A
−1
i−1v

−1
i−1y1 · A−1

i−2Ai−1y
−1
1 A−1

i−1v
−1
i−1v

−1
i v−1

i−1A
−1
i−1y

−1
1 A−1

i−2y1vivi−1v
−1
i Ai−1

vivi−1y1Ai−1y1vi−1vi · y−1
1 vi−1Ai−1A

−1
i−2 (by (T2), (T3), induction)

= Ai−2A
−1
i−1v

−1
i−1y1Ai−1 ·A−1

i−2y
−1
1 A−1

i−1v
−1
i−1v

−1
i v−1

i−1A
−1
i−1y

−1
1 A−1

i−2vi · y1vi−1Ai−1y1

vi−1Ai−1y1vi−1Ai−1 · vi ·A−1
i−1y

−1
1 vi−1Ai−1A

−1
i−2 ( (T2), (T3), induction)

= Ai−2A
−1
i−1v

−1
i−1y1Ai−1 ·A−1

i−2y
−1
1 A−1

i−1v
−1
i−1v

−1
i v−1

i−1A
−1
i−1y

−1
1 A−1

i−2vi
·hi−1(∆(x1, x2, x3)) · vi ·A−1

i−1y
−1
1 vi−1Ai−1A

−1
i−2 (by Proposition 2.8)

= Ai−2A
−1
i−1v

−1
i−1y1Ai−1 ·A−1

i−2y
−1
1 A−1

i−1v
−1
i−1v

−1
i v−1

i−1A
−1
i−1y

−1
1 A−1

i−2viAi−2y1Ai−1

vi−1Ai−1y1Ai−2vi ·A−1
i−1y

−1
1 vi−1Ai−1A

−1
i−2 (by induction)

= Ai−2A
−1
i−1v

−1
i−1y1Ai−1 ·A−1

i−2y
−1
1 A−1

i−1v
−1
i−1v

−1
i vivi−1v

−1
i Ai−1y1Ai−2vi ·A−1

i−1y
−1
1

vi−1Ai−1A
−1
i−2(by (T2), (T3), induction)

= 1 (by (T2), (T3), induction)

Assertion 2 Recall that PΓg,r,n denotes the Coxeter graph drawn in Figure
21. There is a well defined homomorphism g : A(PΓg,r,n) → G(g, r, n) which
sends xi on xi for i = 0, . . . , r + 1, xr+i on Ai for i = 2, . . . , n, yi on yi for
i = 1, . . . , 2g − 1, z on z , and ui on ui for i = 1, . . . , r .

Proof of Assertion 2 We have to verify that the following relations hold in
G(g, r, n).

(T6) AiAj = AjAi for 1 ≤ i ≤ j ≤ n,
(T7) xiAj = Ajxi for 0 ≤ i ≤ r and 1 ≤ j ≤ n,
(T8) y1Aiy1 = Aiy1Ai for 1 ≤ i ≤ n,
(T9) Aiyj = yjAi for 1 ≤ i ≤ n and 2 ≤ j ≤ 2g − 1,
(T10) Aiz= zAi for 1 ≤ i ≤ n,
(T11) Aiuj = ujAi for 1 ≤ i ≤ n and 1 ≤ j ≤ r.

The relations (T6) and (T8) hold by Assertion 1, and the other relations are
direct consequences of the “braid” relations in A(Γg,r,n).
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Recall that PG(g, r, n) denotes the quotient of A(PΓg,r,n) by the relations
(PR1),. . . ,(PR4), (PR5a), (PR6a), (PR6b), and that this quotient is isomorphic
with PM(Fg,r+1,Pn) (see Proposition 3.7).

Assertion 3 The homomorphism g : A(PΓg,r,n) → G(g, r, n) induces a ho-
momorphism ḡ : PG(g, r, n) → G(g, r, n).

Proof of Assertion 3 It suffices to show that the following relations hold in
G(g, r, n).

(T12) g(xk∆−1(xi+1, xj , y1)xi∆(xi+1, xj , y1))
= g(∆−1(xi+1, xj, y1)xi∆(xi+1, xj , y1)xk) for 0 ≤ k < j < i ≤ r + n− 1,

(T13) g(y2∆−1(xi+1, xj, y1)xi∆(xi+1, xj , y1))
= g(∆−1(xi+1, xj, y1)xi∆(xi+1, xj , y1)y2) for 0 ≤ j < i ≤ r + n− 1,

(T14) g(∆(xi, xi+1, y1, y2, y3, z)∆−2(xi+1, y1, y2, y3, z))
= g(∆(x0, xi, xi+1, y1)∆−2(x0, xi+1, y1)) for r + 1 ≤ i ≤ r + n− 1.

• Relation (T12): for i ≥ r + 1 and j < i− 1, we have:

(E1) g(∆−1(xi+1, xj , y1)xi∆(xi+1, xj , y1))
= y−1

1 g(xj)−1A−1
i−r+1y

−1
1 Ai−ry1Ai−r+1g(xj)y1

= y−1
1 g(xj)−1Ai−r−1v

−1
i−rA

−1
i−rv

−1
i−rA

−1
i−ry

−1
1 Ai−ry1Ai−rvi−rAi−rvi−r

A−1
i−r−1g(xj)y1 (by (T1))

= v−1
i−ry

−1
1 g(xj)−1A−1

i−rAi−r−1v
−1
i−rA

−1
i−rAi−ry1A

−1
i−rAi−rvi−rA

−1
i−r−1Ai−r

g(xj)y1vi−r (by (T2), (T3), (T4))
= v−1

i−ry
−1
1 g(xj)−1A−1

i−ry
−1
1 Ai−r−1y1Ai−rg(xj)y1vi−r (by (T2), (T3), (T4))

= v−1
i−rg(∆

−1(xi, xj, y1)xi−1∆(xi, xj , y1))vi−r.

For i ≥ r + 1 and j = i− 1 we have:

(E2) g(∆−1(xi+1, xi−1, y1)xi∆(xi+1, xi−1, y1))
= y−1

1 A−1
i−r−1A

−1
i−r+1y

−1
1 Ai−ry1Ai−r+1Ai−r−1y1

= y−1
1 A−1

i−r−1Ai−r−1v
−1
i−rA

−1
i−rv

−1
i−rA

−1
i−ry

−1
1 Ai−ry1Ai−rvi−rAi−rvi−r

A−1
i−r−1Ai−r−1y1 (by (T1))

= v−1
i−ry

−1
1 A−1

i−rv
−1
i−rA

−1
i−rAi−ry1A

−1
i−rAi−rvi−rAi−ry1vi−r

(by (T2), (T3), (T4))
= v−1

i−ry
−1
1 y1Ai−ry

−1
1 y1vi−r (by (T2), (T3), (T4))

= v−1
i−rAi−rvi−r.

First, assume that i ≤ r . Then the relation (T12) follows from the relation
(R3) in the definition of G(g, r, n). Now, we assume that j < r ≤ i ≤ r+n−1,
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and we prove by induction on i that the relation (T12) holds. The case i = r
follows from the relation (R3) in the definition of G(g, r, n), and the case i > r
follows from the inductive hypothesis and from the equality (E1) above. Now,
we assume that r ≤ j < i ≤ r + n − 1, and we prove, again by induction on
i, that the relation (T12) holds. The case i = j + 1 follows from the equality
(E2) above, and the case i > j + 1 follows from the inductive hypothesis and
from the equality (E1).

• The relation (T13) can be shown in the same manner as the relation (T12).

• Relation (T14): We prove by induction on i ≥ sup{r, 1} that the relation
(T14) holds in G(g, r, n). If i = r ≥ 1, then the relation (T14) follows from the
relation (R8b) in the definition of G(g, r, n). Assume r = 0 and i = 1. Then:

g(∆2(x2, y1, y2, y3, z)∆−1(x1, x2, y1, y2, y3, z)∆(x0, x1, x2, y1)∆−2(x0, x2, y1))
= zy3y2y1A2A

−1
1 y−1

1 y−1
2 y−1

3 z−1y3y2y1A1A
−1
2 y−1

1 y−1
2 y−1

3 y2y1A2A
−1
1 y−1

1 y−1
2 A1y1

A1A
−1
2 y−1

1 A−1
1 ·A1y1A

−1
1 A2y

−1
1 A−1

1 A0y1A1A
−1
2 y−1

1 A−1
0 (by Lemma 3.8)

= zy3y2y1v1A1v1A1A
−1
0 A−1

1 y−1
1 y−1

2 y−1
3 z−1y3y2y1A1A0A

−1
1 v−1

1 A−1
1 v−1

1 y−1
1 y−1

2

y−1
3 y2y1v1A1v1A1A

−1
0 A−1

1 y−1
1 y−1

2 A0y1A1A0A
−1
1 v−1

1 A−1
1 v−1

1 y−1
1 A−1

0 (T1)
= v1 · zy3y2y1A1A

−1
0 y−1

1 y−1
2 y−1

3 z−1y3y2y1A0A
−1
1 y−1

1 y−1
2 y−1

3 y2y1A1A
−1
0 y−1

1 y−1
2

A0y1A0A
−1
1 y−1

1 A−1
0 · v−1

1 (by (T2), (T3), (T4))
= v1 ·∆2(x1, y1, y2, y3, z)∆−1(x0, x1, y1, y2, y3, z) · v−1

1 (by Lemma 3.8)
= 1 (by (R8a)).

Now, we assume that i > sup{r, 1}. Then:

g(∆2(xi+1, y1, y2, y3, z)∆−1(xi, xi+1, y1, y2, y3, z)∆(x0, xi, xi+1, y1)
∆−2(x0, xi+1, y1))

= zy3y2y1Ai−r+1A
−1
i−ry

−1
1 y−1

2 y−1
3 z−1y3y2y1Ai−rA

−1
i−r+1y

−1
1 y−1

2 y−1
3 y2y1Ai−r+1

A−1
i−ry

−1
1 y−1

2 Ai−ry1Ai−rA
−1
i−r+1y

−1
1 A−1

i−r ·Ai−ry1A
−1
i−rAi−r+1y

−1
1 A−1

i−rx0y1

Ai−rA
−1
i−r+1y

−1
1 x−1

0 (by Lemma 3.8)
= zy3y2y1vi−rAi−rvi−rAi−rA

−1
i−r−1A

−1
i−ry

−1
1 y−1

2 y−1
3 z−1y3y2y1Ai−rAi−r−1A

−1
i−r

v−1
i−rA

−1
i−rv

−1
i−ry

−1
1 y−1

2 y−1
3 y2y1vi−rAi−rvi−rAi−rA

−1
i−r−1A

−1
i−ry

−1
1 y−1

2 x0y1Ai−r
Ai−r−1A

−1
i−rv

−1
i−rA

−1
i−rv

−1
i−ry

−1
1 x−1

0 (by (T1))
= vi−r · zy3y2y1Ai−rA

−1
i−r−1y

−1
1 y−1

2 y−1
3 z−1y3y2y1Ai−r−1A

−1
i−ry

−1
1 y−1

2 y−1
3 y2y1

Ai−rA
−1
i−r−1y

−1
1 y−1

2 x0y1Ai−r−1A
−1
i−ry

−1
1 x−1

0 · v−1
i−r (by (T2), (T3), (T4))

= vi−r · g(∆2(xi, y1, y2, y3, z)∆−1(xi−1, xi, y1, y2, y3, z)∆(x0, xi−1, xi, y1)
∆−2(x0, xi, y1)) · v−1

i−r (by Lemma 3.8)
= 1 (by induction).

Let V1, . . . , Vn−1 denote the natural generators of the Artin group A(An−1),
numbered according to Figure 6. Applying Lemma 2.5 to the exact sequence
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(2.1) of Subsection 2.2, one has that M(Fg,r+1,Pn) is isomorphic with the
quotient of the free product PG(g, r, n) ∗A(An−1) by the following relations.

• Relations from Σn :

(T15) V 2
i = ∆2(xr+i−1, xr+i+1, y1)∆−1(xr+i−1, xr+i, xr+i+1, y1)

for 1 ≤ i ≤ n− 1.

• Relations from conjugation by the Vi ’s:

(T16) ViwV −1
i = w for 1 ≤ i ≤ n− 1 and

w ∈ {x0, . . . , xr+i−1, xr+i+1, . . . , xr+n, y1, . . . , y2g−1, z, u1, . . . , ur},
(T17) Vixr+iV −1

i = y1xr+i−1x
−1
r+iy

−1
1 xr+i+1y1xr+ix

−1
r+i−1y

−1
1 for 1 ≤ i ≤ n− 1.

We can easily prove using Proposition 2.12 that the relation (T15) “holds” in
M(Fg,r+1,Pn). The relation (T16) is obvious, while the relation (T17) has to
be verified by hand.

Now, the homomorphism ḡ : PG(g, r, n) → G(g, r, n) extends to a homomor-
phism f : PG(g, r, n) ∗ A(An−1) → G(g, r, n) which sends Vi on vi for all
i = 1, . . . , n − 1.

Assertion 4 The homomorphism f : PG(g, r, n) ∗ A(An−1) → G(g, r, n) in-
duces a homomorphism f̄ :M(Fg,r+1,Pn)→ G(g, r, n).

One can easily verify on the generators of G(g, r, n) that f̄ ◦ ρ̄ is the identity
of G(g, r, n). So, Assertion 4 finishes the construction of f̄ and the proof of
Theorem 3.1.

Proof of Assertion 4 We have to show that: if w1 = w2 is one of the
relations (T15), (T16), (T17), then f(w1) = f(w2).

• Relation (T15):

f(∆−1(xr+i−1, xr+i, xr+i+1, y1)∆2(xr+i−1, xr+i+1, y1)) · v−2
i

= A−1
i y−1

1 A−1
i−1A

−1
i+1y

−1
1 A−1

i y1Ai−1Ai+1y1Ai−1Ai+1v
−2
i

(by Propositions 2.8 and 2.9)
= A−1

i y−1
1 A−1

i−1Ai−1v
−1
i A−1

i v−1
i A−1

i y−1
1 A−1

i y1Ai−1A
−1
i−1AiviAiviy1Ai−1A

−1
i−1Aivi

Aiviv
−2
i (by (T1))

= A−1
i y−1

1 v−1
i A−1

i v−1
i A−1

i Aiy
−1
1 A−1

i AiviAiviy1AiviAiv
−1
i (by (T2), (T3), (T4))

= A−1
i y−1

1 v−1
i y1A

−1
i y−1

1 viy1v
−1
i AiviAi (by (T1), . . . , (T4))

= 1 (by (T2), (T3), (T4)).

• The relation (T16) is a direct consequence of the braid relations in A(Γg,r,n).
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• Relation (T17):

f(y1xr+i−1x
−1
r+iy

−1
1 xr+i+1y1xr+ix

−1
r+i−1y

−1
1 )vif(x−1

r+i)v
−1
i

= y1Ai−1A
−1
i y−1

1 Ai+1y1AiA
−1
i−1y

−1
1 viA

−1
i v−1

i

= y1A
−1
i Ai−1y

−1
1 A−1

i−1AiviAiviy1AiviA
−1
i−1y

−1
1 A−1

i v−1
i (by (T1), (T2), (T3))

= y1A
−1
i y−1

1 A−1
i−1y1AiviAiviy1AiviA

−1
i−1y

−1
1 A−1

i v−1
i (by (T4))

= A−1
i y−1

1 AiA
−1
i−1y1AiviAiviy1AiviA

−1
i−1y

−1
1 A−1

i v−1
i (by (T4))

= A−1
i y−1

1 A−1
i−1y1Aiviy1Aiviy1AiviA

−1
i−1y

−1
1 A−1

i v−1
i (by (T2), (T3), (T4))

= A−1
i y−1

1 A−1
i−1 · hi(∆(x1, x2, x3)) ·A−1

i−1y
−1
1 A−1

i v−1
i (by Proposition 2.8)

= A−1
i y−1

1 A−1
i−1Ai−1y1AiviAiy1Ai−1A

−1
i−1y

−1
1 A−1

i v−1
i (by (T5) Proposition 2.9)

= 1.

3.2 Proof of Theorem 3.2

Let c1 : S1 → ∂Fg,1 be the boundary curve of Fg,1 . We regard Fg,0 as obtained
from Fg,1 by gluing a disk D2 along c1 , and we denote by ϕ :M(Fg,1,Pn) →
M(Fg,0,Pn) the homomorphism induced by the inclusion of Fg,1 in Fg,0 . The
next proposition is the key of the proof of Theorem 3.2.

Proposition 3.9 (i) Let g ≥ 2, and let an, a
′
n be the Dehn twists represented

in Figure 22. Then ϕ is surjective and its kernel is the normal subgroup of
M(Fg,1,Pn) normaly generated by {a−1

n a′n}.

(ii) Let g = 1, and let e, e′ be the Dehn twists represented in Figure 22. Then
ϕ is surjective and its kernel is the normal subgroup of M(F1,1,Pn) normaly
generated by {a−1

n a0, e
−1e′}.

e′

an

a′n

e

Figure 22: Relations in M(Fg,0,Pn)

Proof We choose a point Q in the interior of the disk D2 , and we denote by
MQ(Fg,0,Pn ∪ {Q}) the subgroup of M(Fg,0,Pn ∪ {Q}) of isotopy classes of
elements of H(Fg,0,Pn ∪ {Q}) that fix Q. An easy algebraic argument on the
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exact sequences (2.1), (2.2), and (2.3) of Subsection 2.2 shows that we have the
following exact sequences.

(2.2.a) 1→ π1(Fg,0 \ Pn, Q)→MQ(Fg,0,Pn ∪ {Q})
ϕ1−−→M(Fg,0,Pn)→ 1,

(2.3.a) 1→ Z→M(Fg,1,Pn) ϕ2−−→MQ(Fg,0,Pn ∪ {Q})→ 1.

Moreover, we have ϕ = ϕ1 ◦ ϕ2 .

A first consequence of these exact sequences is that ϕ is surjective. Now, we
use them for finding a normal generating set of kerϕ.

The group π1(Fg,0 \ Pn, Q) is the free group freely generated by the loops
ᾱ1, . . . , ᾱn , β̄1, . . . , β̄2g−1 represented in Figure 23. One can easily verify by
hand that the following equalities hold in MQ(Fg,0,Pn ∪ {Q}):

ᾱi = ϕ2(b1a′naib1an)−1 · ᾱ−1
n · ϕ2(b1a′naib1an) for i = 1, . . . , n− 1,

β̄1 = ϕ2(b1an)−1 · ᾱn · ϕ2(b1an),
β̄j = ϕ2(bjbj−1)−1 · β̄j−1 · ϕ2(bjbj−1) for j = 2, . . . , 2g − 1.

Moreover, by Lemma 2.6, we have:

ᾱn = ϕ2(a−1
n a′n).

On the other hand, by Lemma 2.7, the Dehn twists σ1 along the boundary
curve of Fg,1 generates the kernel of ϕ2 . So, the kernel of ϕ is the normal
subgroup normaly generated by {a−1

n a′n, σ1}.

Now, assume g ≥ 2. Let G′ denote the quotient of M(Fg,1,Pn) by the relation
an = a′n . Define a spinning pair of Dehn twists to be a pair (σ, σ′) of Dehn
twists conjugated to (an, a′n), namely, a pair (σ, σ′) of Dehn twists satisfying:
there exists ξ ∈ M(Fg,1,Pn) such that σ = ξanξ

−1 and σ′ = ξa′nξ
−1 . Note

that we have the equality σ = σ′ in G′ if (σ, σ′) is a spinning pair. Consider
the Dehn twists e1, e2, e3, e

′
1, e
′
2, e
′
3 represented in Figure 24. The pairs (e1, e

′
1),

(e2, e
′
2), (e3, e

′
3) are spinning pairs, thus we have the equalities e1 = e′1 , e2 = e′2 ,

e3 = e′3 in G′ . Moreover, the lantern relation of Lemma 2.4 implies:

e1e2e3σ1 = e′1e
′
2e
′
3.

Thus, the equality σ1 = 1 holds in G′ . This shows that the kernel of ϕ is the
normal subgroup of M(Fg,1,Pn) normaly generated by {a−1

n a′n}.

Now, we assume g = 1. Then a′n = a0 . Let G′ be the quotient of M(F1,1,Pn)
by the relation an = a0 . By Proposition 2.12, we have the following equalities
in G′ .
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Q

p

p

p+ 1

i+ 1

β̄2p

i

ᾱi

Q
β̄2p−1

Q

Figure 23: Generators of π1(Fg,0 \ Pn, Q)

σ1e = (a0b1ana0b1a0)2 = (a0b1a0a0b1a0)2,
e′ = (a0b1a0)4.

Thus, we have the equality σ1 = e−1e′ in G′ . So, the kernel of ϕ is the normal
subgroup of M(F1,1,Pn) normaly generated by {a−1

n a0, e
−1e′}.

Proof of Theorem 3.2 Recall that Γg,0,n denotes the Coxeter graph drawn
in Figure 18, and that G(g, 0, n) denotes the quotient of A(Γg,0,n) by the re-
lations (R1), (R2), (R7), (R8a). By Theorem 3.1, there is an isomorphism
ρ̄ : G(g, 0, n) → M(Fg,1,Pn) which sends xi on ai for i = 0, 1, yi on bi for
i = 1, . . . , 2g − 1, z on c, and vi on τi for i = 1, . . . , n− 1.

First, assume g ≥ 2. Let G0(g, n) denote the quotient of G(g, 0, n) by the
relation (R9a). Proposition 2.12 implies:

an = ρ̄(x1−n
0 ∆(x1, v1, . . . , vn−1)),

a′n = ρ̄(x3−2g
0 ∆(z, y2, . . . , y2g−1)).

Thus, by Proposition 3.9, ρ̄ induces an isomorphism :

ρ̄0 : G0(g, n)→M(Fg,0,Pn).

Algebraic & Geometric Topology, Volume 1 (2001)



112 Catherine Labruère and Luis Paris

e′2

e3

e2 e′1

e′3

e1

Figure 24: Lantern relation in M(Fg,1,Pn)

Now, assume g = 1. Let G0(1, n) denote the quotient of G(1, 0, n) by the
relations (R9b), (R9c). Proposition 2.12 implies:

an = ρ̄(x1−n
0 ∆(x1, v1, . . . , vn−1)),

e = ρ̄(∆2(v1, . . . , vn−1)),
e′ = ρ̄(∆4(x0, y1)).

Thus, by Proposition 3.9, ρ̄ induces an isomorphism :

ρ̄0 : G0(1, n)→M(F1,0,Pn).
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Université de Bourgogne, BP 47870 21078 Dijon Cedex, France

Email: clabruer@u-bourgogne.fr, lparis@u-bourgogne.fr

Received: 6 February 2001

Algebraic & Geometric Topology, Volume 1 (2001)


